
Laboratory: Local Growth Rates of Polynomials

1 Before the Keyboard

Calculus is the language that we use to describe change. Here we will explore how some

familiar functions change. We will look at polynomials and see how changes in their inputs

result in changes in their outputs.

Example We start with the squaring function. We may write it as f(x) = x2, or as y = x2,

or sometimes as x 7→ x2, read `x maps to x2'.
First consider how this function changes near to 3.

input

x

change in input

∆x

output

y

change in output

∆y

2.99 −0.01 8.9401 −0.0599

2.999 −0.001 8.994001 −0.005999

3 0 9 0

3.001 0.001 9.006001 0.006001

3.01 0.01 9.0601 0.0601

Note that as the function's input rises, so does its output. More than that, the output

changes correspond with the input changes in a regular way { near to 3, the value of ∆y

is always about six times the value of ∆x.

This lab studies the relationship between ∆x and ∆y for some polynomials.

Example Continuing with the case of f(x) = x2 near 3, we can calculate how the 6 arises:
(3 + ∆x)2 = (3 + ∆x)(3 + ∆x) = 9 + 6∆x + (∆x)2 and therefore ∆y = 6∆x + (∆x)2. Ths
table shows why, of the two terms involving ∆x in that expansion, the �rst-power one 6∆x

plays a much larger role.

change in input

∆x

change in output

∆y 6∆x (∆x)2

−0.01 −0.0599 −0.06 0.0001

−0.001 −0.005999 −0.006 0.000001

0 0 0 0

0.001 0.006001 0.006 0.000001

0.01 0.0601 0.06 0.0001
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The numbers in the (∆x)2 column are much smaller than the numbers in the 6∆x column.

We can easily see why this is true: for instance, if ∆x = 0.01 then (∆x)2 = ∆x·∆x = 0.01·∆x

is smaller than ∆x by two orders of magnitude, since 0.01 = 10−2. Squaring a small number

exaggerates its smallness.

We shall use a for the �xed point, and so we can summarize the above work with:

near a = 3, that is, for small ∆x, instead of working with the exact change relationship

3 + ∆x 7→ 9 + ∆y we can work with the approximate relationship 3 + ∆x 7→ 9 + 6∆x.

This approximation is good enough for many purposes; for instance, if ∆x = 0.004 then

f(3 + 0.004) = 9.024016 so the exact ∆y is 0.024016 while the approximation gives 6∆x =

6 · 0.004 = 0.024.

First-power relationships graph as lines, so 3 + ∆x 7→ 9 + 6∆x is a line with slope six

passing through (3, 9). The relationship that we are studying here is called the linear

approximation, or �rst-power appproximation or more loosely �rst approximation, or

sometimes the tangent-line approximation (because of the obvious connection shown on

the graph below with tangent line work from plane geometry).
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Near to the point (3, 6) the line is near to the curve; that's what we mean by saying that

for small ∆x the approximation is good.

Example We can do a similar analysis of the behavior of f(x) = x2 near a = 2.

input

x

change in input

∆x

output

y

change in output

∆y

1.99 −0.01 3.9601 −0.0399

1.999 −0.001 3.996001 −0.003999

2 0 4 0

2.001 0.001 4.004001 0.004001

2.01 0.01 4.0401 0.0401

Here, ∆y ≈ 4∆x. The expansion (2 + ∆x)2 = 4 + 4∆x + (∆x)2 and this table
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change in input

∆x

change in output

∆y 4∆x (∆x)2

−0.01 −0.0399 −0.04 0.0001

−0.001 −0.003999 −0.004 0.000001

0 0 0 0

0.001 0.004001 0.004 0.000001

0.01 0.0401 0.04 0.0001

combine to explain this ∆x-to-∆y relationship, As in the prior example, the second-power

term ∆x2 contributes much less to the ∆y than does the �rst-power term 4∆x. Therefore,

we can model the behavior of f(x) = x2 near a = 2 with ∆y = 4∆x.
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Example Consider again the local behavior of f(x) = x2, this time near a = 1. Because
(1 + ∆x)2 = 1 + 2∆x + (∆x)2 we have this table (which simply combines the pair of tables
from each of the examples above).

input

x

change in input

∆x

output

y

change in output

∆y 2∆x (∆x)2

0.99 −0.01 0.9801 −0.0199 −0.02 0.0001

0.999 −0.001 0.998001 −0.001999 −0.002 0.000001

1 0 1 0 0 0

1.001 0.001 1.002001 0.002001 0.002 0.000001

1.01 0.01 1.0201 0.0201 0.02 0.0001

Again, we form the linear approximation by discounting the contribution of higher-order

terms and get:
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near to (a, a2) = (1, 1) the function's action is approximately equal to that of the line with

slope ∆y/∆x = 2 which is tangent to the curve at that point.

In general, for small ∆x, an expression involving a higher power of ∆x gives much

smaller values than does an expression involving the �rst power of ∆x. Note that this is

the opposite of our experience for numbers much larger than zero, where a square is much

bigger than a �rst-power term.

Example Next, consider the cubing function, written y = x3, or f(x) = x3, or x 7→ x3. We
will describe how this function changes near a = 2. Expanding the expression (2+∆x)3 =
8 + 12∆x + 6(∆x)2 + (∆x)3 suggests this table.

input

x

change in input

∆x

output

y

change in output

∆y 12∆x 6∆x2 ∆x3

1.99 −0.01 7.880599 0.119401 −0.12 0.0006 0.000001

1.999 −0.001 7.988006 0.011994 −0.012 0.000006 −0.000000001

2 0 8 1 0 0 0

2.001 0.001 8.012006 0.012006 0.012 0.000006 0.000000001

2.01 0.01 8.120601 0.120601 0.12 0.0006 0.000001

As earlier, the numbers in the higher-power change columns 6∆x2 and ∆x3 are much smaller

than the numbers in the �rst-power change column 12∆x. Consequently, near a = 2 we

can get a good approximation by focusing on the linear change relationship ∆y ≈ 12∆x.

Graphically, because ∆y/∆x ≈ 12 near to (2, 8), the function changes approximately as

does the line with slope 12 that is tangent to the curve at that point.
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In this prepatory section we have considered how some familiar functions change near to

a few points. The next section continues this exploration with higher-powered polynomials,

using the computer to do some of the larger calculations.

Exercises

1. Consider the squaring function at a = 3. Find the change in y divided by the change in x

when x = 5. Do the same when x = 4, and note that they are di�erent. Remark. This

exercise shows that it is impossible in general to assign a `slope' number to a curve that is

not a line. Instead, to describe the rate of change of a curve we must do something like we

did above | associate a line with the curve and use the slope of that line.

2. For the squaring function examples above, give the y = mx + b form of the equation of the

tangent line in the a = 3, a = 2, and a = 1 cases.

3. For the squaring function, give the linear approximation at a = −3, a = −2, and a = −1.

4. Linear approximations are commonly used in science and engineering, as this passage from

Surely You're Joking, Mr. Feynman illustrates. (This book is the autobiography of the

Nobel prize winning physicist, and curious character, Richard Feynman. Here he is talking

about his Ph.D. thesis advisor.)

When I was at Los Alamos I found out that Hans Bethe was absolutely top-

notch at calculating. For example, one timewe were putting some numbers into

a formula and got 48 squared. I reach for the Marchant calculator, and he says,

\That's 2300." I begin to push the buttons , and he says, \If you want it exactly,

it's 2304."

The machine says 2304, \Gee! That's pretty remarkable!" I say.

\Don't you know how to square numbers near 50?" he says \You square 500 {

that's 2500 { and subtract 100 times the di�erence of your number from 50 (in

this case it's 2), so you have 2300. If you want the correction, square the di�erence

and add it on. That makes 2304.

Derive Bethe's formula, both the exact one and the approximate one.
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5. For the cubing function, give the equation of the tangent line in the a = 2 case. Then give

the equation in the a = 1 case (for he �rst part you can use the expansion of (2 + ∆x)3 that

is found above, but for this part you must expand (1 + ∆x)3 yourself).

6. Above it says `for small ∆x, an expression involving a higher power of ∆x gives much smaller

values than does an expression involving the �rst power of ∆x'. There a subtlety in that

assertion. Make a table with columns headed (∆x)2 and 0.0001∆x. Fill in rows where ∆x has

the value 0.1 and 0.01. Note that the �rst-power expression is not smaller than the second-

power expression (because of the 0.0001 coe�cient). Next, �ll in rows where ∆x is 0.001,

0.0001, and 0.00001. Note the �rst-power expression is now smaller than the second-power

expression. The discrepancy will only get greater for smaller and smaller ∆x's. That is, after

we've seen this example, we see that the sentence above may be altered to say `for su�ciently

small ∆x, an expression involving a higher power of ∆x gives much smaller values than does

an expression involving the �rst power of ∆x'.

7. Give the formula for the slope of the line tangent to the squaring function at a. That is,

expand the expression (a + ∆x)2 and discard terms involving higher power of ∆x to get that

∆y is approximately equal to an expression involving a times ∆x.

8. We have focused on the behavior of the functions near to the point a. But the exact equations

a + ∆x 7→ f(a + ∆x) remain true even when ∆x is large. Consider again the relationship for

a = 3 and the squaring function 3+∆x 7→ 9+6∆x+(∆x)2. Make a table with columns headed

x, ∆x, y, ∆y, 6∆x, and ∆x2. Fill in the rows for x = 3, x = 4, x = 5, x = 10, and x = 30. Also

�ll in rows for x = 2, x = 0, and x = −30. Compute how far o� the linear approximation is in

each case. (So, when ∆x is not small, we cannot discount the contribution from the quadratic

term. On the contrary, those contributions come to dominate the expression 9+6∆x+(∆x)2.)

2 At the Keyboard

Now we will get the computer to carry out a similar analysis, in cases that are awkward

for by-hand work. (Remark: a result called the Binomial Theorem would give us the

conclusions also. But, rather than introduce and prove that theorem, we will get the

numbers that we want by brute-force calculation. This is not elegent, but it does get us

quickly into how functions change.)

Experiment Again consider the squaring function in the a = 3 case.

> expand((3+Delta_x)^2);

2

9+6*Delta_x+Delta_x

Maple can graph both the function and its linear approximation.

> plot({(3+Delta_x)^2),9+6*Delta_x},Delta_x=-2..2);
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This plot is shifted from the one shown in the prior section because it takes ∆x as the

variable whereas above the variable is x. The �rst exercise asks you to get Maple to

produce the original plot.

We can of course move beyond reproducing prior results.

Experiment Consider f(x) = x4 and a = 1.

> expand((1+Delta_x)^4);

2 3 4

1+4*Delta_x+6*Delta_x +4*Delta_x +Delta_x

Discarding the terms with higher powers of ∆x gives the �rst-power approximation ∆y =

1 + 4∆x. Here is the plot (as in the prior example, this plot is shifted).

> plot({(1+Delta_x)^4,1+4*Delta_x},Delta_x=-2..2);

Note that this �rst computer case shws the same e�ect as the by-hand cases: discarding

higher-power terms gives a good approximation for small ∆x.

Experiment To emphasize some of the advantage that the computer has for these ex-

periments, we can do the a = 3 case with the function f(x) = x10.

> expand((1+Delta_x)^10);}

2 3

59049+196830Delta_x+29524Delta_x +262440Delta_x + ...

> plot({(3+Delta_x)^10,59049+196830*Delta_x},Delta_x=-0.5..0.5);

Even quite-high power functions are not too much for the computer.

> expand((5+Delta_x)^20);

95367431640625+381469726562500Delta_x+ ...

>plot({(5+Delta_x)^20,95367431640625+381469726562500*Delta_x},Delta_x=-0.2..0.2);

The higher powers show the same e�ect, that the linear approximation is close to the curve

for small ∆x.

We can ask the computer to �nd what is the pattern; how is the coe�cient of the �rst

power of ∆x determined from the power n in f(x) = xn and the value a?

Experiment Consider the case of the cubing function, but this time we do not give the

computer a speci�c a.
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> expand((a+Delta_x)^3);

3 2 2 3

a +3a Delta_x+3aDelat_x +Delta_x

Thus, in general, the formula for the linear approximation is a + δx 7→ a3 + 3a2∆x, that

is, the line tangent to f(x) = x3 at (a, a3) has slope 3a2.

Experiment The fourth power function gives this.

> expand((a+Delta_x)^4);

4 3 2 2 3 4

a +4a Delta_x+6a Delta_x +4aDelta_x +Delta_x

Thus the linear approximation is a + ∆x 7→ a4 + 4a3∆x, and so the line tangent to the

graph at (a, a4) has slope 4a3.

Those examples show an obvious similarity. The second exercise carries on in the same

direction.

These experiments show the strength, and the weakness, of the computer in mathe-

matical investigations. Oe would not be keen to expand the tenth power or hundredth

power by hand. On the other hand, no number of examples constitute an ironclad proof.

On balance, the point is that the computer has become invaluable for experimentation,

conjecture, and trial.

Exercises

1. Which commands will shift the plot so they look like the ones in the prior section?

2. Make a table with columns labelled `power n' and `coe�cient of ∆x in the expansion of

(1 + ∆x)n. Fill out the row for the powers n = 2, 3, 4, 5, 10, and 20. What seems to be the

pattern?

3. Repeat the prior exercise for (2 + ∆x)n. Repeat also for (−1 + ∆x)n.

4. Conjecture as to the formula for a general power n at the point a.

5. On the basis of the prior exercise, guess at the equation of the line tangent to the graph of

the square root function f(x) = x1/2 at the point (9, 3). Graph the function and your guessed

tangent. Does you guess appear correct?

6. Brie
y state the strength of evidence that you have for your conjecture. Is it a proof? How

could it be made better, short of a proof?
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3 After the Keyboard

Certainly the �rst question brought out by the material here is, \Why? Why look at

approximations when we can consider the exact function, especially when we have the

computer to do any hard calculations?" Exercise 1 below shows how the things studied

above allow us to �nd answers that we do not have any evident way to �nd otherwise.

Besides, the question of the exact formula for the linear approximation is interesting in

and of itself.

With that motivation, we can move forward in two ways. First, we can try to prove that

the patterns seen above always hold. And second, we can expand the process of �nding lin-

ear approximations (for instance, how to approximate non-polynomials like f(x) = sin(x)?).

Both ways are accomplished using the same technical device, limits.

Exercises

1. Why should we shift from studying exact functions to studying their approximate actions?

Consider the function f(x) = x3 −x. Graph it, and guess the value of x at the local minimum

and the local maximum. Next, observe that at the local minimum and the local maximum

the tangent line is horizontal | has slope zero. Find the linear approximation at a, set it to

zero, and solve.

2. Graph f(x) = sin(x), being sure that your graph's horizontal scale equals its vertical scale.

Estimate the slope of the tangent line at a = 0, π/5, 2π/5, . . . , 2π. Sketch a plot of a versus

your estimated slope at a. Make a conjecture about the formula for the slopes.
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