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Chapter I: Mechanical Computation

I.1.10 It is like a program in that it is single-purpose, that is, just as we may have a program that doubles its
input and does nothing else, so also we may have such a Turing machine. It is unlike a program in that it is
hardware.

It is like the computers we have on our desks today in that it mechanically converts the input into the
output. A Turing machine is unlike such a computer in that it is purpose-built, for a single job.

I.1.11 The definition describes the machine. Further description of the machine’s action, which involves the
definitions of configurations and the transisitions, follows Definition 1.4. In some ways it is an extension of the
defintion.

Restated, as A Bauer says in a comment to this question on Stack Exchange, why is the road not part of the
car?

I.1.12 It is not a question of determining whether a particular mathematical statement is true. Obviously, if 𝑥 = 2
then we can determine whether 𝑥 > 3. Similarly, we can determine the truth or falsity of ∀𝑥 ∈ N [𝑥2 > 3].
Rather, the Entscheidungsproblem asks for an algorithm that inputs any mathematical statement at all, and
outputs ‘𝑇 ’ or ‘𝐹 ’.

I.1.13
(a) Here is the sequence of tapes traced out in the course of the computation of the predecessor of 2.

Step Configuration

0 1 1
q0

1 1 1
q0

2 1 1
q0

Step Configuration

3 1 1
q1

4 1
q1

5 1
q2

Step Configuration

6 1
q2

7 1
q3

(b) This is the tape diagram sequence for the sum of 2 and 2.

Step Configuration

0 1 1 1 1
q0

1 1 1 1 1
q0

2 1 1 1 1
q0

3 1 1 1 1
q1

4 1 1 1 1 1
q1

Step Configuration

5 1 1 1 1 1
q2

6 1 1 1 1 1
q2

7 1 1 1 1 1
q2

8 1 1 1 1 1
q2

9 1 1 1 1 1
q3

Step Configuration

10 1 1 1 1 1
q3

11 1 1 1 1
q4

12 1 1 1 1
q5

(c) This is the predecessor computation.

⟨𝑞0, 1, 𝜀, 1⟩ ⊢ ⟨𝑞0, 1, 1, 𝜀⟩ ⊢ ⟨𝑞0, B, 11, 𝜀⟩ ⊢ ⟨𝑞1, 1, 1, 𝜀⟩ ⊢ ⟨𝑞1, B, 1, 𝜀⟩ ⊢ ⟨𝑞2, 1, 𝜀, 𝜀⟩
⊢ ⟨𝑞2, B, 𝜀, 1⟩ ⊢ ⟨𝑞3, 1, 𝜀, 𝜀⟩
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There is no instruction for state 𝑞3 so ⟨𝑞3, 1, 𝜀, 𝜀⟩ is a halting configuration.
The sum of 2 and 2 is a little longer.

⟨𝑞0, 1, 𝜀, 1B11⟩ ⊢ ⟨𝑞0, 1, 1, B11⟩ ⊢ ⟨𝑞0, B, 11, 11⟩ ⊢ ⟨𝑞1, B, 11, 11⟩ ⊢ ⟨𝑞1, 1, 11, 11⟩
⊢ ⟨𝑞2, 1, 11, 11⟩ ⊢ ⟨𝑞2, 1, 1, 111⟩ ⊢ ⟨𝑞2, 1, 𝜀, 1111⟩ ⊢ ⟨𝑞2, B, 𝜀, 11111⟩
⊢ ⟨𝑞3, B, 𝜀, 11111⟩ ⊢ ⟨𝑞3, 1, 𝜀, 1111⟩ ⊢ ⟨𝑞4, B, 𝜀, 1111⟩ ⊢ ⟨𝑞5, 1, 𝜀, 111⟩

I.1.14
(a) To show that some operation on negative numbers (or any mathematical object, for that matter) can be

computed, name a representation for them with strings over a finite alphabet and then show how to use a
Turing machine to do mechanical computations on those strings. For instance, to show that multiplication
of two integers is mechanical, we could use the alphabet Σ = {B, 0, ... 9, +, -} and represent each integer as
a pair ⟨sign, natural number⟩. Making a Turing machine that has four cases, for the four possible pairs of
signs, is tedious but perfectly possible.

(b) If by “problem” we mean that the machine fails to halt, this is not the source of the problem. Rather, this
machine is a straightforward infinite loop.

(c) We could give a machine states that are not sequential. The only limitation is that we use the convention that
the initial state is𝑞0. For instance, thismachine fits the definitionP = {𝑞0BB𝑞50, 𝑞011𝑞50, 𝑞5011𝑞1, 𝑞5011𝑞1 },
and on any input reaches state 𝑞50 after one step.

I.1.15 The halting state is 𝑞4 and the working states are 𝑞0, 𝑞1, 𝑞2 and 𝑞3.
I.1.16 The trace is not too interesting.

Step Configuration

0 q0

1 q0

2 q0

3 q0

Step Configuration

4 q0

5 q0

6 q0

7 q0

Step Configuration

8 q0

9 q0

10 q0

I.1.17
(a) The result of running the mystery machine on input 11 is this.

Step Configuration

0 1 1
q0

1 1 1
q1

Step Configuration

2 1 1
q0

3 1 1
q4

(b) On input 1011 it gives this.

Step Configuration

0 1 0 1 1
q0

1 1 0 1 1
q1

Step Configuration

2 1 0 1 1
q2

3 1 0 1 1
q3

(c) The input 110 gives this.
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Step Configuration

0 1 1 0
q0

1 1 1 0
q1

2 1 1 0
q0

Step Configuration

3 1 1 0
q0

4 1 1 0
q4

(d) With the input 1101 the machine gives this sequence of tapes.

Step Configuration

0 1 1 0 1
q0

1 1 1 0 1
q1

2 1 1 0 1
q0

3 1 1 0 1
q0

Step Configuration

4 1 1 0 1
q1

5 1 1 0 1
q4

(e) This is what happens when the initial tape is empty.

Step Configuration

0 q0

1 q4
I.1.18 This is the transition table.

Δ B 0 1

𝑞0 B𝑞4 R𝑞0 R𝑞1
𝑞1 B𝑞4 R𝑞2 R𝑞0
𝑞2 B𝑞4 R𝑞0 R𝑞3
𝑞3 – – –

I.1.19 The machine Pblankones = {𝑞0BB𝑞2, 𝑞01B𝑞1, 𝑞1BR𝑞0, 𝑞111𝑞0 } does this on a tape with two 1’s.

Step Configuration

0 1 1
q0

1 1
q1

2 1
q0

Step Configuration

3 q1

4 q0

5 q2

I.1.20
(a) This machine does the job; note that the head never moves.

Psinglebitnot = {𝑞0BB𝑞1, 𝑞001𝑞1, 𝑞010𝑞1 }
This shows input 𝜎 = 0.
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Step Configuration

0 0
q0

1 1
q1

(b) This machine does ‘and’. Note that the states are not numbered sequentially; sometimes making a gap is
convenient when you are writing the machine. For instance, here state 𝑞100 is used as the halting state,
since it was clear there would not be a hundred states and so this one would be available. Similarly, 𝑞10 is
for what the machine does if the first bit is 0 while 𝑞20 is for the case where the first bit is 1.

Psinglebitand = {𝑞0BB𝑞100, 𝑞00B𝑞10, 𝑞01B𝑞20, 𝑞10BR𝑞11, 𝑞1000𝑞100, 𝑞1011𝑞100,
𝑞11BB𝑞100, 𝑞1100𝑞100, 𝑞1110𝑞100, 𝑞20BR𝑞21, 𝑞2000𝑞100, 𝑞2010𝑞100,

𝑞21BB𝑞100, 𝑞2100𝑞100, 𝑞2111𝑞100 }
This shows what the machine does on input 𝜎 = 01.

Step Configuration

0 0 1
q0

1 1
q10

Step Configuration

2 1
q11

3 0
q100

(c) This is the ‘or’ machine. As in the prior item, the states are not numbered sequentially. Note also that this
machine is basically the same as the ‘or’ machine.

Psinglebitor = {𝑞0BB𝑞100, 𝑞00B𝑞10, 𝑞01B𝑞20, 𝑞10BR𝑞11, 𝑞1000𝑞100, 𝑞1011𝑞100,
𝑞11BB𝑞100, 𝑞1100𝑞100, 𝑞1111𝑞100, 𝑞20BR𝑞21, 𝑞2000𝑞100, 𝑞2010𝑞100,

𝑞21BB𝑞100, 𝑞2101𝑞100, 𝑞2111𝑞100 }
Here is what it does on input 𝜎 = 01.

Step Configuration

0 0 1
q0

1 1
q10

Step Configuration

2 1
q11

3 1
q100

I.1.21 This machine uses 𝑞0 to slide to the right end, appends the 01, and uses 𝑞2 to slide back to the left.
Pappend01 = {𝑞0B0𝑞1, 𝑞00R𝑞0, 𝑞01R𝑞0, 𝑞1B1𝑞2, 𝑞10R𝑞1, 𝑞11L𝑞2, 𝑞2BR𝑞3, 𝑞20L𝑞2, 𝑞21L𝑞2 }

This example shows what the machine does, on input 𝜎 = 11.

Step Configuration

0 1 1
q0

1 1 1
q0

2 1 1
q0

3 1 1 0
q1

Step Configuration

4 1 1 0
q1

5 1 1 0 1
q2

6 1 1 0 1
q2

7 1 1 0 1
q2

Step Configuration

8 1 1 0 1
q2

9 1 1 0 1
q2

10 1 1 0 1
q3
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I.1.22 This machine works.

Pconstantthree = {𝑞0BB𝑞2, 𝑞01B𝑞1, 𝑞1BR𝑞0, 𝑞111𝑞0, 𝑞2B1𝑞2, 𝑞21R𝑞3, 𝑞3B1𝑞3, 𝑞31R𝑞4,
𝑞4B1𝑞4, 𝑞411𝑞5, 𝑞5BL𝑞6, 𝑞51L𝑞6, 𝑞6BB𝑞7, 𝑞61L𝑞7 }

Here is the machine acting on an input of 2.

Step Configuration

0 1 1
q0

1 1
q1

2 1
q0

3 q1

4 q0

Step Configuration

5 q2

6 1
q2

7 1
q3

8 1 1
q3

9 1 1
q4

Step Configuration

10 1 1 1
q4

11 1 1 1
q5

12 1 1 1
q6

13 1 1 1
q7

I.1.23 This machine computes successor.

Psuccessor = {𝑞0B1𝑞1, 𝑞01L𝑞0 }

An example is this tape sequence for input 3.

Step Configuration

0 1 1 1
q0

1 1 1 1
q0

2 1 1 1 1
q1

I.1.24
(a) We begin with the head at the start of a sequence of 1’s. Erase that first 1, then slide to the end of the

sequence, and past a blank. Put two 1’s, and then slide back to the start of the initial sequence. Iterate that.
The machine has nine instructions and alphabet Σ = {1, B}.

Pdoubler = {𝑞0BB𝑞9, 𝑞01B𝑞1, 𝑞1BR𝑞2, 𝑞11R𝑞2, 𝑞2BR𝑞3, 𝑞21R𝑞2, 𝑞3B1𝑞4, 𝑞31R𝑞3, 𝑞4BB𝑞4, 𝑞41R𝑞5,
𝑞5B1𝑞6, 𝑞511𝑞6, 𝑞6BL𝑞7, 𝑞61L𝑞6, 𝑞7BR𝑞8, 𝑞71L𝑞7, 𝑞8BR𝑞9, 𝑞811𝑞0 }

Here is the sequence of tapes for the input 2. It shows the blanks because there can be two of them, which
can be confusing. It is in halves just to allow a page break in the middle.
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Step Configuration

0 1 1
q0

1 B 1
q1

2 B 1
q2

3 B 1 B
q2

4 B 1 B B
q3

Step Configuration

5 B 1 B 1
q4

6 B 1 B 1 B
q5

7 B 1 B 1 1
q6

8 B 1 B 1 1
q6

9 B 1 B 1 1
q6

Step Configuration

10 B 1 B 1 1
q7

11 B 1 B 1 1
q7

12 B 1 B 1 1
q8

13 B 1 B 1 1
q0

14 B B B 1 1
q1

This is the second half.

Step Configuration

15 B B B 1 1
q2

16 B B B 1 1
q3

17 B B B 1 1
q3

18 B B B 1 1 B
q3

19 B B B 1 1 1
q4

Step Configuration

20 B B B 1 1 1 B
q5

21 B B B 1 1 1 1
q6

22 B B B 1 1 1 1
q6

23 B B B 1 1 1 1
q6

24 B B B 1 1 1 1
q6

Step Configuration

25 B B B 1 1 1 1
q6

26 B B B 1 1 1 1
q7

27 B B B 1 1 1 1
q8

28 B B B 1 1 1 1
q9

(b) To double a number represented in binary just append a 0 to the right side. The machine has three
instructions and Σ = {0, 1, B}.

Pdoublerbinary = {𝑞0BB𝑞3, 𝑞000𝑞3, 𝑞01R𝑞1, 𝑞1B0𝑞2, 𝑞10R𝑞1, 𝑞11R𝑞1, 𝑞2BR𝑞3, 𝑞20L𝑞2, 𝑞21L𝑞2 }

On input 6 it gives this tape sequence.

Step Configuration

0 1 1 0
q0

1 1 1 0
q1

2 1 1 0
q1

3 1 1 0
q1

Step Configuration

4 1 1 0 0
q2

5 1 1 0 0
q2

6 1 1 0 0
q2

7 1 1 0 0
q2

Step Configuration

8 1 1 0 0
q2

9 1 1 0 0
q3

I.1.25 This Turing machine works.

Podd = {𝑞0BB𝑞100, 𝑞01R𝑞1, 𝑞1BL𝑞100, 𝑞11B𝑞2, 𝑞2BL𝑞3, 𝑞21L𝑞3, 𝑞3BB𝑞4, 𝑞31B𝑞4,
𝑞4BR𝑞5, 𝑞411𝑞5, 𝑞5BR𝑞0, 𝑞511𝑞0 }

For instance, on input 3 it does this
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Step Configuration

0 1 1 1
q0

1 1 1 1
q1

2 1 1
q2

Step Configuration

3 1 1
q3

4 1
q4

5 1
q5

Step Configuration

6 1
q0

7 1
q1

8 1
q100

and on 4 it does this.

Step Configuration

0 1 1 1 1
q0

1 1 1 1 1
q1

2 1 1 1
q2

3 1 1 1
q3

4 1 1
q4

Step Configuration

5 1 1
q5

6 1 1
q0

7 1 1
q1

8 1
q2

9 1
q3

Step Configuration

10 q4

11 q5

12 q0

13 q100

I.1.26 While this Turing machine is moving right, if it hits a comma then it replaces it with a 1 and closes up to
the left. That is, it scans left to the start of the string, erases the first 1, and then starts moving right again.

Paddany = {𝑞0BL𝑞10, 𝑞01R𝑞0, 𝑞0,1𝑞1, 𝑞1BR𝑞2, 𝑞11L𝑞1, 𝑞1,L𝑞1, 𝑞2BR𝑞0, 𝑞21B𝑞2,
𝑞10BR𝑞100, 𝑞101L𝑞10, 𝑞10,L𝑞10 }

For instance, on input 11,1,11 it does this.

Step Configuration

0 1 1 , 1 , 1 1
q0

1 1 1 , 1 , 1 1
q0

2 1 1 , 1 , 1 1
q0

3 1 1 1 1 , 1 1
q1

4 1 1 1 1 , 1 1
q1

5 1 1 1 1 , 1 1
q1

Step Configuration

6 1 1 1 1 , 1 1
q1

7 1 1 1 1 , 1 1
q2

8 1 1 1 , 1 1
q2

9 1 1 1 , 1 1
q0

10 1 1 1 , 1 1
q0

11 1 1 1 , 1 1
q0

Step Configuration

12 1 1 1 , 1 1
q0

13 1 1 1 1 1 1
q1

14 1 1 1 1 1 1
q1

15 1 1 1 1 1 1
q1

16 1 1 1 1 1 1
q1

17 1 1 1 1 1 1
q1

(It is split into two sets of tables to give the formatter a place to put a page break.)
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Step Configuration

18 1 1 1 1 1 1
q2

19 1 1 1 1 1
q2

20 1 1 1 1 1
q0

21 1 1 1 1 1
q0

22 1 1 1 1 1
q0

Step Configuration

23 1 1 1 1 1
q0

24 1 1 1 1 1
q0

25 1 1 1 1 1
q0

26 1 1 1 1 1
q10

27 1 1 1 1 1
q10

Step Configuration

28 1 1 1 1 1
q10

29 1 1 1 1 1
q10

30 1 1 1 1 1
q10

31 1 1 1 1 1
q10

32 1 1 1 1 1
q100

I.1.27 No. Given a configuration C = ⟨𝑞, 𝑠, 𝜏𝐿, 𝜏𝑅⟩, one preceding configuration is Ĉ = C with I = 𝑞𝑠 𝑠 𝑞.
I.1.28
(a) The machine can flip the first bit, slide right and flip the second bit, etc. The fact that we know the number

of bits in advance means that we can just have four groups of states: first flip and slide, second flip and
slide, etc. (We could do an arbitrary number of bits but it would be a little harder.) At the end we slide left
to position the head at the left end of the non-blank characters.

Although the question says that you need not produce a machine, here is one. In this machine, state 𝑞0
flips the first bit and then 𝑞1 slides right. The next flip and slide combination is 𝑞2 and 𝑞3, etc., until the
machine gets to the fourth bit. Then it moves the head back to the start with 𝑞7.

PbitwiseNOT = {𝑞0BB𝑞1, 𝑞001𝑞1, 𝑞010𝑞1, 𝑞1BR𝑞2, 𝑞10R𝑞2, 𝑞11R𝑞2, 𝑞2BB𝑞3, 𝑞201𝑞3, 𝑞210𝑞3,
𝑞3BR𝑞4, 𝑞30R𝑞4, 𝑞31R𝑞4, 𝑞4BB𝑞5, 𝑞401𝑞5, 𝑞410𝑞5, 𝑞5BR𝑞6, 𝑞50R𝑞6, 𝑞51R𝑞6,

𝑞6BB𝑞7, 𝑞601𝑞7, 𝑞610𝑞7, 𝑞7BR𝑞8, 𝑞70L𝑞7, 𝑞71L𝑞7 }

For instance, on input 0110 it does this.

Step Configuration

0 0 1 1 0
q0

1 1 1 1 0
q1

2 1 1 1 0
q2

3 1 0 1 0
q3

4 1 0 1 0
q4

Step Configuration

5 1 0 0 0
q5

6 1 0 0 0
q6

7 1 0 0 1
q7

8 1 0 0 1
q7

Step Configuration

9 1 0 0 1
q7

10 1 0 0 1
q7

11 1 0 0 1
q7

12 1 0 0 1
q8

(b) The machine has two cases, depending on what it finds for 𝑏3. If 𝑏3 = 0 then it moves right, copying the
next bit into the current one, and then at the end it appends a 0. Likewise, if 𝑏3 = 1 then it moves right,
copying, and then at the end it appends a 1. As with the prior item, because we know in advance that there
are four bits we can just have three groups of states.

(c) One implementation is to expect two four-bit strings, 𝑎3𝑎2𝑎1𝑎0 and 𝑏3𝑏2𝑏1𝑏0, separated by a blank. The
machine reads 𝑎3 and goes into one of two states, 𝑟0 or 𝑟1, depending on whether 𝑎3 = 0 or 𝑎3 = 1. From
state 𝑟0 it slides past the blank separator, then reads 𝑏3, and changes it to the logical ‘and’ of 𝑏3 and 0.
Similarly, from state 𝑟1 it slides past the blank separator, reads 𝑏3, and changes it to the logical ‘and’ of 𝑏3
and 1. Repeat that for a total of four iterations.
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I.1.29
(a) Under the convention that the machine starts with its head under the first non-blank character if there are

any, P = {𝑞0BB𝑞1, 𝑞011𝑞0 } will halt only if the input is blank.
(b) The machine P = {𝑞0BB𝑞0, 𝑞011𝑞1 } will fail to halt only if the input is blank.
(c) The machine P = {𝑞0BR𝑞1, 𝑞01R𝑞1, 𝑞1BB𝑞1, 𝑞111𝑞2 } will halt if and only if the second character is 1.

(Trying the same idea for the first character won’t work because of our convention that the first character is
blank only if all characters are blank, so there is only one input string with a blank first character.)

I.1.30 The strategy here is to scan right. If the machine sees a b then it goes into a state, 𝑞20 that signifies it
has seen one b and if the next character is also a b then it will halt and go to the accepting state. If it sees an a
then it goes into state 𝑞10, signifying that the number of b’s in the consecutive count is zero.

Ptwobs = {𝑞0BB𝑞4, 𝑞0aR𝑞10, 𝑞0bR𝑞20, 𝑞10BB𝑞4, 𝑞10aR𝑞10, 𝑞10bR𝑞20, 𝑞20BB𝑞4, 𝑞20aR𝑞0, 𝑞20bb𝑞3 }
As an example, on input abba it does this.

Step Configuration

0 a b b a
q0

1 a b b a
q10

Step Configuration

2 a b b a
q20

3 a b b a
q3

Note that it ends in the accept state. In contrast, on input aba the machine ends in the reject state.

Step Configuration

0 a b a
q0

1 a b a
q10

2 a b a
q20

Step Configuration

3 a b a
q0

4 a b a
q4

I.1.31 For this machine, if the first character is 0 then it puts a 1 in its place, marking that the string is in the
language. Otherwise, it puts a 0. Then it blanks the remaining characters, and returns to the first character.

Pstarts with zero = {𝑞001𝑞1, 𝑞010𝑞1, 𝑞0B0𝑞10, 𝑞10R𝑞2, 𝑞11R𝑞2, 𝑞20B𝑞3, 𝑞21B𝑞3, 𝑞2BB𝑞4,
𝑞3BR𝑞2, 𝑞4BL𝑞4, 𝑞409𝑞10, 𝑞411𝑞10 }

This is the action of the machine on 01101.

Step Configuration

0 0 1 1 0 1
q0

1 1 1 1 0 1
q1

2 1 1 1 0 1
q2

3 1 B 1 0 1
q3

4 1 B 1 0 1
q2

5 1 B B 0 1
q3

Step Configuration

6 1 B B 0 1
q2

7 1 B B B 1
q3

8 1 B B B 1
q2

9 1 B B B B
q3

10 1 B B B B B
q2

11 1 B B B B B
q4

Step Configuration

12 1 B B B B B
q4

13 1 B B B B B
q4

14 1 B B B B B
q4

15 1 B B B B B
q4

16 1 B B B B B
q4

17 1 B B B B B
q10
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I.1.32 For this machine, if the first character is not a 0 then it puts a 0 in its place, marking that the string as
not in the language. If the first character is 0, then it checks whether the second character is 1. If so, it leaves
it alone, otherwise it puts 0, marking that the input is not in the language. Then it blanks the remaining
characters, and returns to the single character marking whether the input is a member.

Pstarts with 01 = {𝑞00B𝑞1, 𝑞010𝑞3, 𝑞0B0𝑞10, 𝑞1BR𝑞2, 𝑞20R𝑞4, 𝑞21R𝑞4, 𝑞2B0𝑞10, 𝑞30R𝑞4,
𝑞40B𝑞5, 𝑞41B𝑞5, 𝑞4BB𝑞6, 𝑞5BR𝑞4, 𝑞600𝑞10, 𝑞611𝑞10, 𝑞6BL𝑞6 }

This is the machine on 01101.

Step Configuration

0 0 1 1 0 1
q0

1 B 1 1 0 1
q1

2 B 1 1 0 1
q2

3 B 1 1 0 1
q4

4 B 1 B 0 1
q5

5 B 1 B 0 1
q4

Step Configuration

6 B 1 B B 1
q5

7 B 1 B B 1
q4

8 B 1 B B B
q5

9 B 1 B B B B
q4

10 B 1 B B B B
q6

Step Configuration

11 B 1 B B B B
q6

12 B 1 B B B B
q6

13 B 1 B B B B
q6

14 B 1 B B B B
q6

15 B 1 B B B B
q10

I.1.33 The main thing with this machine is that there could be zero-many 0’s. That is, the machine should
accept a string that starts with 1. On the other hand, if the input string is 000, without a 1, then it is not in
the language.

With that, the machine reads past initial 0’s, if any, blanking them out. If it find a 1 then it leaves it alone,
marking that the input is in the language. Then it blanks the remaining characters, and returns to the single
character marking whether the input is a member. Otherwise it puts 0, marking that the input is not in the
language.

Pcontains 1 = {𝑞00B𝑞1, 𝑞01R𝑞2, 𝑞0B0𝑞10, 𝑞1BR𝑞0, 𝑞20B𝑞3, 𝑞21B𝑞3, 𝑞2BL𝑞4, 𝑞3BR𝑞2,
𝑞400𝑞10, 𝑞411𝑞10, 𝑞4BL𝑞4 }

This is the machine with input 00110.

Step Configuration

0 0 0 1 1 0
q0

1 B 0 1 1 0
q1

2 B 0 1 1 0
q0

3 B B 1 1 0
q1

4 B B 1 1 0
q0

Step Configuration

5 B B 1 1 0
q2

6 B B 1 B 0
q3

7 B B 1 B 0
q2

8 B B 1 B B
q3

9 B B 1 B B B
q2

Step Configuration

10 B B 1 B B B
q4

11 B B 1 B B B
q4

12 B B 1 B B B
q4

13 B B 1 B B B
q10
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I.1.34 The idea of this machine is that it starts with two groups of 1’s. The head blanks the first 1 in
the first group, then moves over and blanks the last 1 in the second group. At that point the relation of
less-than-or-equal exists between the original two groups of 1’s if and only if it exists between what remains
of the two groups. Iterating the machine ends with one of two cases: the first string is empty (in which case
we must blank out what’s left of the second string, if any, and print a 1), and the second string is empty but
the first is not (in this case we blank out what’s left of the first string). The first case is handled by instructions
starting with 𝑞50 and the second with instructions starting with 𝑞75.

Pleq = {𝑞0BR𝑞50, 𝑞01B𝑞1, 𝑞1BR𝑞2, 𝑞111𝑞2, 𝑞2BR𝑞3, 𝑞21R𝑞2, 𝑞3BL𝑞75, 𝑞31R𝑞4, 𝑞4BL𝑞5, 𝑞41R𝑞4,
𝑞5BB𝑞6, 𝑞51B𝑞6, 𝑞6BL𝑞7, 𝑞611𝑞7, 𝑞7BL𝑞8, 𝑞71L𝑞7, 𝑞8BR𝑞0, 𝑞81L𝑞8,

𝑞50BR𝑞51, 𝑞5011𝑞51, 𝑞51B1𝑞100, 𝑞511B𝑞52, 𝑞52BR𝑞51, 𝑞5211𝑞51,

𝑞75BL𝑞76, 𝑞7511𝑞76, 𝑞76BL𝑞100, 𝑞761B𝑞77, 𝑞77BL𝑞76, 𝑞771L𝑞76 }
For instance, on inputs 2 and 3 it does this.

Step Configuration

0 1 1 1 1 1
q0

1 B 1 1 1 1
q1

2 B 1 1 1 1
q2

3 B 1 B 1 1 1
q2

4 B 1 B 1 1 1
q3

Step Configuration

5 B 1 B 1 1 1
q4

6 B 1 B 1 1 1
q4

7 B 1 B 1 1 1 B
q4

8 B 1 B 1 1 1 B
q5

9 B 1 B 1 1 B B
q6

Step Configuration

10 B 1 B 1 1 B B
q7

11 B 1 B 1 1 B B
q7

12 B 1 B 1 1 B B
q7

13 B 1 B 1 1 B B
q8

14 B 1 B 1 1 B B
q8

(This tape sequence is split in two to leave a place for a line break.)

Step Configuration

15 B 1 B 1 1 B B
q0

16 B B B 1 1 B B
q1

17 B B B 1 1 B B
q2

18 B B B 1 1 B B
q3

19 B B B 1 1 B B
q4

20 B B B 1 1 B B
q4

Step Configuration

21 B B B 1 1 B B
q5

22 B B B 1 B B B
q6

23 B B B 1 B B B
q7

24 B B B 1 B B B
q7

25 B B B 1 B B B
q8

26 B B B 1 B B B
q0

Step Configuration

27 B B B 1 B B B
q50

28 B B B 1 B B B
q51

29 B B B B B B B
q52

30 B B B B B B B
q51

31 B B B B 1 B B
q100

I.1.35 The strategy is to blank out the first character, slide to the end, and then blank out the final character (if
it matches the first), and then repeat. When the string is empty, the machine puts a 1 on the tape, showing
success.

The machine below remembers that the first character was an a by moving to state 𝑞20. It remembers a b
by moving to state 𝑞30. Starting in 𝑞40 it moves back to the start of the remaining input string. State 𝑞60 is for
the cases where the machine detects that the input was not a palindrome, while state 𝑞80 is for when the
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machine finds it is one. Finally, states 𝑞1, ... 𝑞4 handle the case that the input string (either the initial string or
what is left of the initial string after some end-trimming) has one character.

Ppal = {𝑞0BB𝑞80, 𝑞0aB𝑞1, 𝑞0bB𝑞3, 𝑞1BR𝑞2, 𝑞1aR𝑞2, 𝑞1bR𝑞2, 𝑞2BL𝑞80, 𝑞2aa𝑞20, 𝑞2bb𝑞20,
𝑞3BR𝑞4, 𝑞3aR𝑞4, 𝑞3bR𝑞4, 𝑞4BL𝑞80, 𝑞4aa𝑞30, 𝑞4bb𝑞30,

𝑞20BL𝑞21, 𝑞20aR𝑞20, 𝑞20bR𝑞20, 𝑞21BB𝑞60, 𝑞21aB𝑞40, 𝑞21bb𝑞60,

𝑞30BL𝑞31, 𝑞30aR𝑞30, 𝑞30bR𝑞30, 𝑞31BB𝑞60, 𝑞31aa𝑞60, 𝑞31bB𝑞40,

𝑞40BL𝑞41, 𝑞40aL𝑞41, 𝑞40bL𝑞41, 𝑞41BR𝑞0, 𝑞41aL𝑞41, 𝑞41bL𝑞41,

𝑞60BB𝑞100, 𝑞60aB𝑞61, 𝑞60bB𝑞61, 𝑞61BL𝑞60, 𝑞61aa𝑞60, 𝑞61bb𝑞60,

𝑞80B1𝑞100, 𝑞80a1𝑞100, 𝑞80b1𝑞100 }
As an example, this is the action of the machine on abba.

Step Configuration

0 a b b a
q0

1 b b a
q1

2 b b a
q2

3 b b a
q20

Step Configuration

4 b b a
q20

5 b b a
q20

6 b b a
q20

7 b b a
q21

Step Configuration

8 b b
q40

9 b b
q41

10 b b
q41

11 b b
q41

(The tape sequence is in two parts to leave room for a page break.)

Step Configuration

12 b b
q0

13 b
q3

14 b
q4

15 b
q30

Step Configuration

16 b
q30

17 b
q31

18 q40

19 q41

Step Configuration

20 q0

21 q80

22 1
q100

A second example is the action of the machine on aba.

Step Configuration

0 a b a
q0

1 b a
q1

2 b a
q2

3 b a
q20

4 b a
q20

Step Configuration

5 b a
q20

6 b a
q21

7 b
q40

8 b
q41

9 b
q41

Step Configuration

10 b
q0

11 q3

12 q4

13 q80

14 1
q100
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I.1.36 The strategy is to make two copies of the starting block of 1’s, then move the head to the start of the first
of the two copies. This is an example initial configuration.

1 1 1
q0

The machine strips the leading 1, moves right, puts in the 1 that will start the first copy block, and then puts
in the 1 to start the second block. With that, the head moves back to the start.

B 1 1 1 1
q10

Now comes the complication. The machine strips the leading 1, then moves right and puts in a 1 at the end of
the first copy block. But the place where it must put this 1 is the blank separating the two copy blocks. So it
must then move right and put in a blank before moving to the end of the second copy block. At that end it
puts two 1’s, the first to mark the stripped leading 1 and the second to mark the inserted blank. With that, the
head moves back to the start.

B B 1 1 1 1 1
q20

The machine iterates the prior sequence of steps until it finds that the leading sequence of 1’s is now blank. To
finish, it moves the head to the start of the first copy block.

B B B 1 1 1 1 1 1
q30

I.1.37 Let the machine have the same configuration at two different steps C (𝑡) = C (𝑡) with 𝑡 < 𝑡 . By
determinism, C (𝑡 + 1) = C (𝑡 + 1). Likewise, C (𝑡 + 𝑖) = C (𝑡 + 𝑖) for 𝑖 = 2, ... This means that the machine cycles
every 𝑡 − 𝑡 steps, because 𝑖 = 𝑡 − 𝑡 gives that C (𝑡 + (𝑡 − 𝑡)) = C (𝑡 + (𝑡 − 𝑡)) but C (𝑡 + (𝑡 − 𝑡)) = C (𝑡).

This sufficient condition is not necessary, since we can make a machine that never repeats its configuration
but also never halts. One way is to make a machine that writes a 1 to the tape, then moves right, and then
repeats.

I.1.38 Consider this configuration, with the machine in state 𝑞5.
1 1 1
q5

It could have arrived at that configuration after this configuration and instruction.
1 1 1
q4 𝑞41R𝑞5

or this
1 1 1

q4 𝑞41L𝑞5

or for that matter, this.
1 1 1
q4 𝑞411𝑞5

I.2.2 Church’s Thesis is an assertion that ‘mechanically computable’ (by a discrete and deterministic machine)
is equivalent to ‘computable by a Turing machine’. It is not a theorem because we cannot derive it from the
traditional axioms for mathematics.

In some ways it is more like a definition than a theorem. But it is not a usual definition, where as a
convenience we take a word so that we don’t have to keep saying a phrase over and over, as where we define
‘bachelor’ as ‘unmarried man’ or ‘linearly dependent’ as ‘𝑥0 = 𝑎1𝑥1 + · · ·𝑎𝑛𝑥𝑛 ’. Rather, it is more like Calculus’s
definition of the derivative in that it expresses the introduction of a fundamental concept.

I.2.3
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(a) As with a program, a Turing Machine can implement an algorithm. But an algorithm may be implemented
by more than one Turing Machine. For instance, we can do a shell sort of a list of five numbers with two
different Turing Machines, if only by renaming some of the states. In the words of M Davis (Davis16),
“[Church’s Thesis] says nothing about what algorithms ARE. It is about what algorithms can and can not
DO.” Comment: there is no widely agreed-upon definition of algorithm, which is odd as algorithms are a
central study in Computer Science.

(b) A Turing Machine is a single-purpose device. For instance, we may write a Turing Machine to multiply
two of its inputs. But today we use “computer” to mean a general-purpose, that is, programmable, device.
Comment: we will later see that there are general-purpose Turing Machines, so the distinction is blurry, one
of connotation rather than of precise definition.

I.2.4 Anything that can be done on the modern computers that we have in our pockets can be done, in principle,
on an old-timey-style mechanical device. For more detail, see ?? B; the low level construction details covered
there can be done with gears and levers. So the phrase ‘mechanically computable’ is not about the exact
implementation, it covers any way of computing that is discrete and deterministic, and physically realizable.

I.2.5
(a) The tape, as given in the definition, is not infinite. It is unbounded.

For an analogy, consider the dictionary definition of a book. In that definition there is no upper limit on
the number of pages. But no book, no actual bound collection of pages, has infinitely many. So also, no
halting Turing machine computation uses infinitely much tape.

While it is true that you can write a Turing machine that does not halt and that just keeps using more and
more tape, at no step of the calculation is the amount of tape infinite. It never runs out— it is unbounded—
but it is never infinite.

(b) It is a model. A model works by discarding some aspects of the situation that it models. See (wiki:MapStory).
(Besides, whether the universe is finite—either just currently finite, or finite into any unbounded future—
is not clear. In any event it is not a mathematical question.)

I.2.6 Church’s Thesis is the third.
The first is mistaken because Church’s Thesis speaks only to discrete and deterministic mechanisms. The

second is mistaken because Church’s Thesis does not speak to the capabilities, or limitations, of human
computers. There are people who posit that humans can do more than mechanisms can do, and people who
speculate that there may be machines that that can do more than people can, even in principle, but Church’s
Thesis speaks to an an equivalence between what can be done by any discrete and deterministic mechanism
and what can be done by this one kind, Turing machines. The last misses the mark for much the same reason
as the second.

I.2.7 (From (blass).) The first benefit that we get from this thesis is that it lets us connect formal mathematical
theorems to real-world issues of computability. For example, the theorem that the word problem for groups
is Turing-undecidable has the real-world interpretation that no algorithm can solve all instance of the word
problem.

The second benefit is in mathematics itself, specifically in computability theory. Published proofs that
something is Turing-computable almost never proceed by exhibiting a Turing-machine program, or indeed a
program in any actual computing language. Sometimes, if the matter is simple enough, they provide some
sort of pseudo-code. Most often, though, they merely give an informal description of an algorithm. It is left
to the reader to see that this actually does give an algorithm (in the intuitive sense) and therefore, by the
Church-Turing thesis, could be simulated by a Turing machine. The usual situation is that, although experts in
Turing-machine programming would (if they existed) be able to routinely convert the intuitive algorithm into
a Turing machine program, the program would be too large and complicated to be worth writing down.

I.2.8 Lance Fortnow says it perfectly, “Computation is about process, about the transitions made from one
state of the machine to another. Computation is not about the input and the output, point A and point B,
but the journey. . . . You can feed a Turing machine an infinite digits of a real number (Siegelmann), have
computers interact with each other (Wegner-Goldin), or have a computer that perform an infinite series of
tasks (Denning) but in all these cases the process remains the same, each step following Turing’s model.”
(Fortnow10).
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I.2.9
(a) Yes, this is clear. To compute 𝑓 ◦ 𝑔 (𝑥) we compute 𝑦 = 𝑔(𝑥) and then compute 𝑓 (𝑦).
(b) The composition 𝑓 ◦ 𝑔 may be computable, or may be not computable. On the one hand, the constant

function 𝑔(𝑥) = 0 is computable, and the composition 𝑓 ◦ 𝑔 (𝑥) equals 𝑓 (0). Because 𝑓 (0) is fixed, not
variable, this result is computable.

On the other hand, if 𝑔(𝑥) = 𝑥 then the composition is 𝑓 ◦ 𝑔 (𝑥) = 𝑓 (𝑥) is not computable.
I.2.10 We can simulate a ternary machine using an ordinary programming language, that is, on a binary
machine. We can simulate a binary machine on a Turing Machine. Thus we can simulate a ternary machine
on a Turing machine. So, anything that can be computed on a ternary machine can be computed on a Turing
machine.

The converse is even easier: to simulate a binary machine on a ternary machine just pick a trit and avoid
using it.

I.2.11 The role of Church’s Thesis here is that it allows us to avoid exhibiting Turing machines as sets of
four-tuples to do these computations. Instead we can describe how to do them inside a usual programming
environment.

(a) Let 𝑓0 be computed by the Turing machine P0 and let 𝑓1 be computed by 𝑇𝑀1. For 𝑥 ∈ N this will
compute ℎ(𝑥): run P0 on input 𝑥 for one step, then P1 on 𝑥 for a step, then P0 for another step, etc., until
each halts. When that happens, if it ever does, output 1.

(b) As with the prior item, for 𝑥 ∈ N compute the function on input 𝑥 by: run P0 on 𝑥 for one step, then P1
on 𝑥 for a step, then P0 for another step, etc. The difference here is that if either halts then output 1.

(c) Suppose 𝑓 is computed by P. Fix 𝑥 ∈ N. Run P on input 0 for a step. Then run P on input 0 for an
additional step and run P on 1 for a step. After that, run P on input 0 for another step, run P on 1 for
another step, and start a run of P on input 2. In this way we cycle among the machine running on different
inputs.

Whenever a computation of P on some input 𝑖 halts, check whether what is left on its tape equals 𝑥 . If so,
output 1.

(d) Let 𝑓0 be computed by the Turing machine P0 and let 𝑓1 be computed by𝑇𝑀1. For 𝑥 ∈ N, run P0 on input 𝑥
until it halts. Suppose the output is 𝑦. Run P1 on 𝑦 until it halts, and then the output is ℎ(𝑥). Since each
function 𝑓0 and 𝑓1 was given as total, that output will appear eventually, and so ℎ is also total.

(e) This is the same as the prior item except that the function ℎ will be partial since there is some input for
which P0 does not halt.

I.2.12 Here is a procedure that is intuitively mechanically computable, and so by Church’s Thesis is computable.
Let the input be 𝑛. For 𝑖 = 0 compute 𝑓 (𝑖) and see if it equals 𝑛. If so, output 0. If not we iterate: take 𝑖 = 1
and compute 𝑓 (1). If so, output 0. Otherwise, repeat until the procedure outputs some value; if it never does
then we are in the second case of ℎ’s specification.

I.2.13 This procedure is intuitively mechanically computable and so by Church’s Thesis is computable. Let the
input be 𝑛. Run the Turing machine computing 𝑓 on input 𝑛 until it halts, if it ever does. If so then run the
Turing machine computing 𝑔(𝑛) until it halts, if ever. After that, if after that ever comes, output 1. Otherwise
we are in the second case of ℎ’s specification.

I.2.14 If there is a root then this procedure will find it eventually. If there is no root then this procedure will
just run forever, in an unbounded search.

I.2.15 Perhaps predictably, you end with nothing since there is no bill still in your possession.
I.2.16 The strategy is to move right on tape 0, writing the complementary bit onto tape 1 until the tape 0 head

hits a blank. Then the machine moves left on tape 1. (Below, rather than write the pair of characters as ⟨x, y⟩
we just have xy.)

Δ 00 01 0B 10 11 1B B0 B1 BB

𝑞0 00, 𝑞1 01, 𝑞1 01, 𝑞1 10, 𝑞1 11, 𝑞1 10, 𝑞1 B0, 𝑞1 B1, 𝑞1 LL, 𝑞2
𝑞1 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 LL, 𝑞2
𝑞2 0L, 𝑞2 0L, 𝑞2 0R, 𝑞3 1L, 𝑞2 1L, 𝑞2 1R, 𝑞3 BL, 𝑞2 BL, 𝑞2 BR, 𝑞3

(Many of the input pairs cannot happen. For example, if the machine is in state 𝑞0 then the input 00 cannot
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happen.)
I.2.17 The strategy is to move right on the two tapes, writing the logical and onto tape 1 until on both tapes

the heads hit blanks. Then the machine moves left on tape 1. (Below, instead of writing the character pair as
⟨x, y⟩, we just write xy.)

Δ 00 01 0B 10 11 1B B0 B1 BB

𝑞0 00, 𝑞1 00, 𝑞1 0B, 𝑞1 10, 𝑞1 11, 𝑞1 1B, 𝑞1 BB, 𝑞1 BB, 𝑞1 LL, 𝑞2
𝑞1 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 RR, 𝑞0 LL, 𝑞2
𝑞2 LL, 𝑞2 LL, 𝑞2 0R, 𝑞3 LL, 𝑞2 LL, 𝑞2 1R, 𝑞3 BL, 𝑞2 BL, 𝑞2 BR, 𝑞3

(Many of these input pairs cannot happen. For example, if the machine is in state 𝑞1 then the input B0 cannot
happen.)

I.3.8 In short, primitive recursion is one way to prove that a function is primitive recursive.
A longer version is that ‘primitive recursive’ is a collection of functions. To show that a function is primitive

recursive, you construct it by starting with the zero function, the successor function, and the projection
functions. Put these together with function composition, or with the technique of primitive recursion.

Another point: this is a constant function that takes two inputs and outputs 3: 𝑓 (𝑥0, 𝑥1) = S (S (S (Z (𝑥0, 𝑥1)))).
The construction shows that 𝑓 (𝑥0, 𝑥1) = 3 is primitive recursive, but that construction does not use the schema
of primitive recursion. So primitive recursion is one of the ways to build up functions that are primitive
recursive, but composition is another allowed constructor.

I.3.9 A total recursive function is any computable function 𝜙 that terminates on all inputs. A primitive recursive
function is one that can be derived as in Definition 3.7.

Every primitive recursive function is a total recursive function. The converse does not hold— there are
total recursive functions that are not primitive recursive—but at this point in the book you have not yet see
that. It is covered in the next section.

I.3.10 There the definition gives 1.
I.3.11
(a) 𝑓 (0) = 0, 𝑓 (1) = 𝑓 (2 · 1 − 2) = 𝑓 (0) = 0
(b) By definition 𝑓 (2) = 𝑓 (2 · 2 − 2) = 𝑓 (2) gives what amounts to an infinite loop.
I.3.12

(a) 𝑛 0 1 2 3 4 5 6 7 8 9 10
𝑡 (𝑛) 42 42 42 42 42 42 42 42 42 42 42

(b) This

𝐹 (𝑦) =
{
0 – if 𝑦 = 0
ℎ(𝐹 (𝑧), 𝑧) – if 𝑦 = S (𝑧)

works where 𝑔 is the constant 𝑔 = 24 and ℎ(𝐹 (𝑧), 𝑧) = 𝐹 (𝑧).
By the way, since 𝐹 is constant you can construct it as a primitive recursive function without using the

schema of primitive recursion. Use composition: 𝐹 (𝑦) = S (S (... 𝑍 (𝑦))) = S42 ◦𝑍 (𝑦).
I.3.13 One way to show that is to note that it is the composition plus_two = S ◦ S (𝑥). Another way is to use the

addition function with a second argument of (S ◦ S) ◦ 𝑍 , where 𝑍 is the zero function that takes no inputs.
I.3.14 Starting with this

is_zero(𝑦) =
{
1 – if 𝑦 = 0
0 – if 𝑦 = S (𝑧)

we get it to fit the schema by taking 𝑔(𝑥0, ... 𝑥𝑘−1) to be the function of no arguments S (𝑍 ( )) and taking
ℎ(is_zero(𝑧), 𝑥0, ... 𝑥𝑘−1, 𝑧) to be the two-argument zero function.

I.3.15

(a) 𝑛 0 1 2 3 4 5 6 7 8 9 10
𝑡 (𝑛) 0 1 3 6 10 15 21 28 36 45 55
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(b) Writing

𝑡 (𝑦) =
{
0 – if 𝑦 = 0
ℎ(𝑡 (𝑧), 𝑧) – if 𝑦 = S (𝑧)

gives that 𝑔 is the constant 𝑔 = 0 and that ℎ(𝑡 (𝑧), 𝑧) = S (plus(𝑡 (𝑧), 𝑧).
I.3.16

(a) 𝑛 0 1 2 3 4 5 6 7 8 9 10
𝑡 (𝑛) 0 1 4 9 16 25 36 49 64 81 100

(b) Writing

𝑠 (𝑦) =
{
𝑔( ) – if 𝑦 = 0
ℎ(𝑠 (𝑧), 𝑧) – if 𝑦 = S (𝑧)

Here,𝑔 is the constant function, the function of no arguments,𝑔( ) = 0. And,ℎ(𝑠 (𝑧), 𝑧) = plus(𝑠 (𝑧), pred(product(2, S (𝑧)))).
I.3.17

(a) 𝑛 0 1 2 3 4 5
𝑡 (𝑛) 0 1 8 27 64 125

(b) Write

𝑑 (𝑦) =
{
𝑔( ) – if 𝑦 = 0
ℎ(𝑑 (𝑧), 𝑧) – if 𝑦 = S (𝑧)

where𝑔 is the constant𝑔( ) = 0 andℎ(𝑑 (𝑧), 𝑧) = S (plus(𝑑 (𝑧), plus(product(3, S (𝑧)), product(3, product(S (𝑧), S (𝑧)))))).
I.3.18

(a) 𝑛 1 2 3 4 5 6 7 8 9 10
ℎ(𝑛) 1 3 7 15 31 63 127 255 511 1023

(b) Write

𝐻 (𝑦) =
{
𝑔( ) – if 𝑦 = 0
ℎ(𝐻 (𝑧), 𝑧) – if 𝑦 = S (𝑧)

where 𝑔 is the constant 𝑔( ) = 1 and ℎ(𝐻 (𝑧), 𝑧) = S (product(𝐻 (𝑧), 2)).
I.3.19 The derivation for factorial is this.

fact(𝑦) =
{
1 if 𝑦 = 0
product(fact(𝑧), S (𝑧))) if 𝑦 = S (𝑧)

Here 𝑔 is a function of no inputs 𝑔( ) = 1 and ℎ(𝑎, 𝑏) = product(𝑎, S (𝑏)).
I.3.20 These are easy to compute by hand. But for fun we can write a program.
(define (gcd -euclid n m)

(if (= m 0)
n
(gcd -euclid m (remainder n m))))

This version of the same program will mechanically give us the recursive calls.
(define (gcd -euclid -verbose n m)

(if (= m 0)
(begin

(printf " return ~a\n" n)
n)

(begin
(printf " call (gcd -euclid ~a ~a)\n" m (remainder n m))
(gcd -euclid -verbose m (remainder n m)))))

(a) This only takes two steps.
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> (gcd -euclid -verbose 28 12)
call (gcd -euclid 12 4)
call (gcd -euclid 4 0)
return 4

4

(b) This also happens quickly.
> (gcd -euclid -verbose 104 20)

call (gcd -euclid 20 4)
call (gcd -euclid 4 0)
return 4

4

(c) These two are relatively prime.
> (gcd -euclid -verbose 309 25)

call (gcd -euclid 25 9)
call (gcd -euclid 9 7)
call (gcd -euclid 7 2)
call (gcd -euclid 2 1)
call (gcd -euclid 1 0)
return 1

1

I.3.21 The properties give this recursion to compute the greatest common divisor.

gcd(𝑎, 𝑏) =


𝑎 – if 𝑏 = 𝑎

1 – if 𝑏 = 1
gcd(𝑏, 𝑎) – if 𝑏 > 𝑎

gcd(𝑎 − 𝑏,𝑏) – otherwise

These are easy to compute by hand. For fun we can write a program.
(define (gcd a b)

(cond
[(= a b)
a]

[(= b 1)
1]

[(> b a)
(gcd b a)]

[else
(gcd (- a b) b)]))

(a) this is easy to check by hand.
> (gcd 28 12)
4

(b) Here also.
> (gcd 104 20)
4

(c) These two are relatively prime.
> (gcd 309 25)
1

I.3.22
(a) The constant function that always returns zero C0( ®𝑥) is included the definition of primitive recursion,

Definition 3.7, as Z ( ®𝑥) = 0. The function that always returns 1 is then C1( ®𝑥) =≻ (C0( ®𝑥)), the function that
returns 2 is C2( ®𝑥) =≻ (≻ (C0( ®𝑥))), etc.

(b) Since the parts of the right-hand side of max({𝑥,𝑦 }) = 𝑦 + (𝑥 .−𝑦) are all primitive recursive, then the max
function is also primitive recursive. Similarly for min({𝑥,𝑦 }) = 𝑥 + 𝑦 +max({𝑥,𝑦 }).

(c) For any 𝑥,𝑦 ∈ N either 𝑥 −𝑦 ≥ 0 or 𝑦 − 𝑥 ≥ 0. Thus absdiff (𝑥,𝑦) = propersub(𝑥,𝑦) + propersub(𝑦, 𝑥) and
since addition is primitive recursive, absdiff (𝑥,𝑦) is therefore primitive recursive.

I.3.23
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(a) This primitive recursion defines sign.

sign(𝑦) =
{
0 – if 𝑦 = 0
1 – if 𝑦 =≻ (𝑧)

(b) A primitive recursion will do

negsign(𝑦) =
{
1 – if 𝑦 = 0
0 – if 𝑦 =≻ (𝑧)

but we can also observe that negsign(𝑦) = 1 − sign(𝑦), that is, negsign(𝑦) = propersub(1, sign(𝑦)).
(c) The one is lessthan(𝑥,𝑦) = sign(propersub(𝑦, 𝑥)) while the other is greaterthan(𝑥,𝑦) = sign(propersub(𝑥,𝑦)).
I.3.24
(a) We have not(𝑥) = 1 − 𝑥 = propersub(1, 𝑥). For the two-input ones, and(𝑥,𝑦) = 𝑥 · 𝑦 = product(𝑥,𝑦) and

or(𝑥,𝑦) = sign(𝑥 + 𝑦) (an alternative is or(𝑥,𝑦) = 1 − ((1 − 𝑥) · (1 − 𝑦))).
(b) equal(𝑥,𝑦) = negsign(lessthan(𝑥,𝑦) + greaterthan(𝑥,𝑦))
I.3.25
(a) notequal(𝑥,𝑦) = sign(lessthan(𝑥,𝑦) + greaterthan(𝑥,𝑦))
(b) The first is𝑚(𝑥) = 7 · equal(𝑥, 1) + 9 · equal(𝑥, 5) (note the use of addition and multiplication, which were

shown to be primitive recursive in the subsection body). The second is similar 𝑛(𝑥,𝑦) = 7 · equal(𝑥, 1) ·
equal(𝑦, 2) + 9 · equal(𝑥, 5) · equal(𝑦, 5).

I.3.26
(a) Since 𝑔 is given as primitive recursive, this function is also primitive recursive ℎ(𝑎, 𝑏) = plus(𝑎,𝑔(𝑏)) because

it uses composition. With that, this primitive recursion will do the bounded sum.

𝑓 (𝑦) =
{
0 – if 𝑦 = 0
ℎ(𝑓 (𝑧), 𝑧) – if 𝑦 =≻ (𝑧)

(b) This is similar to bounded sum.
(c) Consider the bounded product function.

𝑃𝑝 ( ®𝑥,𝑚) =
∏

0≤𝑖<𝑚
𝑝 ( ®𝑥, 𝑖)

Note that (i) if 𝑃𝑝 ( ®𝑥,𝑚) = 1 then 𝑃𝑝 ( ®𝑥, 𝑖) = 1 for all 𝑖 < 𝑚, and (ii) if 𝑃𝑝 ( ®𝑥,𝑚) = 0 then 𝑃𝑝 ( ®𝑥, 𝑖) = 0 for
all 𝑖 ≥ 𝑚.

Next consider the bounded sum function.

𝑆𝑃𝑝 ( ®𝑥,𝑚) =
∑︁

0≤𝑖<𝑚
𝑃𝑝 ( ®𝑥,𝑚)

Because of (i) and (ii), 𝑆𝑃𝑝 ( ®𝑥,𝑚) is the least number 𝑖 such that 𝑝 ( ®𝑥, 𝑖) = 0, as desired.
Now just define 𝑀 ( ®𝑥,𝑚) by cases.

𝑀 ( ®𝑥,𝑚) =
{
𝑚 – if 𝑆𝑃𝑝 ( ®𝑥,𝑚) = 0
𝑆𝑃𝑝 ( ®𝑥,𝑚) – otherwise

I.3.27
(a) This is the idea.

𝑈 ( ®𝑥,𝑚) =
{
1 – if𝑚 = 0
𝑝 ( ®𝑥,𝑚) ·𝑈 ( ®𝑥, 𝑧) – if𝑚 =≻ (𝑧)

To be formal we have to do some more work such as expressing the multiplication 𝑝 ( ®𝑥,𝑚) · 𝑈 ( ®𝑥, 𝑧) as
product(𝑝 ( ®𝑥,𝑚),𝑈 ( ®𝑥, 𝑧)).
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(b) Take 𝐸 ( ®𝑥,𝑚) = 1 .− 𝐸 ( ®𝑥,𝑚), where the latter function is below.

𝐸 ( ®𝑥,𝑚) =
{
0 – if𝑚 = 0
(1 .− 𝑝 ( ®𝑥,𝑚)) · 𝐸 ( ®𝑥, 𝑧) – if𝑚 =≻ (𝑧)

(c) This follows straight from the definition on noting that one suitable bound on the quotient 𝑘 is the dividend𝑦,
that is, divides(𝑥,𝑦) = ∃𝑘 ≤ 𝑦 [𝑦 = 𝑥 · 𝑘].

(d) As in the prior item, we need only find a suitable bound. Here, prime(𝑦) = 1 if and only if both 1 < 𝑦 and
there is no 𝑥 < 𝑦 with 𝑥 > 1 and divides(𝑥,𝑦), All of those components are primitive recursive.

I.3.28
(a) The table is straightforward.

𝑎 0 1 2 3 4 5 6 7
rem(𝑎, 3) 0 1 2 0 1 2 0 1

(b) The relationship is not true when rem(𝑎, 3) = 2.
(c) This follows from the prior item: item (1) is 0, item (2) is also 0, and item (3) is rem(𝑧, 3) + 1.

rem(𝑎, 3) =

0 – if 𝑎 = 0
0 – if 𝑎 = 𝑆 (𝑧) and rem(𝑧, 3) + 1 = 3
rem(𝑧, 3) + 1 – if 𝑎 = 𝑆 (𝑧) and rem(𝑧, 3) + 1 ≠ 3

(d) Here is the explicit definition given in the form for primitive recursion.

rem(𝑎, 3) =
{
0 – if 𝑎 = 0
product(S (rem(𝑧, 3)), notequal(S (rem(𝑧, 3)), 3) – if 𝑎 = S (𝑧)

(e) Change the 3’s to 𝑏 ’s.

rem(𝑎, 𝑏) =
{
0 – if 𝑎 = 0
product(S (rem(𝑧, 𝑏)), notequal(S (rem(𝑧, 𝑏)), 𝑏) – if 𝑎 = S (𝑧)

I.3.29
(a) The division is easy.

𝑎 0 1 2 3 4 5 6 7 8 9 10
div(𝑎, 3) 0 0 0 1 1 1 2 2 2 3 3

(b) One way to say it is that div(𝑎 + 1, 3) = div(𝑎, 3) except when rem(𝑎 + 1, 3) = 0.
(c) Based on the prior item, this is the explicit definition given in the form for primitive recursion (again, the

order of the two inputs is not important).

div(𝑎, 3) =
{
0 – if 𝑎 = 0
plus(div(𝑧, 3), equal(rem(S (𝑧), 3), 0)) – if 𝑎 = S (𝑧)

(d) Replace the 3’s with 𝑏 ’s.

div(𝑎, 𝑏) =
{
0 – if 𝑎 = 0
plus(div(𝑧, 𝑏), equal(rem(S (𝑧), 𝑏), 0)) – if 𝑎 = S (𝑧)

I.3.30 This starts with bounded minimization.

⌊𝑥/𝑦⌋ = min
𝑡≤𝑥 [(𝑡 + 1) · 𝑦 > 𝑥]

For instance, ⌊9/2⌋ = min𝑡≤9 [(𝑡 + 1) · 2 > 9] gives 𝑡 + 1 = 5, so 𝑡 = 4. Putting it in terms of previously
defined functions, for instance changing the multiplication dot to a call to the plus function, is routine.

I.3.31
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(a) Here are the first eleven values of 𝐹 .
𝑛 0 1 2 3 4 5 6 7 8 9 10

𝐹 (𝑛) 1 1 2 3 5 8 13 21 34 55 89
I.3.32
(a) The arithmetic is straightforward. Note the anti-diagonals.

𝑥
0 1 2 3 4

0 0 1 3 6 10
1 2 4 7 11 16

𝑦 2 5 8 12 17 23
3 9 13 18 24 31
4 14 19 25 32 40

(b) In 𝐶 (𝑥,𝑦) = 0 + 1 + 2 + · · · + (𝑥 + 𝑦) + 𝑦, the sum 𝑥 + 𝑦 is primitive recursive from the section body. It
then follows that the function 0 + 1 + ... (𝑥 + 𝑦) is primitive recursive, since it is a bounded sum. With that,
adding 𝑦 shows that 𝐶 is primitive recursive.

I.3.33
(a) 𝑃 (3, 2) = 𝑃 (2, 2) + 𝑃 (2, 1) = 𝑃 (1, 2) + 𝑃 (1, 1) + 𝑃 (1, 1) + 𝑃 (0, 0) = 0 + 1 + 1 + 1 = 3.
(b) 𝑃 (3, 0) = 1, 𝑃 (3, 1) = 3, 𝑃 (3, 3) = 1
(c) The row is ⟨1, 4, 6, 4, 1⟩.
I.3.34 This is an implementation.
(define (M x)

(if (<= x 100)
(M (M (+ x 11)))
(- x 10)))

These are the output values.

𝑀 (𝑥) =
{
91 – if 𝑥 ∈ {0, ... 101}
𝑥 − 10 – otherwise

That this function is primitive recursive follows from Exercise 3.22.
I.3.35 We use induction. Every initial function in Definition 3.7 is total. Every primitive recursive function is

derived from the initial functions using a finite number of applications of function composition and primitive
recursion. Both of these combiners yield total function outputs from total function inputs.

I.3.36 (Davis) Suppose that if two functions 𝑓 , 𝑓 : N𝑛+1 → N both satisfy Definition 3.3. We will show that for
all ⟨𝑥0, ... , 𝑥𝑛−1, 𝑦⟩ ∈ N𝑛+1 the two are equal 𝑓 (𝑥0, ... , 𝑥𝑛−1, 𝑦) = 𝑓 (𝑥0, ... , 𝑥𝑛−1, 𝑦), by induction on 𝑦.

For the base step, they are equal when 𝑦 = 0 because they both equal 𝑔(𝑥0, ... , 𝑥𝑛−1). For the inductive
step, suppose that they are equal for 𝑦 = 0, . . . , 𝑦 = 𝑘 and consider the 𝑦 = 𝑘 + 1 case.

𝑓 (𝑥0, ... , 𝑥𝑛−1, 𝑘 + 1) = 𝑔(𝑓 (𝑥0, ... , 𝑥𝑛−1, 𝑘), 𝑥0, ... , 𝑥𝑛−1, 𝑘)
= 𝑔(𝑓 (𝑥0, ... , 𝑥𝑛−1, 𝑘), 𝑥0, ... , 𝑥𝑛−1, 𝑘) = 𝑓 (𝑥0, ... , 𝑥𝑛−1, 𝑘 + 1)

The second equality follows from the induction hypothesis.
I.4.11 The value H4(2, 0) = 1 is immediate from the definition. Next, H4(2, 1) = H3(2,H4(2, 0)), giving

H2(2,H3(2, 0)) = H1(2,H2(2, 0)) = 2.
The last three are similar; a script is the best way to proceed. This is a copy of the straightforward

transcription given in the section body, for convenience.
(define (H n x y)

(cond
[(= n 0) (+ y 1)]
[(and (= n 1) (= y 0)) x]
[(and (= n 2) (= y 0)) 0]
[(and (> n 2) (= y 0)) 1]
[else (H (- n 1) x (H n x (- y 1)))]))
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These calls give the answers.
> (H 4 2 0)
1
> (H 4 2 1)
2
> (H 4 2 2)
4
> (H 4 2 3)
16
> (H 4 2 4)
65536

The last one takes some time; below, the first number is milliseconds of CPU time.
> (time (H 4 2 4))
cpu time: 193921 real time: 193804 gc time: 25086
65536

Here is the summary.
𝑦 0 1 2 3 4

H(4, 2, 𝑦) 1 2 4 16 65 536
I.4.12 We can get the values with Lemma 4.2, or the Racket procedure given in the section body.
> (for ([y (in-range 10)])

(printf "(~a,~a),\n" y (H 1 2 y)))
(0,2),
(1,3),
(2,4),
(3,5),
(4,6),
(5,7),
(6,8),
(7,9),
(8,10),
(9,11),

This summarizes the output.
𝑦 0 1 2 3 4 5 6 7 8 9

H1(2, 𝑦) 2 3 4 5 6 7 8 9 10 11
H2(2, 𝑦) 0 2 4 6 8 10 12 14 16 18
H3(2, 𝑦) 1 2 4 8 16 32 64 128 256 512

Here is a graph.
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I.4.13 A script yields that H4(3, 3) = 7 625 597 484 987. If that is seconds then the number of years is about
241 645.76.

I.4.14 We have that H3(3, 3) = 27 and H2(2, 2) = 4 so the ratio is 6.75.
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I.4.15 The proof of Lemma 4.2 shows that H1(𝑥,𝑦) = 𝑥 + 𝑦. The definition of H gives

H2 =

{
0 – if 𝑦 = 0
H2(𝑥, H1(𝑥,𝑦 − 1)) – otherwise

and we will use induction to show H2(𝑥,𝑦) = 𝑥 · 𝑦. The base step is part of that definition. So suppose that
H2(𝑥,𝑦) = 𝑥 · 𝑦 for 𝑦 = 0, 𝑦 = 1, . . . 𝑦 = 𝑘. For 𝑦 = 𝑘 + 1,

H2(𝑥,𝑦) = H1(𝑥, 𝑥 · 𝑘) = 𝑥 + 𝑥 · 𝑘 = 𝑥 · (1 + 𝑘) = 𝑥 · 𝑦
(because 𝑦 = 𝑘 + 1 the ‘otherwise’ branch applies).

The other equality is similar. The key step isH3(𝑥,𝑦) = H2(𝑥,H3(𝑥, 𝑘)) = H2(𝑥, 𝑥𝑘 ) = 𝑥 ·𝑥𝑘 = 𝑥𝑘+1 = 𝑥𝑦 .
I.4.16 Writing a small script makes the job of computing easier. Here is the table of values.

𝑦 = 0 𝑦 = 1 𝑦 = 2 𝑦 = 3 𝑦 = 4 𝑦 = 5
𝑘 = 0 1 2 3 4 5 6 . . .
𝑘 = 1 2 3 4 5 6 7 . . .
𝑘 = 2 3 5 7 9 11 13 . . .
𝑘 = 3 5 13 29 61 125 253 . . .
𝑘 = 4 13 65 533 . . .

I.4.17 In each application of the recursion, either the first argument decreases or else the first argument
remains the same and the third argument decreases. Further, each time that the third argument reaches
zero, the first argument decreases, so it eventually reaches zero as well. If the first argument is zero then the
computation terminates.

I.4.18 No. All such functions are total, they halt on all inputs, while some computable functions are not total.
I.4.19 This Racket program illustrates the definition.
(define (g x y)

(if (= 100 (+ x y))
0
1))

(define (f x)
(define (f-helper x y)

(if (= 0 (g x y))
y
(f-helper x (+ 1 y))))

(let ([y 0])
(f-helper x 0)))

(a) 𝑓 (0) = 100
(b) 𝑓 (1) = 99
(c) 𝑓 (50) = 50
(d) 𝑓 (100) = 0
(e) This is not defined.
This is another description of 𝑓 .

𝑓 (𝑥) =
{
100 − 𝑥 – if 𝑥 ≤ 100
undefined – otherwise

I.4.20
(a) The value of 𝑓 (0) is undefined because there is no 𝑦 where 0 · 𝑦 equals 100.
(b) 𝑓 (1) = 100
(c) 𝑓 (50) = 2
(d) 𝑓 (100) = 1
(e) This is not defined because there is no 𝑦 where 101 · 𝑦 equals 100.



Page 26

I.4.21
(a) 𝑓 (0) = 3
(b) 𝑓 (1) = 3
(c) 𝑓 (50) = 257
(d) 𝑓 (100) = 257
(e) We don’t know if this is defined.
I.4.22
(a) 𝑓 (0) = 0
(b) 𝑓 (1) = 1
(c) 𝑓 (50) = 502
(d) 𝑓 (100) = 1002
(e) 𝑓 (𝑥) = 𝑥2
I.4.23
(a) 𝑓 (0) = 1
(b) 𝑓 (1) = 1
(c) 𝑓 (2) = 2
(d) 𝑓 (3) = 3
(e) 𝑓 (4) = 2
(f) 𝑓 (42) = 2
(g) In general, if 𝑥 = 0 or 𝑥 = 1 then 𝑓 (𝑥) = 1. For 𝑥 > 1, the value of 𝑓 (𝑥) is the smallest prime dividing 𝑥 .
I.4.24
(a) This Racket script helps with the calculations.

;; g Function given in exercise
(define (g x y)

(ceiling (- (/ (add1 x) (add1 y))
1)))

;; f Compute from g by mu-recursion
(define (f x)

(define (f-helper y)
(if (= 0 (g x y))

y
(f-helper (add1 y))))

(let ([y 0])
(f-helper y)));; f Compute from g by mu-recursion

This table gives 𝑓 (𝑥) for 0 ≤ 𝑥 < 6 and includes the relevant values of 𝑔(𝑥,𝑦).
𝑔(𝑥,𝑦) 𝑦 = 0 𝑦 = 1 𝑦 = 2 𝑦 = 3 𝑦 = 4 𝑦 = 5 𝑓 (𝑥)
𝑥 = 0 0 0
𝑥 = 1 1 0 1
𝑥 = 2 2 1 0 2
𝑥 = 3 3 1 1 0 3
𝑥 = 4 4 2 1 1 0 4
𝑥 = 5 5 2 1 1 1 0 5

(b) We will argue that 𝑓 (𝑥) = 𝑥 . Fix 𝑥 . To have 𝑔(𝑥,𝑦) = 0 we need that (𝑥 + 1)/(𝑦 + 1) is less than or equal
to 1. The first 𝑦 giving that is 𝑥 .

I.4.25
(a)

remtwo(𝑦) =
{
0 – if 𝑦 = 0
1 .− remtwo(𝑧) – if 𝑦 = 𝑆 (𝑧)

(b) Let 𝑓 (𝑛) = 𝜇𝑥 [
𝑥 + remtwo(𝑛) = 0

]
. If 𝑛 is even then remtwo(𝑛) = 0 and 𝑥 = 0 suffices. If 𝑛 is odd then

the remtwo(𝑛) = 1 and there is no 𝑥 such that 𝑥 + 1 = 0.
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I.4.26 We can compute 𝑓 (𝑥) by running the machine until it halts. This is the computation with 𝑥 = 0.

Step Configuration

0 q0

1 1
q1

2 1
q1

3 1
q2

Here is the computation with input 𝑥 = 1.

Step Configuration

0 1
q0

1 1
q0

2 1 1
q1

Step Configuration

3 1 1
q1

4 1 1
q1

5 1 1
q2

The same for 𝑥 = 2.

Step Configuration

0 1 1
q0

1 1 1
q0

2 1 1
q0

Step Configuration

3 1 1 1
q1

4 1 1 1
q1

5 1 1 1
q1

Step Configuration

6 1 1 1
q1

7 1 1 1
q2

This is 3.

Step Configuration

0 1 1 1
q0

1 1 1 1
q0

2 1 1 1
q0

3 1 1 1
q0

Step Configuration

4 1 1 1 1
q1

5 1 1 1 1
q1

6 1 1 1 1
q1

Step Configuration

7 1 1 1 1
q1

8 1 1 1 1
q1

9 1 1 1 1
q2

This is 4.
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Step Configuration

0 1 1 1 1
q0

1 1 1 1 1
q0

2 1 1 1 1
q0

3 1 1 1 1
q0

Step Configuration

4 1 1 1 1
q0

5 1 1 1 1 1
q1

6 1 1 1 1 1
q1

7 1 1 1 1 1
q1

Step Configuration

8 1 1 1 1 1
q1

9 1 1 1 1 1
q1

10 1 1 1 1 1
q1

11 1 1 1 1 1
q2

Finally, this is the computation for 𝑓 (5).

Step Configuration

0 1 1 1 1 1
q0

1 1 1 1 1 1
q0

2 1 1 1 1 1
q0

3 1 1 1 1 1
q0

4 1 1 1 1 1
q0

Step Configuration

5 1 1 1 1 1
q0

6 1 1 1 1 1 1
q1

7 1 1 1 1 1 1
q1

8 1 1 1 1 1 1
q1

9 1 1 1 1 1 1
q1

Step Configuration

10 1 1 1 1 1 1
q1

11 1 1 1 1 1 1
q1

12 1 1 1 1 1 1
q1

13 1 1 1 1 1 1
q2

This table summarizes.
𝑥 0 1 2 3 4 5

𝑓 (𝑥) 3 5 7 9 11 13

I.4.27 To compute 𝑓 (𝑥) we can run the machine until it halts. This is the computation with 𝑥 = 0,

Step Configuration

0 q0

1 1
q2

and this is the computation with input 𝑥 = 1.

Step Configuration

0 1
q0

1 1
q1

2 1 1
q2

This is the same for 𝑥 = 2.
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Step Configuration

0 1 1
q0

1 1 1
q1

2 1 1 1
q2

The 𝑥 = 3 computation does this.

Step Configuration

0 1 1 1
q0

1 1 1 1
q1

2 1 1 1 1
q2

This is 𝑥 = 4.

Step Configuration

0 1 1 1 1
q0

1 1 1 1 1
q1

2 1 1 1 1 1
q2

Finally, this is the computation for 𝑓 (5).

Step Configuration

0 1 1 1 1 1
q0

1 1 1 1 1 1
q1

2 1 1 1 1 1 1
q2

The table below summarizes.

𝑥 0 1 2 3 4 5
𝑓 (𝑥) 2 3 3 3 3 3

For this machine the running time is constant. The machine in the prior exercise does the same job but its
running time is a linear function of the input size.

I.4.28 One way to compute 𝑓 (𝑥) is to run the machine until it halts.
(a) This is the computation with 𝑥 = 0.
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Step Configuration

0 q0

1 q1

2 q2

Step Configuration

3 q3

4 q4

(b) This is 𝑥 = 1.

Step Configuration

0 1
q0

1 1
q1

2 1
q2

Step Configuration

3 1
q3

4 1
q4

(c) This is the same for 𝑥 = 2.

Step Configuration

0 1 1
q0

1 1 1
q1

2 1 1
q2

Step Configuration

3 1 1
q3

4 1 1
q4

(d) The table summarizes.
𝑥 0 1 2

𝑓 (𝑥) 4 4 4
This machine ignores its input, moves right two squares and back left two, and then halts. So its running
time is constant, 𝑓 (𝑥) = 4.

I. These are not too hard to compute by hand, but a small program is also handy.
;; 3n+1 function
(define (H n)

(if (even? n)
(/ n 2)
(+ (* 3 n) 1)))

;; Collatz numer calculator: use unbounded search to find it
(define (C n)

(define (C-helper n k)
(if (= 1 n)

k
(C-helper (H n) (add1 k))))

(C-helper n 0))

(a) The script gives this.
> (H 4)
2
> (H (H 4))
1
> (H (H (H 4)))
4
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Figure 1, for question I.: Courtesy xkcd.com

So 𝐻 (4, 1) = 2, 𝐻 (4, 2) = 1, 𝐻 (4, 3) = 4.
(b) The script says this.

> (C 4)
2

So 𝐶 (4) = 2, which matches the result of the prior item.
(c) Here are the successive values.

> (H 5)
16
> (H (H 5))
8
> (H (H (H 5)))
4
> (H (H (H (H 5))))
2
> (H (H (H (H (H 5)))))
1

Thus 𝐶 (5) = 5, which agrees with the program’s result.
> (C 5)
5

(d) The successive values are 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, and 1, so 𝐶 (11) = 14.
(e) Here are the values.

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
𝐶 (𝑛) 0 1 7 2 5 8 16 3 19 6 14 9 9 17 15 4 12 20 20

Figure 1 on page 31 shows that XKCD has something to say about the Collatz conjecture.
I.A.1 This command line run starts with five 1’s.
$ ./turing -machine.rkt -f machines/pred.tm -c "1" -r "1111"
step 0: q0: *1*1111
step 1: q0: 1*1*111
step 2: q0: 11*1*11
step 3: q0: 111*1*1
step 4: q0: 1111*1*
step 5: q0: 11111*B*
step 6: q1: 1111*1*B
step 7: q1: 1111*B*B
step 8: q2: 111*1* BB
step 9: q2: 11*1*1 BB
step 10: q2: 1*1*11 BB
step 11: q2: *1*111 BB
step 12: q2: *B*1111BB
step 13: q3: B*1*111 BB
step 14: HALT

Here it is looking like the tape.

https://xkcd.com/710/
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Step Configuration

0 1 1 1 1 1
q0

1 1 1 1 1 1
q0

2 1 1 1 1 1
q0

3 1 1 1 1 1
q0

4 1 1 1 1 1
q0

Step Configuration

5 1 1 1 1 1
q0

6 1 1 1 1 1
q1

7 1 1 1 1
q1

8 1 1 1 1
q2

9 1 1 1 1
q2

Step Configuration

10 1 1 1 1
q2

11 1 1 1 1
q2

12 1 1 1 1
q2

13 1 1 1 1
q3

This is the command line invocation for an empty tape,

$ ./turing -machine.rkt -f machines/pred.tm -c " "
step 0: q0: *B*
step 1: q1: *B*B
step 2: q2: *B*BB
step 3: q3: B*B*B
step 4: HALT

and the matching sequence of tape diagrams.

Step Configuration

0 q0

1 q1

2 q2

3 q3

I.A.2 This simulates 1 + 2.

$ ./turing -machine.rkt -f machines/pred.tm -c "1" -r " 11"
step 0: q0: *1* 11
step 1: q0: 1*B*11
step 2: q1: 1*B*11
step 3: q1: 1*1*11
step 4: q2: 1*1*11
step 5: q2: *1*111
step 6: q2: *B*1111
step 7: q3: *B*1111
step 8: q3: B*1*111
step 9: q4: B*B*111
step 10: q5: BB*1*11
step 11: HALT

and this is the matching tape diagram.
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Step Configuration

0 1 1 1
q0

1 1 1 1
q0

2 1 1 1
q1

3 1 1 1 1
q1

Step Configuration

4 1 1 1 1
q2

5 1 1 1 1
q2

6 1 1 1 1
q2

7 1 1 1 1
q3

Step Configuration

8 1 1 1 1
q3

9 1 1 1
q4

10 1 1 1
q5

The command line for 0 + 2
$ ./turing -machine.rkt -f machines/pred.tm -c " " -r "11"

gives these tape diagrams.

Step Configuration

0 1 1
q0

1 1 1
q1

2 1 1 1
q1

Step Configuration

3 1 1 1
q2

4 1 1 1
q2

5 1 1 1
q3

Step Configuration

6 1 1 1
q3

7 1 1
q4

8 1 1
q5

The command line for 0 + 0
$ ./turing -machine.rkt -f machines/pred.tm -c " "

gives this sequence of tape diagrams.

Step Configuration

0 q0

1 q1

2 1
q1

Step Configuration

3 1
q2

4 1
q2

5 1
q3

Step Configuration

6 1
q3

7 q4

8 q5

I.A.3 This ten-instruction machine

Paddthree = {𝑞01R𝑞0, 𝑞0BB𝑞1, 𝑞1B1𝑞1, 𝑞11R𝑞2, 𝑞2B1𝑞2, 𝑞21R𝑞3,
𝑞3B1𝑞3, 𝑞311𝑞4, 𝑞41L𝑞4, 𝑞4BR𝑞5 }

matches the source for the simulator.
0 1 R 0
0 B B 1
1 B 1 1
1 1 R 2
2 B 1 2
2 1 R 3
3 B 1 3
3 1 1 4
4 B R 5
4 1 L 4
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This command line for input 4
$ ./turing -machine.rkt -f machines/addthree.tm -c "1" -r "111"

gives these tape diagrams.

Step Configuration

0 1 1 1 1
q0

1 1 1 1 1
q0

2 1 1 1 1
q0

3 1 1 1 1
q0

4 1 1 1 1
q0

5 1 1 1 1
q1

6 1 1 1 1 1
q1

Step Configuration

7 1 1 1 1 1
q2

8 1 1 1 1 1 1
q2

9 1 1 1 1 1 1
q3

10 1 1 1 1 1 1 1
q3

11 1 1 1 1 1 1 1
q4

12 1 1 1 1 1 1 1
q4

13 1 1 1 1 1 1 1
q4

Step Configuration

14 1 1 1 1 1 1 1
q4

15 1 1 1 1 1 1 1
q4

16 1 1 1 1 1 1 1
q4

17 1 1 1 1 1 1 1
q4

18 1 1 1 1 1 1 1
q4

19 1 1 1 1 1 1 1
q5

The command line for 0
$ ./turing -machine.rkt -f machines/addthree.tm -c " "

gives this sequence of tape diagrams.

Step Configuration

0 q0

1 q1

2 1
q1

3 1
q2

Step Configuration

4 1 1
q2

5 1 1
q3

6 1 1 1
q3

7 1 1 1
q4

Step Configuration

8 1 1 1
q4

9 1 1 1
q4

10 1 1 1
q4

11 1 1 1
q5

I.A.4
(a) Something like this will do.

P0 = {𝑞100R𝑞10, 𝑞101R𝑞10, 𝑞10BB𝑞100 }

(b) This will back up, blanking out cells.

P1 = {𝑞200B𝑞21, 𝑞201B𝑞21, 𝑞20BB𝑞100, 𝑞210L𝑞20, 𝑞211L𝑞20, 𝑞21BL𝑞20 }

(c) Here, roughly 𝑞0 is where none of the substring is matched, 𝑞1 is where 0 has been seen and the machine is
looking for the 1, and 𝑞2 is where 01 has been seen and the machine is looking for the 0. Then the four
states 𝑞3, 𝑞4, 𝑞5, and 𝑞6 mark a failure (they end with 𝑞6 writing 0 on a blank tape). The four states 𝑞7, 𝑞8,
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𝑞9, and 𝑞10 mark a success.

Pdecide010 = {𝑞00R𝑞1, 𝑞01R𝑞0, 𝑞0BB𝑞3, 𝑞10R𝑞1, 𝑞11R𝑞2, 𝑞1BB𝑞3, 𝑞20R𝑞7, 𝑞211𝑞0, 𝑞2BB𝑞3,
𝑞30R𝑞3, 𝑞31R𝑞3, 𝑞3BL𝑞4, 𝑞40B𝑞5, 𝑞41B𝑞5, 𝑞4BB𝑞6,

𝑞50L𝑞4, 𝑞51L𝑞4, 𝑞5BL𝑞4, 𝑞600𝑞100, 𝑞610𝑞100, 𝑞6B0𝑞100,

𝑞70R𝑞7, 𝑞71R𝑞7, 𝑞7BL𝑞8, 𝑞80B𝑞9, 𝑞81B𝑞9, 𝑞8BB𝑞10,

𝑞90L𝑞8, 𝑞91L𝑞8, 𝑞9BL𝑞8, 𝑞1001𝑞100, 𝑞1011𝑞100, 𝑞10B1𝑞100 }

I.C.4 It takes 17331 turns to stabilize.
I.D.8 From two arguments 𝑘 and 𝑦, either 𝑘 decreases or 𝑘 is fixed and 𝑦 decreases. When 𝑦 reaches zero then
𝑘 decreases, so it eventually reaches zero as well, and A(0, 𝑦) obviously terminates.

I.D.11 All the parts of A are primitive recursive but as a whole it is not? Yes. It is a question of uniformity.
Imagine that we have an enumeration of the primitive recursive functions 𝑓0, 𝑓1, . . . . Perhaps A0 = 𝑓9, and
A1 = 𝑓121, and A2 = 𝑓800. But the function associating the subscript on the A with the subscript on the 𝑓 is
not primitive recursive.

I.E.2 Here is the code.
# swap -two.loop Input x,y and output y,x
r2 = r0
r0 = r1
r1 = r2

And here is a sample invocation.
jim@millstone:$ ./loop.rkt -f machines/swap -two.loop -p "1 2 3" -o 2
2 1

I.E.3 We can get the effect of the first with two increments in a row, and we can get the effect of the second by
first zeroing and then incrementing.

I.E.4 The rotate left code is an adaptation of the rotate right code.
# rotate -shift -left.loop input x,y,z, output y,z,x
r3 = r0
r0 = r1
r1 = r2
r2 = r3

And here is a sample invocation.
jim@millstone:$ ./loop.rkt -f machines/rotate -shift -left.loop -p "1 2 3" -o 3
2 3 1

Putting the two together gives this.
# rotate -shift -right
r3 = r2
r2 = r1
r1 = r0
r0 = r3
# now rotate -shift -left
r3 = r0
r0 = r1
r1 = r2
r2 = r3

Here is a sample invocation.
jim@millstone:$ ./loop.rkt -f machines/concatenate -rotations.loop -p "1 2 3" -o 3
1 2 3

I.E.5 Here is a program.
# power.loop Return r0 ^ r1
r2 = r1 # save the inputs in higher registers
r1 = r0 #
r0 = 0
r0 = r0 + 1 # cover the r1=0 case
r3 = 0 # Initialize
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r3 = r3 + 1 # to 1
loop r2

r0 = 0
loop r3

loop r1
r0 = r0 + 1
end

end
r3 = r0
end

And here are two sample invocations.
jim@millstone:$ ./loop.rkt -f machines/power.loop -p "3 2"
9
jim@millstone:$ ./loop.rkt -f machines/power.loop -p "3 0"
1



Chapter II: Background

II.1.20 To show that the map is one-to-one we will show that 𝑔(𝑛) = 𝑔(𝑛) can only happen if 𝑛 = 𝑛. So let
𝑔(𝑛) = 𝑔(𝑛), giving 3𝑛 = 3𝑛. Divide by three to get 𝑛 = 𝑛.

To show the map is onto we will show that every member of the codomain 𝑦 ∈ {3𝑘
�� 𝑘 ∈ N} is mapped-to

by some member of the domain. Because 𝑦 is a multiple of three, 𝑦/3 is a natural number. Of course,
𝑦 = 𝑔(𝑦/3), so 𝑦 is indeed the image of some member of the domain.

II.1.21 This is a type error. It is not the sets that are one-to-one or onto; rather, it is a function 𝑓 between the
sets. (For 𝐷 = {𝑛2

�� 𝑛 ∈ N} and 𝐶 = {𝑛3
�� 𝑛 ∈ N} the natural such function 𝑓 : 𝐷 → 𝐶 is 𝑓 (𝑛) = 𝑛3/2.)

II.1.22
(a) The function 𝑓 : Z → Z given by 𝑓 (𝑥) = 2𝑥 is one-to-one but not onto. Verifying that it is one-to-one is

routine: assume that 𝑓 (𝑥) = 𝑓 (𝑥) for 𝑥, 𝑥 ∈ Z, so that 2𝑥 = 2𝑥 , and then cancel the 2’s to get that 𝑥 = 𝑥 .
To show that it is not onto we need only name one codomain element 𝑦 ∈ Z that is not the image of any
domain element. One such is 𝑦 = 1, since the image of every domain element is even.

(b) The function 𝑔 : Z → Z given by 𝑔(𝑥) = 2𝑥 − 1 is also one-to-one but not onto. The one-to-one argument
works just as it did in the prior item: assume that 𝑔(𝑥) = 𝑔(𝑥) for 𝑥, 𝑥 ∈ Z so that 2𝑥 − 1 = 2𝑥 − 1. Add 1 to
both sides and cancel the 2’s to get 𝑥 = 𝑥 . This function is not onto because the codomain element 𝑦 = 2 is
not the image of any domain element, since it is even but the number 2𝑥 − 1 is odd for any input integer 𝑥 .

(c) They are not inverse. For instance, 𝑓 ◦ 𝑔 (1) = 𝑓 (𝑔(1)) = 𝑓 (1) = 2.
II.1.23
(a) The function 𝑓 : N → N given by 𝑓 (𝑛) = 𝑛 + 1 is one-to-one but not onto. To check that it is one-to-one

suppose that 𝑓 (𝑛0) = 𝑓 (𝑛1) for 𝑛0, 𝑛1 ∈ N, so that 𝑛0 + 1 = 𝑛1 + 1, and then subtract 1 from both sides to
get 𝑛0 = 𝑛1. It is not onto because the codomain element 0 ∈ N is not the image of any domain element.

(b) The map 𝑓 : Z → Z given by 𝑓 (𝑛) = 𝑛 + 1 is a correspondence— it is both one-to-one and onto. The
verification that it is one-to-one goes: assume that 𝑓 (𝑛0) = 𝑓 (𝑛1) so that 𝑛0 + 1 = 𝑛1 + 1, and subtract 1 to
conclude that 𝑛0 = 𝑛1. The verification that it is onto goes: fix some codomain element 𝑦 ∈ Z and note that
𝑥 = 𝑦 − 1 is a domain element which satisfies that 𝑓 (𝑥) = 𝑦.

(c) The function 𝑓 : N → N defined by 𝑓 (𝑛) = 2𝑛 is one-to-one but not onto. For one-to-one, assume that
𝑛0, 𝑛1 ∈ N are such that 𝑓 (𝑛0) = 𝑓 (𝑛1). Then 2𝑛0 = 2𝑛1 and cancelling the 2’s gives that 𝑛0 = 𝑛1. It is not
onto because the codomain element 𝑦 = 1 is not the image of any domain element, since all such images
are even.

(d) The function 𝑓 : Z → Z defined by 𝑓 (𝑛) = 2𝑛 is one-to-one but not onto. The one-to-one verification is as
in the prior item: suppose that 𝑓 (𝑛0) = 𝑓 (𝑛1) for some 𝑛0, 𝑛1 ∈ Z, so that 2𝑛0 = 2𝑛1, and cancel the 2’s to
conclude that 𝑛0 = 𝑛1. Also as in the prior item, this map is not onto because the codomain element 𝑦 = 1
is not in the range of the function, as all of the range elements are even.

(e) The function 𝑓 : Z → N given by 𝑓 (𝑛) = |𝑛 | is not one-to-one but it is onto. It is not one-to-one because the
two domain elements 𝑛0 = −1 and 𝑛1 = 1 map to the same output, 𝑓 (𝑛0) = 2 = 𝑓 (𝑛1). To show that 𝑓 is
an onto map consider a codomain element 𝑦 ∈ N, and observe that if we take the domain element 𝑥 ∈ Z
such that 𝑥 = 𝑦 then 𝑓 (𝑥) = 𝑦.

II.1.24
(a) This function is a correspondence. To verify that it is one-to-one suppose that 𝑓 (𝑞0) = 𝑓 (𝑞1) for 𝑞0, 𝑞𝑖 ∈ Q,

so that 𝑞0 + 3 = 𝑞1 + 3, and subtract 3 from both sides to get that 𝑞0 = 𝑞1. For onto, consider a codomain
element 𝑦 ∈ Q and observe that the domain element 𝑞 ∈ Q given by 𝑞 = 𝑦 − 3 satisfies that 𝑓 (𝑞) = 𝑦.

(b) This function is not a correspondence. It is not onto because the codomain element 1/2 ∈ Q is not the
image of any domain element 𝑧 ∈ Z, since each such image 𝑓 (𝑧) = 𝑧 + 3 is an integer. (This function is
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one-to-one: suppose that 𝑓 (𝑧0) = 𝑓 (𝑧1), so that 𝑧0 + 3 = 𝑧1 + 3, and subtract 3 from both sides to conclude
that 𝑧0 = 𝑧1. But because it is not onto, it is not a correspondence.)

(c) This is not a correspondence. It is not even a function, because it is not well-defined—the two 𝑞0 = 1/2
and 𝑞1 = 2/4 are equal, 𝑞0 = 𝑞1, but they are not associated with the same |𝑎 · 𝑏 |’s since |1 · 2| = 2 and
|2 · 4| = 8.

II.1.25
(a) This set is finite. It has the same cardinality as 𝐼 = {0, 1, 2}, as witnessed by the function 𝑓 : 𝐼 → {1, 2, 3}

given by 𝑓 (𝑥) = 𝑥 + 1, which is one-to-one and onto by inspection.
(b) The set 𝑆 = {0, 1, 4, 9, 16, ... } of perfect squares is infinite. There is no correspondence between some

𝐼 = {0, 1, ... 𝑛 − 1} and 𝑆 since there is no onto function— for any 𝑓 : 𝐼 → 𝑆 the set { 𝑓 (0), 𝑓 (1), ... 𝑓 (𝑛 − 1) }
cannot equal 𝑆 because it has a largest element but 𝑆 has no largest element.

(c) The set of primes is infinite. The argument from the prior item applies.
(d) By the Fundamental Theorem of Arithmetic, a fifth degree polynomial has at most five real number roots.

Thus this set has cardinality at most five, and so is finite.
II.1.26
(a) The map 𝑓 : {0, 1, 2} → {3, 4, 5} given by 𝑓 (0) = 3, 𝑓 (1) = 4, and 𝑓 (2) = 5, that is, 𝑓 (𝑥) = 𝑥 + 3, is a

correspondence. By inspection each element of the codomain is associated with one and only one element
of the domain.

(b) The function 𝑓 (𝑥) = 𝑥3 is a correspondence between these sets. For each perfect cube there is one and only
one associated integer cube root.

II.1.27
(a) The function 𝑓 given by 0 ↦→ 𝜋 , 1 ↦→ 𝜋 + 1, 3 ↦→ 𝜋 + 2, and 7 ↦→ 𝜋 + 3 is both one-to-one and onto, by

inspection.
(b) Let 𝐸 = {2𝑛

�� 𝑛 ∈ N} and 𝑆 = {𝑛2
�� 𝑛 ∈ N}. Consider the map 𝑓 : 𝐸 → 𝑆 given by 𝑓 (𝑥) = (𝑥/2)2. To show

that 𝑓 is one-to-one, suppose that 𝑓 (𝑥0) = 𝑓 (𝑥1). Then (𝑥0/2)2 = (𝑥1/2)2 and because these are natural
numbers their square roots are equal, 𝑥0/2 = 𝑥1/2. Thus 𝑥0 = 𝑥1 and the map is one-to-one.

For onto, consider 𝑦 ∈ 𝑆 . Because 𝑦 is a perfect square there is a natural number 𝑛 ∈ N so that 𝑦 = 𝑛2.
Let 𝑥 = 2𝑛. Clearly 𝑥 is even and 𝑓 (𝑥) = 𝑦.

(c) The second interval is 2/3-rds the width of the first, so consider the function 𝑓 (𝑥) = (2/3) · 𝑥 − (5/3). It is
one-to-one because 𝑓 (𝑥0) = 𝑓 (𝑥1) implies that (2/3) · 𝑥0 − (5/3) = (2/3) · 𝑥1 − (5/3), and straightforward
algebra gives that 𝑥0 = 𝑥1. To show that 𝑓 is onto, fix 𝑦 ∈ (−1 .. 1). Let 𝑥 = (𝑦 + (5/3)) / (2/3) (this came
from solving 𝑦 = (2/3)𝑥 − (5/3) for 𝑥). When 𝑦 is an element of the codomain (−1 .. 1) then this 𝑥 is an
element of the domain (1 .. 4), and more algebra shows that 𝑓 (𝑥) = 𝑦.

II.1.28 The problem statement is ambiguous as to which set is the domain and which is the codomain. We will
prove that 𝑓 : (0 .. 1) → (1 ..∞) given by 𝑓 (𝑥) = 1/𝑥 is one-to-one and onto.

For one-to-one assume that 𝑓 (𝑥0) = 𝑓 (𝑥1), where 𝑥0, 𝑥1 ∈ (0 .. 1). Then 1/𝑥0 = 1/𝑥1 and cross-
multiplication gives 𝑥1 = 𝑥0. For onto suppose that 𝑦 ∈ (1 ..∞) and note that if 𝑥 = 1/𝑦 then 𝑓 (𝑥) = 𝑦 and
also 𝑥 ∈ (0 .. 1).

II.1.29 Call the sets 𝐷 = {1, 2, 3, 4, ... } and 𝐶 = {7, 10, 13, 16 ... }. We will show that the function 𝑓 : 𝐷 → 𝐶
described by the formula 𝑓 (𝑥) = 3(𝑥 − 1) + 7 gives a correspondence between the sets. This function is
one-to-one since 𝑓 (𝑥0) = 𝑓 (𝑥1) implies that 3(𝑥0 − 1) + 7 = 3(𝑥1 − 1) + 7, and subtracting 7, dividing by 3,
and adding 1 gives that 𝑥0 = 𝑥1. It is onto because if 𝑦 is an element of the codomain 𝐶 then it has the form
𝑦 = 3𝑛 + 4 for 𝑛 ∈ N+. That equation gives 𝑦 = 3(𝑛 − 1) + 7. Some algebra gives (𝑦 − 7)/3 = 𝑛 − 1 for 𝑛 ∈ N+
and we have that 𝑛 = ((𝑦 − 7)/3) + 1 is an element of N+ = 𝐷 with 𝑓 (𝑛) = 𝑦.

II.1.30
(a) The obvious map is this.

𝑥 0 1 2 3 4 5 6 7 8 9

𝑓 (𝑥) 48 49 50 51 52 53 54 55 56 57

It is one-to-one by inspection, meaning that looking over the association shows that never do two different
domain elements map to the same codomain element. Similarly, it is also onto by inspection.
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Figure 2, for question II.1.32: The correspondences 𝑓0, 𝑓1, 𝑓2 : (0 .. 1) → (0 .. 2) given by 𝑓0 (𝑥) = 2𝑥 , 𝑓1 (𝑥) = 2−2𝑥 ,
and 𝑓2 (𝑥) = 2𝑥2.

(b) The inverse map associates the same pairs of elements in the prior item’s table, but the domain and codomain
swap places so here 𝐴 is the domain and 𝐶 is the codomain.

𝑦 48 49 50 51 52 53 54 55 56 57
𝑥 0 1 2 3 4 5 6 7 8 9

As in the prior item, this map is one-to-one and onto by inspection.
II.1.31 For each pair of sets we could define a function whose domain is the first set, or a function whose

domain is the second set. We choose whichever is convenient.
(a) Write the even numbers as 𝐸 = {2𝑛

�� 𝑛 ∈ N}. Consider the function 𝑓 : N → 𝐸 defined by 𝑓 (𝑚) = 2𝑚. To
verify that 𝑓 is one-to-one, assume that two inputs yield the same output 𝑓 (𝑚) = 𝑓 (�̂�), giving 2𝑚 = 2�̂�,
and divide by 2 to get that therefore the two inputs are the same,𝑚 = �̂�.

To verify that 𝑓 is onto, consider a member of the codomain 𝑦 ∈ 𝐸, so that 𝑦 = 2𝑛 for some 𝑛 ∈ N. Now,
𝑛 = 𝑦/2 has the property that 𝑓 (𝑛) = 𝑦. Note that 𝑛 is an element of the domain N because as a member of
the codomain, 𝑦 is even, and thus dividing by two yields a natural number.

(b) Write the odd numbers as 𝑀 = {2𝑛 + 1
�� 𝑛 ∈ N}. Consider 𝑔 : N → 𝑀 given by 𝑛 ↦→ 2𝑛 + 1. To verify that

𝑔 is one-to-one, assume that 𝑔(𝑚0) = 𝑔(𝑚1), so that 2𝑚0 + 1 = 2𝑚1 + 1, subtract 1, and divide by 2, to
conclude that𝑚0 =𝑚1.

To verify that 𝑔 is onto, start with an element of the codomain 𝑦 ∈ 𝑀 . Then it has the form 𝑦 = 2𝑘 + 1 for
some natural number𝑘 . That means there is a natural number𝑘 that maps under𝑔 to𝑦, namely𝑘 = (𝑦−1)/2.

(c) One answer is to cite the two prior exercise parts and that the inverse of a correspondence is also a
correspondence, to get that the composition 𝑔 ◦ 𝑓 −1 is a correspondence from the even numbers to the odds.

A direct answer is to consider the map 𝑝 : 𝐸 → 𝑀 given by 𝑝 (𝑛) = 𝑛 + 1. Verify that 𝑝 is one-to-one and
onto as in the prior two items.

II.1.32 The natural correspondence 𝑓0 : (0 .. 1) → (0 .. 2) is 𝑓0(𝑥) = 2𝑥 . For the other two there are many
choices but two more correspondences 𝑓0, 𝑓1, 𝑓2 : (0 .. 1) → (0 .. 2) are 𝑓1(𝑥) = 2 − 2𝑥 and 𝑓2(𝑥) = 2𝑥2.
Figure 2 on page 39 shows the three graphs. They are different functions because they return different values
on the input 𝑥 = 1/3.

Each function is one-to-one and onto because the figure shows that every horizontal line at 𝑦 ∈ (0 .. 2)
intercepts its graph in one and only one point.

For an algebraic verication that they are correspondences we can use 𝑓1 as a model. It is one-to-one because
if 𝑓 (𝑥0) = 𝑓 (𝑥1) then 2 − 2𝑥0 = 2 − 2𝑥1, and then subtracting 2 and dividing by −2 yields that 𝑥0 = 𝑥1. It is
onto because if 𝑦 ∈ (0 .. 2) then the number 𝑥 = (𝑦 − 2)/(−2) is an element of (0 .. 1) and has the property
that 𝑓 (𝑥) = 2 − 2 · ((𝑦 − 2)/−2) = 𝑦.

II.1.33 The function

𝑓 (𝑛) =

1 – if 𝑛 = 0
0 – if 𝑛 = 1
𝑛2 – if 𝑛 > 1

is different than Example 1.8’s function 𝑓 because they give different outputs for the input 0. That 𝑓 is onto is
clear, as every perfect square is the output associated with some input. That 𝑓 is a one-to-one function is also
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clear, although it is a little messier to write down. Assume 𝑓 (𝑥0) = 𝑓 (𝑥1) and then there are four cases: both
𝑥0 and 𝑥1 are members of the set {0, 1}, only the first one is a member, only the second is a member, or
neither is a member. All four cases are easy.

II.1.34 To check that 𝑓 is one-to-one suppose that 𝑓 (𝑥0) = 𝑓 (𝑥1), so that 𝑐𝑥0 = 𝑐𝑥1 . Take the logarithm base 𝑐
of both sides, giving 𝑥0 = 𝑥1.

For onto, consider a codomain element 𝑦 ∈ (0 ..∞). The number 𝑥 = log𝑐 (𝑦) is defined and is an element
of R, the domain of 𝑓 . Of course, 𝑓 (𝑥) = 𝑓 (log𝑐 (𝑦)) = 𝑐 log𝑐 (𝑦) = 𝑦.

II.1.35 The two 𝑃2 = {2𝑘
�� 𝑘 ∈ N} = {1, 2, 4, 8, ... } and 𝑃3 = {3𝑘

�� 𝑘 ∈ N} = {1, 3, 9, ... } are subsets of N.
The natural correspondence 𝑔 : 𝑃2 → 𝑃3 is to associate elements having the same exponent, 𝑔(2𝑘 ) = 3𝑘 . This
function is one-to-one because if 𝑔(2𝑘0) = 𝑔(2𝑘1) then 3𝑘0 = 3𝑘1 , and taking the logarithm base 3 of both
sides shows that the inputs are the same, 𝑘0 = 𝑘1. This function is onto because if 𝑦 ∈ 𝑃3 then it has the form
𝑦 = 3𝑘 , and is the image of 2𝑘 ∈ 𝑃2.

The obvious generalization is that if two natural numbers 𝑎, 𝑏 ∈ N are greater than 1 then 𝑃𝑎 = {𝑎𝑘
�� 𝑘 ∈ N}

and 𝑃𝑏 = {𝑏𝑘
�� 𝑘 ∈ N} are sets of natural numbers that have the same cardinality. The argument is as in the

prior paragraph.
II.1.36 Of course, for each item there are many possible answers.
(a) One is 𝑓0 : N → N given by 𝑓0(𝑛) = 𝑛 + 1. It is one-to-one because if 𝑓0(𝑛) = 𝑓0(𝑛) then 𝑛 + 1 = 𝑛 + 1 and

so 𝑛 = 𝑛. It is not onto because no 𝑛 ∈ N maps to 0.
A second one is 𝑓1 : N → N given by 𝑓1(𝑛) = 𝑛2. It is one-to-one because if 𝑓1(𝑛) = 𝑓1(𝑛) then 𝑛2 = 𝑛2

and because these are natural numbers they are nonnegative, so 𝑛 = 𝑛. This function is not onto because no
natural number maps to 2.

(b) This function

𝑓0(𝑥) =
{
𝑥/2 – if 𝑥 is even
(𝑥 − 1)/2 – if 𝑥 is odd

𝑥 0 1 2 3 4 5 ...
𝑓0(𝑥) 0 0 1 1 2 2 ...

is onto because every 𝑦 ∈ N is the image of 𝑥 = 2𝑦. It is not one-to-one because 𝑓0(1) = 𝑓0(0).
A second one is 𝑓1(𝑥) = ⌊√𝑥⌋ (recall that the floor operation, ⌊𝑛⌋, gives the largest integer less than or

equal to 𝑛).

𝑥 0 1 2 3 4 5 6 7 8 9 10 ...
𝑓1(𝑥) 0 1 1 1 2 2 2 2 2 3 3 ...

It is onto because every 𝑦 ∈ N is the image of 𝑥 = 𝑦2. It is not one-to-one because 𝑓1(1) = 𝑓1(2).
(c) One such map is 𝑓0(𝑥) = 0. It is not one-to-one because 𝑓0(0) = 𝑓0(1). It is not onto because no natural

number input maps to 1.
A non-constant such function is the square of the prior item’s second one, 𝑓1(𝑥) = (⌊√𝑥⌋)2.

𝑥 0 1 2 3 4 5 6 7 8 9 10 ...
𝑓1(𝑥) 0 1 1 1 4 4 4 4 4 9 9 ...

It is not one-to-one because 𝑓1(1) = 𝑓1(2). It is not onto because no number maps to 2, as 2 is not a square.
(d) The natural function that is both one-to-one and onto is the identity function, 𝑓0(𝑥) = 𝑥 . It is one-to-one

because if 𝑓0(𝑛) = 𝑓0(𝑛) then 𝑛 = 𝑛, just straight from the definition of 𝑓0. It is onto because any codomain
element 𝑦 ∈ N is the image under 𝑓0 of itself, 𝑓0(𝑦) = 𝑦.

Another correspondence swaps even and odd numbers.

𝑓1(𝑥) =
{
𝑥 + 1 – if 𝑥 is even
𝑥 − 1 – if 𝑥 is odd

𝑥 0 1 2 3 4 5 ...
𝑓1(𝑥) 1 0 3 2 5 4 ...

Observe first that 𝑓1 : N → N; that is, if 𝑥 ∈ N then 𝑓1(𝑥) ∈ N. To check that 𝑓1 is one-to-one suppose
that 𝑓1(𝑛) = 𝑓1(𝑛). There are two cases. If 𝑛 is odd then 𝑓1(𝑛) = 𝑛 − 1 is even, and so 𝑓1(𝑛) is even also,
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Figure 3, for question II.1.37: Two correspondences between (3 .. 5) and (−1 .. 11).

implying that 𝑛 is odd, and therefore 𝑛 − 1 = 𝑛 − 1, giving that 𝑛 = 𝑛. The even case is similar. To check
that 𝑓1 is onto consider a codomain point 𝑦 ∈ N. Here also there are two cases and we will only do the
odd one, so suppose that 𝑦 is odd. Then 𝑦 = 𝑓1(𝑥) where 𝑥 = 𝑦 − 1, and 𝑥 is an element of the domain N
because if 𝑦 is odd then 𝑦 − 1 ≥ 0.

II.1.37 Let 𝐷 = (3 .. 5) and 𝐶 = (−1 .. 10).
One correspondence is 𝑓0(𝑥) = (11/2) (𝑥 − 3) − 1. Whether 𝑓0 : 𝐷 → 𝐶 is not obvious so we start

with that: if 3 < 𝑥 < 5 then subtracting 3, multiplying by 11/2, and subtracting 1 from all terms gives
−1 < 𝑓0(𝑥) < 10. Next we show that this map is onto. If 𝑦 ∈ 𝐶 then 𝑦 = 𝑓0(𝑥) where 𝑥 = (2/11) (𝑦 + 1) + 3.
To verify that this input 𝑥 is an element of the domain 𝐷 , start with −1 < 𝑦 < 10, add 1 to all terms, multiply
by 2/11, and add 3, ending with 3 < 𝑥 < 5. Finally, we show that the map 𝑓0 is one-to-one. If 𝑓0(𝑥) = 𝑓0(𝑥)
then (11/2) (𝑥 − 3) − 1 = (11/2) (𝑥 − 3) − 1 and adding 1 to both sides, multiplying by 2/11, and finally
adding 3, gives that 𝑥 = 𝑥 .

Another correspondence is 𝑓1(𝑥) = (11/4) (𝑥 − 3)2 − 1. As with 𝑓0 we start by verifying that 𝑓1 : 𝐷 → 𝐶: if
3 < 𝑥 < 5 then subtracting 3, squaring, multiplying by 11/4, and subtracting 1 from all terms gives
−1 < 𝑓1(𝑥) < 10. To show that 𝑓1 is onto assume that 𝑦 ∈ 𝐶. Then 𝑦 = 𝑓1(𝑥) where 𝑥 =

√︁
(4/11) (𝑦 + 1) + 3.

To check that 𝑥 ∈ 𝐷, start with −1 < 𝑦 < 10 and add 1 to all terms, multiply by 4/11, square (this doesn’t
change the direction of the <’s because all numbers are nonnegative), and add 3, ending with 3 < 𝑥 < 5. To
show that this map is one-to-one, assume 𝑓1(𝑥) = 𝑓1(𝑥) so that (11/4) (𝑥 − 3)2 − 1 = (11/4) (𝑥 − 3)2 − 1. To
both sides add 1, multiply by 4/11, take the square root (which is unambiguous because the 𝑥 ’s are all greater
than zero) and then add 3, giving that 𝑥 = 𝑥 .

Figure 3 on page 41 shows that the two functions are unequal. It also gives an alternative demonstration
that each is a correspondence because for each, every horizontal line at 𝑦 ∈ (−1 .. 10) intersects the graph one
and only one point.

II.1.38 In each case we produce a function from one set to the other and verify that it is both one-to-one and
onto. For the third item, note that just because a set appears first in the question does not mean that it must
be the domain of the correspondence.

(a) Where 𝑆4 = {4𝑘
�� 𝑘 ∈ N} and 𝑆5 = {5𝑘

�� 𝑘 ∈ N}, let 𝑓 : 𝑆4 → 𝑆5 be 𝑓 (𝑥) = (5/4)𝑥 . It is one-to-one
because 𝑓 (𝑥0) = 𝑓 (𝑥1) implies that (5/4)𝑥0 = (5/4)𝑥1, so 𝑥0 = 𝑥1. It is onto because if we consider a
codomain element 𝑦 = 5𝑘 for some 𝑘 ∈ N then clearly 𝑦 = 𝑓 (4𝑘).

(b) These two sets are the same set, that is, the contain the same numbers. They correspond via the identity
function.

(c) Write 𝑇 = {0, 1, 3, 6, ... } = {𝑛(𝑛 + 1)/2
�� 𝑛 ∈ N} (these are called the triangular numbers). Consider the

function 𝑓 : N → 𝑇 defined by 𝑓 (𝑛) = 𝑛(𝑛 + 1)/2. This map is one-to-one because the continuous function
𝑓 : R → R given by 𝑓 (𝑥) = 𝑥 (𝑥 + 1)/2 is a parabola with roots at 0 and −1 and so the part in the positive
numbers, with 𝑥 ≥ 0, has that a horizontal line at 𝑦 will intersect the graph in at most one point. The fact
that 𝑓 is one-to-one gives that its restriction 𝑓 is also one-to-one. The function 𝑓 is onto by definition, since
𝑇 is defined as the range of that function.
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Figure 4, for question II.1.39: A correspondence between (0 ..∞) and (0 .. 1).
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Figure 5, for question II.1.42: A correspondence between R and (0 .. 1).

II.1.39
(a) One is 𝑓 (𝑥) = 2𝑥 . This map is one-to-one because if 𝑓 (𝑥) = 𝑓 (𝑥) then 2𝑥 = 2𝑥 and so 𝑥 = 𝑥 . This map is

onto because where 0 < 𝑦 < 2, the number 𝑥 = 𝑦/2 has the properties that 𝑓 (𝑥) = 𝑦 and 0 < 𝑥 < 1.
(b) One is 𝑓 (𝑥) = (𝑏 − 𝑎) · 𝑥 + 𝑎. Note that 𝑓 : (0 .. 1) → (𝑎 .. 𝑏) since if 0 < 𝑥 < 1 then multiplying by 𝑏 − 𝑎

gives 0 < 𝑥 < (𝑏 − 𝑎) (the <’s maintain their direction because 𝑎 < 𝑏), and adding 𝑎 gives 𝑎 < 𝑥 < 𝑏.
Further, this function is one-to-one: because 𝑏 − 𝑎 ≠ 0 this line does not have slope 0 and so the function
passes the horizontal line test (for an algebraic argument, start with 𝑓 (𝑥) = 𝑓 (𝑥), subtract 𝑎 and divide
by 𝑏 − 𝑎, and conclude that 𝑥 = 𝑥). Finally, to show that this function is onto, fix 𝑦 ∈ (𝑎 .. 𝑏). Note that
𝑓 (𝑥) = 𝑦 where 𝑥 = (𝑦 − 𝑎)/(𝑏 − 𝑎). What remains is to check that 𝑥 ∈ (0 .. 1): starting from 𝑎 < 𝑦 < 𝑏,
subtract 𝑎 and divide by 𝑏 − 𝑎 to get 0 < (𝑦 − 𝑎)/(𝑏 − 𝑎) < 1 (as earlier, note that the <’s maintain their
direction because 𝑏 − 𝑎 > 0).

(c) One is 𝑓 (𝑥) = 𝑥 + 𝑎. This function is one-to-one because 𝑓 (𝑥) = 𝑓 (𝑥) implies that 𝑥 + 𝑎 = 𝑥 + 𝑎 and so
𝑥 = 𝑥 . It is onto because if 𝑦 ∈ (𝑎 ..∞) then 𝑦 = 𝑓 (𝑥) where 𝑥 = 𝑦 − 𝑎 (and 𝑥 ∈ (0 ..∞)).

(d) Similar triangles gives 𝑥/(𝑥 + 1) = 𝑓 (𝑥)/1. Figure 4 on page 42 shows that it is a correspondence because
for each 𝑦 ∈ (0 .. 1), the horizontal line at that height intercepts the function’s graph in exactly one point.

II.1.40 Consider the function 𝑓 : N → 𝑆 given by 𝑓 (𝑚) =
𝑚 + 2√2 = 21/(𝑚+2) . It is one-to-one because if

𝑓 (𝑚) = 𝑓 (�̂�) then 21/(𝑚+2) = 21/(�̂�+2) . Take the logarithm of both sides lg(21/(𝑚+2) ) = lg(21/(�̂�+2) ) to get
(1/(𝑚 + 2)) · lg(2) = (1/(�̂� + 2)) · lg(2), and so 1/(𝑚 + 2) = 1/(�̂� + 2). Thus𝑚 = �̂�.

This function is onto because if 𝑦 ∈ 𝑆 then 𝑦 = 21/𝑛 for some 𝑛 ∈ N with 𝑛 ≥ 2. Thus, 𝑦 = 21/(𝑥+2) = 𝑓 (𝑥)
for 𝑥 ∈ N.

II.1.41 Recall that just as every natural number has a finite decimal representation, and that this representation
is unique, so also every natural number has a unique binary representation.

(a) View each string of bits 𝜎 starting with 1 as the binary representation of a natural number 𝑛. Then 𝑓 : 𝐵 → N
given by 𝜎 ↦→ 𝑛 − 1 is clearly a correspondence.

(b) Prefix each string 𝜏 ∈ B∗ with 1, so 𝜎 = 1⌢𝜏 . Now the prior argument applies.
II.1.42 The tangent function is a correspondence from (−𝜋/2 .. 𝜋/2) to R so its inverse, arctangent, is a

correspondence in the other direction. Thus, 𝑔(𝑥) = (arctan(𝑥) + (𝜋/2))/𝜋 gives a correspondence from R to
(0 .. 1). See Figure 5 on page 42, which shows that 𝑔 is one-to-one and onto because for each element 𝑦 of the
codomain (0 .. 1), the horizontal line at 𝑦 intercepts the function’s graph in exactly one point.

II.1.43
(a) The map 𝑔 : 𝐼0 → 𝐼1 given by 𝑔(𝑥) = 𝑥 · (𝑟1/𝑟0) is onto because if 𝑦 ∈ 𝐼1 = [0 .. 2𝜋𝑟1) then 𝑦 = 𝑔(𝑥) where

𝑥 = 𝑦 · (𝑟0/𝑟1), and 0 ≤ 𝑦 < 2𝜋𝑟1 implies that 0 ≤ 𝑦 · (𝑟0/𝑟1) < 2𝜋𝑟0. To show that this map is one-to-one
suppose 𝑔(𝑥) = 𝑔(𝑥). Then 𝑥 · (𝑟1/𝑟0) = 𝑥 · (𝑟1/𝑟0) and so 𝑥 = 𝑥 .

(b) The map 𝑔(𝑥) = 𝑎 + 𝑥 · (𝑏 −𝑎) is a correspondence. To verify that it is one-to-one, suppose that 𝑔(𝑥) = 𝑔(𝑥)
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so that 𝑎 +𝑥 · (𝑏 −𝑎) = 𝑎 +𝑥 · (𝑏 −𝑎). Subtract 𝑎 and divide by 𝑏 −𝑎 to conclude that 𝑥 = 𝑥 . This map is also
onto because 𝑦 ∈ [𝑎 .. 𝑏) is the image of 𝑥 = (𝑦 − 𝑎)/(𝑏 − 𝑎), and 𝑎 ≤ 𝑦 < 𝑏 implies that 0 ≤ 𝑦 − 𝑎 < 𝑏 − 𝑎,
and so 0 ≤ (𝑦 − 𝑎)/(𝑏 − 𝑎) < 1.

(c) By the prior item there are correspondences 𝑓 : [0 .. 1) → [𝑎 .. 𝑏) and 𝑔 : [0 .. 1) → [𝑐 .. 𝑑). Then the
composition 𝑔 ◦ 𝑓 −1 has domain [𝑎 .. 𝑏), codomain [𝑐 .. 𝑑), and is a correspondence.
(This is also easy to check by considering the map 𝑓 : [𝑎 .. 𝑏) → [𝑐 .. 𝑑) given by 𝑓 (𝑥) = 𝑐 + (𝑥 − 𝑎) · (𝑑 −

𝑐)/(𝑏 − 𝑎).)
II.1.44 Suppose for contradiction that 𝑓 is not one-to-one. Then there are 𝑥, 𝑥 ∈ 𝐷 such that 𝑓 (𝑥) = 𝑓 (𝑥) but
𝑥 ≠ 𝑥 . But one or the other of these two is smaller; without loss of generality suppose that 𝑥 < 𝑥 . Then 𝑥 < 𝑥
but 𝑓 (𝑥) = 𝑓 (𝑥), which contradicts that the function is strictly increasing.

Yes, the same argument works for 𝐷 ⊆ N.
II.1.45
(a) Let E = {2𝑛

�� 𝑛 ∈ N}. The natural correspondence is 𝑓 : N → E given by 𝑛 ↦→ 2𝑛. This map is one-to-one
because if 𝑓 (𝑛) = 𝑓 (𝑛) then 2𝑛 = 2𝑛 and so 𝑛 = 𝑛. This map is onto because if 𝑦 ∈ E then 𝑦 = 2𝑘 for
some 𝑘 ∈ N and setting 𝑛 = 𝑘 gives that 𝑦 = 𝑓 (𝑛).

(b) Let𝑇 = {𝑛 ∈ N
�� 𝑛 > 4}. Consider 𝑓 : N → 𝑇 given by 𝑛 ↦→ 𝑛+5. This is one-to-one because if 𝑓 (𝑛) = 𝑓 (𝑛)

then 𝑛 + 5 = 𝑛 + 5 and 𝑛 = 𝑛. It is onto because if 𝑦 ∈ 𝑇 then 𝑦 = 𝑓 (𝑥) where 𝑥 = 𝑦 − 5, and observe that
𝑦 ∈ 𝑇 implies that 𝑦 − 5 ∈ N. So 𝑓 is a correspondence.

II.1.46 We will show that no matter what is the cardinality of the finite set 𝑆 ⊂ N, there is a correspondence
𝑓 : N → N − 𝑆 . We will use induction, at each step taking the finite set to have one element more than at the
prior step.

Before the proof we give an illustration. Suppose that we have a five-element set 𝑆5 = {2, 5, 8, 10, 11} and
this correspondence 𝑓5 : N → N − 𝑆5.

𝑛 0 1 2 3 4 5 6 7 . . .
𝑓5(𝑛) 0 1 3 4 6 7 9 12 . . .

Now we add a sixth element, so let 𝑆 = 𝑆5 ∪ {9}. We want a correspondence 𝑓 : N → N − 𝑆 . The natural
approach is find that 9 = 𝑓5(6) and define 𝑓 in this way.

𝑓 (𝑛) =
{
𝑓5(𝑛) – if 𝑛 < 6
𝑓5(𝑛 + 1) – if 𝑛 > 6

𝑛 0 1 2 3 4 5 6 . . .
𝑓 (𝑛) 0 1 3 4 6 7 12 . . .

The induction argument’s base case is 𝑆 = ∅ and here the identity function 𝑓 (𝑛) = 𝑛 is clearly a one-to-one
and onto map from N to N − 𝑆 .

For the inductive step take 𝑘 ∈ N, assume that the statement is true for any subset of N whose cardinality
is less than or equal to 𝑘, and consider 𝑆 ⊂ N with |𝑆 | = 𝑘 + 1. Fix any 𝑠 ∈ 𝑆 and let 𝑆𝑘 = 𝑆 − {𝑠 }. By
the inductive hypothesis there is a correspondence 𝑓𝑘 : N → N − 𝑆𝑘 . Set 𝑛 to be such that 𝑓𝑘 (𝑛) = 𝑠 and
define 𝑓 : N → N − 𝑆 in this way.

𝑓 (𝑛) =
{
𝑓𝑘 (𝑛) – if 𝑛 < 𝑛

𝑓𝑘 (𝑛 + 1) – if 𝑛 > 𝑛

The function 𝑓 : N → N − 𝑆 is one-to-one because it is a restriction of 𝑓𝑘 , which is a one-to-one map from N
to N − 𝑆 . Similarly, 𝑓 is onto because 𝑓𝑘 is onto, from N to N − 𝑆𝑘 . Thus 𝑓 is a correspondence between N
and N − 𝑆 , and so the two have the same cardinality.

II.1.47
(a) The inverse function 𝑓 −1 : 𝐶 → 𝐷 is given by 𝑓 −1(Spades) = 0, 𝑓 −1(Hearts) = 1, 𝑓 −1(Clubs) = 2, and

𝑓 −1(Diamonds) = 3. By inspection it is both one-to-one and onto.
(b) Suppose that 𝑓 : 𝐷 → 𝐶 is a correspondence. Consider the binary relation, the set of ordered pairs,

𝑓 −1 = { ⟨𝑦, 𝑥⟩
�� 𝑓 (𝑥) = 𝑦 }. We will show that 𝑓 −1 is a function, which means that we will show that it is

well-defined, that each input 𝑦 ∈ 𝐶 is associated with one and only one output 𝑥 ∈ 𝐷.
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Figure 6, for question II.1.49: A finite function’s domain has at least as many elements as its range.

Each 𝑦 ∈ 𝐶 is associated with at least one 𝑥 because the function 𝑓 is onto. Each 𝑦 ∈ 𝐶 is associated with
at most one 𝑥 because 𝑓 is one-to-one.

(c) To show that 𝑓 −1 : 𝐶 → 𝐷 is one-to-one suppose that 𝑓 −1(𝑦) = 𝑓 −1(𝑦). Then there is a 𝑥 ∈ 𝐷 such that
𝑓 (𝑥) = 𝑦 and 𝑓 (𝑥) = 𝑦. This contradicts that 𝑓 is a function, because a function must be well-defined.
To show that 𝑓 −1 is onto consider a member of its codomain, 𝑥 ∈ 𝐷. By the definion of a function there

is a 𝑦 ∈ 𝐶 with 𝑓 (𝑥) = 𝑦, and then 𝑥 = 𝑓 −1(𝑦).
II.1.48 One direction is straightforward: no finite set has the same cardinality as a proper subset of itself, by

Lemma 1.5.
For the other direction, fix an infinite set 𝑆 , to show that it has the same cardinality as a proper subset

of itself. (Remark: as elsewhere, we feel free here to use the Axiom of Choice.) Choose any element 𝑠0 ∈ 𝑆 .
Then 𝑆 − {𝑠0 } is not empty (or else 𝑆 is not infinite) so choose 𝑠1 ∈ 𝑆 − {𝑠0 }. Continuing in this way gives
{𝑠0, 𝑠1, 𝑠2 ... }. Then this is a correspondence from 𝑆 to 𝑆 − {𝑠0 }.

𝑓 (𝑥) =
{
𝑠𝑖+1 – if 𝑥 = 𝑠𝑖 for some 𝑖 ∈ N
𝑥 – otherwise

II.1.49 Denote the function 𝑓 : 𝐷 → 𝐶, and assume that 𝐷 is finite.
(a) We will argue that the statement |dom(𝑓 ) | ≥ |ran(𝑓 ) | holds for all functions on finite domains by induction

on the number of elements in 𝐷.
The base step is that the domain has no elements at all, dom(𝑓 ) = ∅. The only function with an

empty domain is the empty function. The empty function’s range is empty, ran(𝑓 ) = ∅, and thus
|dom(𝑓 ) | ≥ |ran(𝑓 ) |.

For the inductive step, fix 𝑘 ∈ N, assume that the statement is true for any function with a domain having
0 elements, or 1 elements, . . . or 𝑘 elements, and consider the |𝐷 | = 𝑘 + 1 case.

Because 𝑘 + 1 > 0 there is a 𝑑 ∈ 𝐷. Let �̂� = 𝐷 − {𝑑 } and consider the restriction 𝑓 ↾�̂� : �̂� → 𝐶. Its
domain has 𝑘 many elements, so the induction hypothesis applies, giving |dom(𝑓 ↾�̂� ) | ≥ |ran(𝑓 ↾�̂� ) |

To add back the element 𝑑 there are two cases; see Figure 6 on page 44. The first case, on the left in the
figure, is that the range of 𝑓 is the same as the range of the restriction 𝑓 ↾�̂� . The other case is that the range
of 𝑓 has one additional element. In either case, adding 1 to both sides ends the argument.

|dom(𝑓 ) | = |dom(𝑓 ↾�̂� ) | + 1 ≥ |ran(𝑓 ↾�̂� ) | + 1 ≥ |ran(𝑓 ) |

(b) Assume that the function is one-to-one. We will show that the domain and range have the same size by
induction on the number of elements in the domain. This argument is like the prior item’s except that it has
only the single case shown on the right of Figure 6 on page 44.

The base step is that the function’s domain has no elements at all, dom(𝑓 ) = ∅. This function’s range is
empty and |dom(𝑓 ) | = |ran(𝑓 ) |.

For the inductive step, fix 𝑘 ∈ N, assume that the domain and range have the same size for any one-to-one
function where the domain 𝐷 has 0 elements, or 1 element, . . . or 𝑘 elements, and suppose that |𝐷 | = 𝑘 + 1.

Because 𝑘 + 1 > 0 there is a 𝑑 ∈ 𝐷. Let �̂� = 𝐷 − {𝑑 }. Consider the restriction function 𝑓 ↾�̂� : �̂� → 𝐶.
The function 𝑓 is one-to-one so the restriction is also one-to-one. The induction hypothesis applies, giving
|dom(𝑓 ↾�̂� ) | = |ran(𝑓 ↾�̂� ) |. Adding 1 to both sides gives |dom(𝑓 ) | = |dom(𝑓 ↾�̂� ) | + 1 = |ran(𝑓 ↾�̂� ) | + 1 =
|ran(𝑓 ) |.
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Figure 7, for question II.1.49: A finite function that is not one-to-one has more elements in its domain than its
range.

(c) Figure 7 on page 45 illustrates the argument.
For the proof, let 𝑓 be a function with a finite domain that is not one-to-one. Fix some numering of its

domain, 𝐷 = {𝑑0, 𝑑1, ... 𝑑𝑛 }. Consider
�̂� = {𝑑𝑖 ∈ 𝐷

�� 𝑖 is minimal among the indices 𝑗 where 𝑓 (𝑑 𝑗 ) = 𝑓 (𝑑𝑖) }
(in the illustration, 𝑓 (𝑑0) = 𝑓 (𝑑1) and 𝑓 (𝑑2) = 𝑓 (𝑑3)) so this is the set {𝑑0, 𝑑2 }).

Because 𝑓 is not one-to-one, �̂� is a proper subset of 𝐷. The restriction 𝑓 ↾�̂� : �̂� → 𝐶 is one-to-one. By
the prior item, its range has the same number of elements as its domain. The range of 𝑓 is the same as
the range of 𝑓 ↾�̂� . But the domain of 𝑓 has more elements than the domain of 𝑓 ↾�̂� . Thus the domain of 𝑓
contains more elements than its range.

(d) Let 𝐷 and 𝐶 be finite sets. If there is a correspondence 𝑓 : 𝐷 → 𝐶 then the prior items show that the sets
have the same number of elements.

For the other direction assume that the two have the same number of elements. Fix an ordering of
each, 𝐷 = {𝑑0, ... 𝑑𝑘 } and 𝐶 = {𝑐0, ... 𝑐𝑘 }. Then the map 𝑓 : 𝐷 → 𝐶 defined by 𝑓 (𝑑𝑖) = 𝑐𝑖 is clearly a
correspondence.

II.2.18 The table alternates between column 0 and column 1.
𝑛 ∈ N 6 7 8 9 10 11 12

𝑓 (𝑛) ∈ {0, 1} × N ⟨0, 3⟩ ⟨1, 3⟩ ⟨0, 4⟩ ⟨1, 4⟩ ⟨0, 5⟩ ⟨1, 5⟩ ⟨0, 6⟩
The formulas are 𝑥 (𝑛) = (1 + (−1)𝑛+1)/2 and 𝑦 (𝑛) = ⌊𝑛/2⌋.

II.2.19
(a) The pair before ⟨50, 50⟩ is ⟨49, 51⟩ and the pair after is ⟨51, 49⟩. As a check they correspond to

cantor(50, 50) = 5 100, cantor(49, 51) = 5 099, and cantor(51, 49) = 5 101.
(b) The pair before ⟨100, 4⟩ is ⟨99, 5⟩ and the pair after is ⟨101, 3⟩. As a check, the three correspond to

cantor(100, 4) = 5 560, cantor(99, 5) = 5 559, and cantor(101, 3) = 5 561.
(c) The pair before ⟨4, 100⟩ is ⟨3, 101⟩ and the pair after is ⟨5, 99⟩. The three give cantor(100, 4) = 5 465,

cantor(99, 5) = 5 463, and cantor(5, 99) = 5 465.
(d) Before ⟨0, 200⟩ is ⟨199, 0⟩ while after is ⟨1, 199⟩. These three correspond to cantor(0, 200) = 20 100,

cantor(199, 0) = 20 099, and cantor(1, 199) = 20 101.
(e) Before ⟨200, 0⟩ is ⟨199, 1⟩while after is ⟨0, 201⟩. They correspond to cantor(200, 0) = 20 300, cantor(199, 1) =

20 299, and cantor(0, 201) = 20 301.
II.2.20
(a) The correspondence 𝑓𝑇 : N → 𝑇 is given by 𝑓𝑇 (𝑛) = 2𝑛. The correspondence 𝑓𝐹 : N → 𝑇 is given by

𝑓𝐹 (𝑚) = 5𝑚. Checking that each is one-to-one and onto is easy.
𝑛 ∈ N 0 1 2 3 4 5 6 7 8 9

𝑓𝑇 (𝑛) ∈ 𝑇 0 2 4 6 8 10 12 14 16 18
𝑓𝐹 (𝑛) ∈ 𝐹 0 5 10 15 20 25 30 35 40 45

(b) This correspondence gives outputs in ascending order.
𝑛 ∈ N 0 1 2 3 4 5 6 7 8 9

𝑓 (𝑛) ∈ 𝑇 ∪ 𝐹 0 2 4 5 6 8 10 12 14 15
II.2.21 This gives the first few associations for a function 𝑓 : N → N × {0, 1}.
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(define (nextpair p)
(let ((x (first p))

(y (second p)))
(if (= y 0)

(list 0 (+ x 1))
(list (+ x 1) (- y 1)))))

Figure 8, for question II.2.25: Racket code that inputs a pair, as a list, and outputs the next one.

𝑛 0 1 2 3 4 5 . . .
𝑓 (𝑛) ⟨0, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩ ⟨1, 1⟩ ⟨2, 0⟩ ⟨2, 1⟩ . . .

From that table a description sufficient for computing 𝑓 is easy.

𝑓 (𝑛) =
{
⟨⌊𝑛/2⌋, 0⟩ – if 𝑛 is even
⟨⌊𝑛/2⌋, 1⟩ – if 𝑛 is odd

That gives 𝑓 (0) = ⟨0, 0⟩, 𝑓 (10) = ⟨5, 0⟩, 𝑓 (100) = ⟨50, 0⟩, and 𝑓 (101) = ⟨50, 1⟩.
To go from the pair to the number we need the inverse, 𝑓 −1(𝑖, 𝑗) = 2𝑖 + 𝑗 . Then 𝑓 −1(2, 1) = 5,

𝑓 −1(20, 1) = 41, and 𝑓 −1(200, 1) = 401.
II.2.22 This gives the first few of the associations.

Number 0 1 2 3 4 5 6 7 8 . . .
Pair ⟨0, 0⟩ ⟨1, 0⟩ ⟨2, 0⟩ ⟨0, 1⟩ ⟨1, 1⟩ ⟨2, 1⟩ ⟨0, 2⟩ ⟨1, 2⟩ ⟨2, 2⟩ . . .

The formula for the top to bottom association is

𝑓 (𝑛) =

⟨0, ⌊𝑛/3⌋⟩ – if 3 divides 𝑛
⟨1, ⌊𝑛/3⌋⟩ – if 𝑛 mod 3 is 1
⟨2, ⌊𝑛/3⌋⟩ – if 𝑛 mod 3 is 2

(in short: 𝑓 (𝑛) = ⟨𝑛 mod 3, ⌊𝑛/3⌋⟩). Thus 𝑓 (0) = ⟨0, 0⟩, 𝑓 (10) = ⟨1, 3⟩, 𝑓 (100) = ⟨1, 33⟩, and 𝑓 (1 000) =
⟨1, 333⟩. The formula for the bottom to top function 𝑓 −1 : {0, 1, 2} × N → N is also easy, 𝑓 −1(𝑥,𝑦) = 𝑥 + 3𝑦.
With that, 𝑓 −1(1, 2) = 7, 𝑓 −1(1, 20) = 61, and 𝑓 −1(1, 200) = 601.

II.2.23 This is the initial part of an enumeration 𝑓 of {0, 1, 2, 3} × N.
Number 0 1 2 3 4 5 6 7 8 . . .

Pair ⟨0, 0⟩ ⟨1, 0⟩ ⟨2, 0⟩ ⟨3, 0⟩ ⟨0, 1⟩ ⟨1, 1⟩ ⟨2, 1⟩ ⟨3, 1⟩ ⟨0, 2⟩ . . .
The formula for the top to bottom association is 𝑓 (𝑛) = ⟨𝑛 mod 4, ⌊𝑛/4⌋⟩, so 𝑥 (𝑛) = 𝑛 mod 4 and 𝑦 (𝑛) =
⌊𝑛/4⌋.

In general, for 𝑘 ∈ N an enumeration 𝑓 of {0, 1, 2, ... 𝑘 } × N is 𝑓 (𝑛) = ⟨𝑛 mod (𝑘 + 1), ⌊𝑛/(𝑘 + 1)⌋⟩.
II.2.24 Example 2.4’s table shows up to 𝑛 = 6.

Number 7 8 9 10 11 12 13 14 15 16
Pair ⟨1, 2⟩ ⟨2, 1⟩ ⟨3, 0⟩ ⟨0, 4⟩ ⟨1, 3⟩ ⟨2, 2⟩ ⟨3, 1⟩ ⟨4, 0⟩ ⟨0, 5⟩ ⟨1, 4⟩

II.2.25 One way to compute this function is by brute force. Given 𝑛, a program can generate the pairs in
ascending order ⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩, ⟨0, 2⟩, . . . , keeping count, until it generates the matching one. Figure 8
on page 46 has a routine that from an input pair, gives the next one.

II.2.26 Corollary 2.13 gives that, because the set 𝐴 − 𝐵 is a subset of 𝐴, it is countable. Similarly 𝐵 −𝐴 ⊆ 𝐵 is
countable. Then, by the same result, their union is also countable.

II.2.27 Where 𝑆 = {𝑎 + 𝑏𝑖
�� 𝑎, 𝑏 ∈ Z}, obviously the map 𝑔 : Z × Z → 𝑆 given by 𝑔(𝑎, 𝑏) = 𝑎 + 𝑏𝑖 is a

correspondence. Lemma 2.9 says that Z × Z is countable so there is a correspondence 𝑓 : N → Z × Z. Then
the composition 𝑔 ◦ 𝑓 : N → 𝑆 is a correspondence.

II.2.28 Below are the pairs in ascending order along with the resulting associated rational number.
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𝑛 pairs 𝑓 (𝑛) ∈ Q
0 ⟨0, 0⟩, ⟨0, 1⟩ 0
1 ⟨1, 0⟩, ⟨0, 2⟩, ⟨1, 1⟩ 1
2 ⟨2, 0⟩, ⟨0, 3⟩, ⟨1, 2⟩ 1/2
3 ⟨2, 1⟩ 2
4 ⟨3, 0⟩, ⟨0, 4⟩, ⟨1, 3⟩ 1/3
5 ⟨2, 2⟩, ⟨3, 1⟩ 3
6 ⟨4, 0⟩, ⟨0, 5⟩, ⟨1, 4⟩ 1/4
7 ⟨2, 3⟩ 2/3
8 ⟨3, 2⟩ 3/2
9 ⟨4, 1⟩ 4

10 ⟨5, 0⟩, ⟨0, 6⟩, ⟨1, 5⟩ 1/5
11 ⟨2, 4⟩, ⟨3, 3⟩, ⟨4, 2⟩, ⟨5, 1⟩ 5

II.2.29 Here is an onto map from N to Q. Given a natural number input 𝑛, factor out the first three primes to
get 𝑛 = 2𝑒23𝑒35𝑒5 · 𝑘 where 𝑘 is not divisible by 2, 3, or 5. If 𝑒2 is odd then the output is −𝑒3/(𝑒5 + 1) while if
𝑒2 is even then the output is 𝑒3/(𝑒5 + 1).

II.2.30
(a) We use Lemma 2.12. Define 𝑓 : 𝑁 → 𝑆 by

𝑓 (𝑥) =
{
𝑥 – if 𝑥 ∉ 𝐴

𝑠 – if 𝑥 ∈ 𝐴

where 𝑠 is an element of 𝑆 −𝑇 (there must be such an element because 𝑆 is infinite while 𝑇 ⊆ is finite and
so they are unequal). Clearly 𝑓 is onto.

(b) The set 𝑆 −𝑇 cannot be finite, or else 𝑇 ∪ (𝑆 −𝑇 ) = 𝑆 would be finite.
(c) Yes, N is countably infinite and the even numbers 2N ⊆ N is also infinite but N − 2N is infinite.
II.2.31 An infinite set contains some 𝑎0. Because it is infinite it has more than one element so it also contains

some 𝑎1 ≠ 𝑎0. Proceding in this way we get the countably infinite set {𝑎0, 𝑎1, ... }.
II.2.32 Consider 𝑏. The set 𝑆𝑁 of sequences that are equivalent to 𝑏 because the two are equal from 𝑁 on is
finite. Then the total number of equivalent sequences is the union of the finite sets 𝑆𝑁 over the countably
many 𝑁 .

II.2.33
(a) The map 𝑓 : Z𝑛+1 → Z𝑛 [𝑥] given by 𝑓 (𝑎0, ... 𝑎𝑛) = 𝑎𝑛𝑥𝑛 + · · · + 𝑎1𝑥 + 𝑎0 is clearly a correspondence. Since

Corollary 2.10 says that there is a correspondence 𝑔 : N → Z𝑛+1, we have a correspondence 𝑓 ◦ 𝑔 from N to
Z𝑛 [𝑥].

(b) The set Z[𝑥] is the union of the Z𝑖 [𝑥] over all 𝑖 ∈ N, and the union of countably many countable sets is
countable.

II.2.34 Let 𝑓 : N → 𝑆 be a correspondence. Where we write 𝑓 (𝑛) as 𝑠𝑛, the map 𝑔 : 𝑆 → 𝑆 given by 𝑠𝑛 → 𝑠𝑛+1
is one-to-one but not onto.

II.2.35 We will use that the function cantor : N2 → N is a correspondence.
To verify that cantor3 is onto, fix a codomain element 𝑛 ∈ N. Because cantor is onto there is a pair

⟨𝑤, 𝑧⟩ ∈ N2 such that cantor(𝑤, 𝑧) = 𝑛. Also because cantor is onto, there is a pair ⟨𝑥,𝑦⟩ ∈ N2 so that
cantor(𝑥,𝑦) = 𝑤 . Then cantor3(𝑥,𝑦, 𝑧) = cantor(cantor(𝑥,𝑦), 𝑧)) = 𝑛.

What’s left is to verify that cantor3 is one-to-one. Suppose that cantor3(𝑎0, 𝑏0, 𝑐0) = cantor3(𝑎1, 𝑏1, 𝑐1).
Then cantor(cantor(𝑎0, 𝑏0), 𝑐0) = cantor(cantor(𝑎1, 𝑏1), 𝑐1). The function cantor is one-to-one so the prior
sentence implies that cantor(𝑎0, 𝑏0) = cantor(𝑎1, 𝑏1) and 𝑐0 = 𝑐1. Again applying that cantor is one-to-one
gives that 𝑎0 = 𝑎1, 𝑏0 = 𝑏1, along with the 𝑐0 = 𝑐1.

II.2.36 A way to be confident about these is to write a small script.
(a) 𝑐3(0, 0, 0) = 0, 𝑐3(1, 2, 3) = 172, 𝑐3(3, 3, 3) = 381
(b) 𝑐3(0, 0, 0) = 0, 𝑐3(0, 0, 1) = 1, 𝑐3(1, 0, 0) = 2, 𝑐3(0, 1, 0) = 3, 𝑐3(1, 0, 1) = 4
(c) 𝑐3(𝑥,𝑦, 𝑧) = 𝑥 + [(𝑦 + 𝑧 + 1) (𝑦 + 𝑧) + 2𝑥 + 2𝑦 + 2] · [(𝑦 + 𝑧 + 1) (𝑦 + 𝑧) + 2𝑥 + 2𝑦]/8
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II.2.37 Plug 𝑥 = 𝑦 = 𝑖 into cantor(𝑥,𝑦) = 𝑥 +(𝑥 +𝑦) (𝑥 +𝑦+1)/2 to get cantor(𝑖, 𝑖) = 𝑖+(2𝑖) (2𝑖+1)/2 = 2𝑖2+2𝑖.
That’s 2𝑖 (𝑖 + 1). It is obviously a multiple of 2 but because the numbers 𝑖 and 𝑖 + 1 are consecutive, one of
them contributes another factor of 2. Hence the entire expression is a multiple of 4.

II.2.38 Let 𝑆0, 𝑆1, and 𝑆2 be countably infinite and suppose that 𝑓0 : N → 𝑆0, 𝑓1 : N → 𝑆1 and 𝑓2 : N → 𝑆2 are
onto. Then 𝑓 : N → 𝑆0 ∪ 𝑆1 ∪ 𝑆2 given by

𝑓 (𝑛) =

𝑓0(𝑛/3) – if 𝑛 is a multiple of 3, that is, 𝑛 mod 3 = 0
𝑓1((𝑛 − 1)/3) – if 𝑛 leaves a remainder of 1 on division by 3, so 𝑛 mod 3 = 1
𝑓2((𝑛 − 2)/3) – if 𝑛 leaves a remainder of 2 on division by 3, so 𝑛 mod 3 = 2

(briefly, 𝑓 (𝑛) = 𝑓𝑛 mod 3(⌊𝑛/3⌋)) and illustrated by

𝑛 0 1 2 3 4 5 6 ...

𝑓 (𝑛) 𝑓0(0) 𝑓1(0) 𝑓2(0) 𝑓0(1) 𝑓1(1) 𝑓2(1) 𝑓3(0) ...

is clearly onto. Lemma 2.12 applies, and so the union is countable.
II.2.39 Think of a function 𝑓 : {0, 1} → N as a pair ⟨𝑓 (0), 𝑓 (1)⟩. That is, there is a natural correspondence

between {0, 1} and N × N, which is countable.
II.2.40 Because 𝑆 is countable, Lemma 2.12 says that either it is empty or there is an onto function 𝑔 : N → 𝑆 .
If 𝑆 is empty then the range set is empty, so it is countable. Otherwise, the function 𝑓 ◦ 𝑔 : N → ran(𝑓 ) is
onto.

II.2.41 The cross product of two finites sets is finite because the number of elements in the cross product equals
the product of the number of elements in the sets.

Next we do a finite set, 𝑆 = {𝑠0, ... 𝑠𝑚−1 }, and a countably infinite set, 𝑇 = {𝑡0, 𝑡1, ... }. Consider 𝑆 ×𝑇 (the
𝑇 × 𝑆 argument is similar). Enumerate it row-wise, so that where 𝑛 = 𝑑 ·𝑚 + 𝑟 is the usual quotient-remainder
relationship then 𝑓 (𝑛) = ⟨𝑠𝑟 , 𝑡𝑑⟩. (This initial portion of the𝑚 = 3 case

𝑛 0 1 2 3 4 5 6 ...
𝑓 (𝑛) ⟨0, 0⟩ ⟨1, 0⟩ ⟨2, 0⟩ ⟨0, 1⟩ ⟨1, 1⟩ ⟨2, 1⟩ ⟨0, 2⟩ ...

illustrates that an equivalent formula is 𝑓 (𝑛) = ⟨𝑠𝑛 mod𝑚, 𝑡⌊𝑛/𝑚⌋⟩.) Clearly this function is a correspondence.
II.2.42
(a) The set of length 5 strings Σ5 = { ⟨𝑠0, ... 𝑠4⟩

�� 𝑠𝑖 ∈ Σ } is the cross product of five finite sets, each with 40
characters. So Σ5 has 405 many members. (By the way, 405 = 102 400 000.) Thus it is countable.

(b) The set Σ0 ∪ Σ1 ∪ · · · ∪ Σ5 is the union of finitely many finite sets. So it is finite and therefore countable.
(c) The set Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the union of countably many finite sets. By Corollary 2.13 it is countable.
(d) A program is a finite string. So the set of all programs is a subset of Σ∗. Corollary 2.13 says that this set is

countable.
II.2.43
(a) These are easy to calculate by hand or with a script.

𝑚 = 0 𝑚 = 1 𝑚 = 2 𝑚 = 3
𝑛 = 0 0 2 4 6
𝑛 = 1 1 5 9 13
𝑛 = 2 3 11 19 27
𝑛 = 3 7 23 39 55

(b) Every natural number greater than zero is a unique product of primes, 2𝑒23𝑒3 · · · 𝑝𝑒𝑝 . So every such number
is the product of a power of two, 2𝑛, with an odd number, 2𝑚 + 1, and so corresponds to the pair ⟨𝑛,𝑚⟩.
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Figure 9, for question II.2.44: Cantor’s unpairing function, along with the line where 𝑥 = 1 and 𝑧 = 8.

(c) This table shows that under the box enumeration ⟨3, 4⟩ corresponds with 19.

𝑦 = 4 16 17 18 19 20
𝑦 = 3 9 10 11 12 21
𝑦 = 2 4 5 6 13 22
𝑦 = 1 1 2 7 14 23
𝑦 = 0 0 3 8 15 24

𝑥 = 0 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4

II.2.44
(a) cantor(2, 1) = 8
(b) Solving 8 = 1 + [(1 + 𝑦) (1 + 𝑦 + 1)]/2 leads to the quadratic equation 0 = 𝑦2 − 3𝑥 − 12. The quadratic

formula gives (−3 ±√57)/2, two different solutions, 𝑦 ≈ 2.27 and 𝑦 ≈ −5.27. Figure 9 on page 49 shows
the graph.

II.3.9 Infinite is different than exhaustive. The list 0, 2, 4, ... is infinite but does not exhaust all of the natural
numbers.

II.3.10 The union is not the whole real numbers. It does not include irrational numbers. For instance,
𝜋 = 3.14 ... is not in any of the sets and so is not in the union.

II.3.11 Cantor’s Theorem says that the power set has more elements than the set.
(a) The set {0, 1, 2} has three elements. Its power set has eight.

P ({0, 1, 2}) = { {0, 1, 2}, {0, 1}, {0, 2}, {1, 2}, {0}, {1}, {2}, ∅}
(b) The set {0, 1} has two elements while its power set P ({0, 1}) = { {0, 1}, {0}, {1},∅} has four.
(c) The set {0} only has one element but its power set P ({0}) = { {0},∅} has two.
(d) The empty set has zero elements, while its power set P∅ = {∅} has one.
II.3.12 The definition of ‘≤’ for cardinlaity is that |𝑆 | ≤ |𝑇 | if there is a one-to-one function from 𝑆 to 𝑇 .
(a) The function 𝑓 : 𝑆 → 𝑆 given by 𝑓 (1) = 11, 𝑓 (2) = 12, and 𝑓 (3) = 13 is one-to-one by inspection.
(b) The function 𝑓 : 𝑇 → 𝑇 given by 𝑓 (1) = 11, 𝑓 (2) = 12, and 𝑓 (3) = 13 is one-to-one by inspection.
(c) Again by inspection, the function 𝑓 : 𝑆 → 𝑆 given by 𝑓 (1) = 1, 𝑓 (2) = 3, and 𝑓 (3) = 5 is one-to-one.
(d) The function 𝑓 : E → O given by 𝑓 (𝑥) = 𝑥+1 is a one-to-one function. The verification is easy: 𝑓 (𝑥0) = 𝑓 (𝑥1)

implies that 𝑥0 + 1 = 𝑥1 + 1, and so 𝑥0 = 𝑥1.
II.3.13 The two differ on the set from which the elements are drawn.
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(a) Countable; this is the set { ... ,−2,−1, 0, 1}, which is a subset of the natural numbers.
(b) Uncountable; it is the set of real numbers (−∞ .. 2). (This set corresponds to R under the map 𝑥 ↦→

ln(−1 · (𝑥 − 2)).)
II.3.14
(a) This set is uncountable. (It has at least the same cardinality as (1 .. 4) ⊂ R since the embedding map is

one-to-one. This interval has the same cardinality as R because 𝑥 ↦→ tan( (𝜋/3) · (𝑥 − 1) − (𝜋/2) ) is a
correspondence.)

(b) Countable. (Because it is given as a subset of the naturals, this set is {1, 2, 3}, which is finite.)
(c) Uncountable. (The function 𝑥 ↦→ ln(𝑥 − 5) is a correspondence with R.)
(d) Countable. (Any subset of N is countable.)
II.3.15 For the two element set 𝐴2 = {0, 1}, the power set, P (𝐴2) = { {0, 1}, {0}, {1}, { } }, has four
elements. Making a function from 𝐴2 to P (𝐴2) involves picking where to send 0 and where to send 1. So
there are 4 · 4 = 16 different functions.

function 𝑓𝑖 𝑓𝑖 (0) 𝑓𝑖 (1)
𝑓0 { } { }
𝑓1 { } {0}
𝑓2 { } {1}
𝑓3 { } {0, 1}
𝑓4 {0} { }
𝑓5 {0} {0}
𝑓6 {0} {1}
𝑓7 {0} {0, 1}

function 𝑓𝑖 𝑓𝑖 (0) 𝑓𝑖 (1)
𝑓8 {1} { }
𝑓9 {1} {0}
𝑓10 {1} {1}
𝑓11 {1} {0, 1}
𝑓12 {0, 1} { }
𝑓13 {0, 1} {0}
𝑓14 {0, 1} {1}
𝑓15 {0, 1} {0, 1}

The three element set 𝐴3 has |P (𝐴3) | = 8. The number of functions from 𝐴3 to P (𝐴3) is 83 = 512.
In general, where |𝐴| = 𝑛 the power set has |P (𝐴3) | = 2𝑛-many elements. The number of functions is
(2𝑛)𝑛 = 2(𝑛2 ) . (As a check, 𝑛 = 2 gives 24 = 16 and 𝑛 = 3 gives 29 = 512.)

II.3.16
(a) These are the functions from 𝑆 to 𝑇 .

function 𝑓𝑖 𝑓𝑖 (0) 𝑓𝑖 (1)
𝑓0 10 10
𝑓1 10 11
𝑓2 11 10
𝑓3 11 11

The functions that are one-to-one are 𝑓1 and 𝑓2.
(b) These are the functions from 𝑆 to 𝑇 .

function 𝑓𝑖 𝑓𝑖 (0) 𝑓𝑖 (1)
𝑓0 10 10
𝑓1 10 11
𝑓2 10 12
𝑓3 11 10
𝑓4 11 11

function 𝑓𝑖 𝑓𝑖 (0) 𝑓𝑖 (1)
𝑓5 11 12
𝑓6 12 10
𝑓7 12 11
𝑓8 12 12

The functions that are one-to-one are 𝑓1, 𝑓2, 𝑓3, 𝑓5, 𝑓6, and 𝑓7.
II.3.17
(a) The answer is (iii) since the union of two finite sets is finite. (All of these apply: (ii) countable or uncountable,

(iii) finite, (iv) countable, and (v) finite, countably infinite, or uncountable. The sharpest one, the one that
is most specific, is (iii).)

(b) The sharpest is (iv).
(c) The sharpest is (i).
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(d) The sharpest is (iv). (The intersection could be finite but there are cases where it is countable, such as
𝐴 = N and 𝐵 = R. So that is the sharpest statement.)

II.3.18 The question doesn’t require a proof but here the parenthetical comments give a justification.
(a) They are all possible except for the last one. (An example of (i) and (ii) is id : {0, 1} → {0, 1}. An example

of (iii) and (iv) is id : N → N. Lemma 2.12 rules out (v).)
(b) They are all possible. (An example of (i) and (ii) is id : {0, 1} → {0, 1}. An example of (iii) and (iv) is

id : N → N. An example of (v) is 𝜄 : N → R given by 𝜄 (𝑥) = 𝑥 .)
II.3.19 Theorem 3.6 says that a set’s cardinality is strictly less than that of its power set. So one set with a

cardinality larger than R is P (R).
II.3.20
(a) The set of finite bit strings, B∗, is the union of the sets B𝑘 = { ⟨𝑏0𝑏1 ... 𝑏𝑘−1⟩

�� 𝑘 ∈ N}. The set B𝑘 is finite, it
has 2𝑘 many elements, and so this is a countable union of countable sets.

(b) Suppose that the set of infinite bit strings has an exhaustive enumeration 𝑓0, 𝑓1, ... Let 𝑔 : B → B be given
by 𝑔(0) = 1 and 𝑔(1) = 0. Then the infinite bit string 𝐹 : N → B defined by 𝐹 (𝑖) = 𝑔(𝑓𝑖 (𝑖)) is not equal to
any of the 𝑓𝑖 , which contradicts that the enumeration is exhaustive.

II.3.21 Let 𝑆 and 𝑇 be such that 𝑆 ⊆ 𝑇 . Then the identity function, the map id : 𝑆 → 𝑇 given by id(𝑠) = 𝑠, is
clearly one to one. Then |𝑆 | ≤ |𝑇 | by Definition 3.4.

II.3.22 Let the collection of all such functions be 𝑆 = { 𝑓 : N → N
�� ran(𝑓 ) is finite}. Assume that it is countable

so that there is a correspondence ℎ : N → 𝑆 . For all natural numbers 𝑖, the value of ℎ(𝑖) is a function, which
we will denote 𝑓𝑖 .

Define 𝑔 : N → N by 𝑔(𝑥) = 0 if 𝑥 ≠ 0 and 𝑔(𝑥) = 1 otherwise. Consider the function 𝑘 : N → N given by
𝑘 (𝑖) = 𝑔( 𝑓𝑖 (𝑖) ) This map has a finite range, namely ran(𝑘) = {0, 1}, but 𝑘 is not equal to any 𝑓𝑖 ∈ 𝑆 because
they differ on the input 𝑖.

II.3.24 As stated in the question, the set of rational numbers is countable. Suppose that the irrational numbers
were also countable. Then, because the union of two countable sets is countable, the real numbers would be
countable. But the reals are not countable and so the irrationals are not countable either.

II.3.25
(a) Write the decimal expansion of 𝑧 as 𝑧 = 0.𝑧0𝑧1𝑧2 ... It does not end in 9’s as the output of 𝑔 is never a 9.

So 𝑧 has a unique decimal expansion. For each 𝑞𝑖 the decimal expansion of 𝑧 differs from 𝑞𝑖 ’s in that
𝑧𝑖 · 10−(𝑖+1) ≠ 𝑞𝑖,𝑖 · 10−(𝑖+1) , by the definition of 𝑔. Because their decimal expansions differ, and because
neither ends in 9’s, the two are different numbers.

Since 𝑧 does not equal any rational number, it is irrational.
(b) If 𝑑 =

∑
𝑛∈N 𝑑𝑛,𝑛 · 10−(𝑛+1) is rational then its decimal expansion repeats. That is, there is a decimal place

such that past that place the expansion consists of a sequence of digits 𝑑 𝑗𝑑 𝑗+1 ... 𝑑 𝑗+𝑘 repeated again and
again. But then the prior item’s 𝑧 would also repeat, in that past that same decimal place its expansion
would consist of a sequence of digits 𝑔(𝑑 𝑗 )𝑔(𝑑 𝑗+1) ... 𝑔(𝑑 𝑗+𝑘 ) repeated again and again. That would make 𝑧
rational, which it isn’t.

(c) Why should it be a contradiction? In Theorem 3.1 we start with what purports to be a list of all reals and
then produce a real that is not on that list. Here we start with what is a list of all rationals and produce
something that is not a rational. Entirely different.

II.3.26 Before we do the proof, consider 𝑆 = {0, 1, 2, 3}. These are the elements of P (𝑆).
{ }, {0}, {1}, {2}, {0, 1}.{0, 2}, {1, 2}, {0, 1, 2}
{3}, {0, 3}, {1, 3}, {2, 3}, {0, 1, 3}.{0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3}

So, fixing 𝑠 = 3 ∈ 𝑆 gives two classes of subsets, those sets containing 𝑠 and those not containing 𝑠, and the
two have the same number of members.

Our proof uses induction on |𝑆 |. The base case is that |𝑆 | = 0, so 𝑆 is empty. Then P (𝑆) = {∅} and
|P (𝑆) | = 1, as required.

For the inductive step fix 𝑘 ∈ N+, assume that the statement is true for 𝑛 = 0, 𝑛 = 1, . . .𝑛 = 𝑘, and
consider a set 𝑆 where |𝑆 | = 𝑘 + 1. Because |𝑆 | = 𝑘 + 1 the set has an element, 𝑠 ∈ 𝑆 . The inductive hypothesis
applies to 𝑆 − {𝑠 }, so P (𝑆 − {𝑠 }) has 2𝑘 -many elements. As illustrated in the example above, the elements of
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P (𝑆 − {𝑠 }), which do not contain 𝑠, are in correspondence with the elements of P (𝑆) that do contain 𝑠.
Thus the total number of elements of P (𝑆) is 2 · 2𝑘 , which equals 2𝑘+1.

II.3.27 Suppose that 𝑓 (𝑠𝑖) = 𝐻 . There are two possibilities, either 𝑠𝑖 ∈ 𝐻 or else 𝑠𝑖 ∉ 𝐻 . If 𝑠𝑖 ∈ 𝐻 then
student 𝑠𝑖 is a member of their own list, so 𝑠𝑖 is not humble, so this violates its case assumption. On the
other hand, if 𝑠𝑖 ∉ 𝐻 then 𝑠𝑖 is not a member of their own list, so 𝑠𝑖 is humble, which also violates this case
assumption.

II.3.28 One way is to take the diagonal bits two at a time; for instance changing 01 to 10, and changing any
other two-bit sequence to 01.

II.3.29
(a) In 𝑎+𝑎𝑟 +𝑎𝑟2 +𝑎𝑟3 + · · · = 𝑎 ·1/(1−𝑟 ), take 𝑎 = 9 and 𝑟 = 0.1. The left side is 9+0.9+0.09+0.009+ · · · =

9.999 99 ... The right side is 9 · 1/(1 − (0.1)) = 9/0.9 = 1/0.1 = 1/(1/10) = 10. Subtract 9 from both
sides to get 0.999 99 ... = 1.

(b) Consider a real number with two representations. Write the representations as ®𝑥 = ⟨𝑥𝑁 , 𝑥𝑁−1, ...⟩ and
®𝑦 = ⟨𝑦𝑁 , 𝑦𝑁−1, ...⟩, subject to 𝑥𝑖 , 𝑦𝑖 ∈ {0, 1, ... 9} and to this condition.∑︁

𝑁 ≥𝑖
𝑥𝑖 · 10𝑖 =

∑︁
𝑁 ≥𝑖

𝑦𝑖 · 10𝑖 (*)

(The number 𝑁 ∈ Z is the furthest left nonzero decimal place among the two representions.) For instance,
for 1.000 ... = 0.999 ... we have 𝑥0 = 1, 𝑥−1 = 0, 𝑥−2 = 0, . . . , giving 1 · 100 + 0 · 10−1 + 0 · 10−2 + · · · , and
𝑦0 = 0, 𝑦−1 = 9, 𝑦−2 = 9, . . . , giving 0 · 100 + 9 · 10−1 + 9 · 10−2 + · · · .

Let the leftmost decimal place where the two differ be 𝑀 , so that 𝑥𝑀 ≠ 𝑦𝑀 and 𝑥𝑖 = 𝑦𝑖 for 𝑖 ∈
{𝑁, 𝑁 − 1, ... 𝑀 }. One of 𝑥𝑀 or 𝑦𝑀 is larger; without loss of generality suppose that 𝑥𝑀 > 𝑦𝑀 . We must
show that 𝑥𝑀 = 𝑦𝑀 + 1 (as it does for the example ⟨1, 0, 0 ...⟩ and ⟨0, 9, 9 ...⟩).

The reason is that the remaining digits can add to a number no larger than∑𝑀>𝑖 9 ·10𝑖 . This adds to 10𝑀
by the geometric series formula. If 𝑥𝑀 −𝑦𝑀 > 1 then (∑𝑁 ≤𝑖≤𝑀 𝑥𝑖10𝑖) − (∑𝑁 ≤𝑖≤𝑀 𝑦𝑖10𝑖) = (𝑥𝑀 −𝑦𝑀 ) ·10𝑀
is at least 2 · 10𝑀 , and the remaining digits cannot make up the difference to satisfy condition (∗).

(c) Continuing with the notation from the prior item, we want to show that 𝑥 𝑗 = 0 and 𝑦 𝑗 = 9 for 𝑗 ∈
{𝑀 − 1, 𝑀 − 2, ... } The argument is similar to the prior one and we will do only 𝑗 = 𝑀 − 1. We have that
the representations differ by one in decimal place 𝑀 .( ∑︁

𝑁 ≤𝑖≤𝑀
𝑥𝑖10𝑖

) − ( ∑︁
𝑁 ≤𝑖≤𝑀

𝑦𝑖10𝑖
)
= 10𝑀

Suppose that 𝑦𝑀−1 − 𝑥𝑀−1 ≤ 8. Then( ∑︁
𝑁 ≤𝑖≤𝑀−1

𝑥𝑖10𝑖
) − ( ∑︁

𝑁 ≤𝑖≤𝑀−1
𝑦𝑖10𝑖

) ≥ 10𝑀 − 8 · 10𝑀−1

and the remaining digits can add to a number no larger than ∑
𝑀−1>𝑖 9 · 10𝑖 = 1 · 10𝑀−1, again by the

geometric series formula. Adding that into the prior equation is not enough to satisfy (∗). (The cases of
𝑗 = 𝑀 − 2, 𝑗 = 𝑀 − 3, etc. are similar.)

II.3.30 Suppose otherwise, that C is the set of all sets. Then P (C) would be a collection of sets so we would
have P (C) ⊆ C. That would give |P (C) | ≤ |C |, which would contradict Cantor’s Theorem.

II.3.31
(a) These are the chains for 𝑆 .

𝑠 ∈ 𝑆 Chain
0 ... 0, a, 0, a ...
1 ... 1, b, 1, b ...
2 ... 2, d, 3, c, 2, d ...
3 – same as the chain for 2 –
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These are the chains for 𝑇 .
𝑡 ∈ 𝑇 Chain

a ... a, 0, a, 0 ...
b ... b, 1, b, 1 ...
c ... c, 2, d, 3, c, 2 ...
d – same as the chain for c –

(b) Let 𝑆 = {0, 2, 4, 6, ... }, let 𝑇 = {1, 3, 5, ... }, and take 𝑓 : 𝑆 → 𝑇 to be 𝑓 (𝑠) = 𝑠 + 1, and 𝑔 : 𝑇 → 𝑆 to be
𝑔(𝑡) = 𝑡 + 1. The function 𝑓 is one-to-one because if 𝑓 (𝑠) = 𝑓 (𝑠) then 𝑠 + 1 = 𝑠 + 1, and so 𝑠 = 𝑠. The
function 𝑔 is one-to-one in the same way.

The chain associated with 0 ∈ 𝑆 is 0, 1, 2, 3 ... It contains all the elements of both sets, and so the chain is
unique. It also has a first element, that is, there is no element of 𝑇 that is 𝑔−1(0).

(c) If they are not already disjoint, if 𝑆 ∩𝑇 ≠ ∅, then we can just color all the elements of 𝑆 purple and all
the elements of 𝑇 gold and that will make them disjoint for sure. More precisely, consider the set {0} × 𝑆
of pairs ⟨0, 𝑠⟩ along with the set {1} ×𝑇 of pairs ⟨1, 𝑡⟩. These are disjoint sets because any two elements
differ in the first entry. Obviously they correspond to the original sets 𝑆 and 𝑇 .

(d) First we show that every element is in a unique chain. Fix some 𝑥 ∈ 𝑆 ∪𝑇 . Because we assume that the two
sets are disjoint, the function operation that applies to 𝑥 is determined, meaning that if 𝑥 ∈ 𝑆 then for the
chain we next consider 𝑓 (𝑥) while if 𝑥 ∈ 𝑇 then we are next doing 𝑔. With that, all the elements of the
chain to the right of 𝑥 are determined. And, because the two functions are one-to-one, all of the element to
the left are likewise determined also.

As to the four possibilities, either a chain is finite, that is, it repeats, or it is infinite. If it repeats then it is
case (i). If it is infinite then it either does not have an initial element, and so is case (ii), or else it does. If it
does have an initial element then either that element is from the set 𝑆 , as in case (iii), or else that element is
from the set 𝑇 , as in case (iv).

(e) We will consider the correspondence for each chain type below. But first note that because each case is a
restriction of a function, each is well-defined. That is, never does any of these maps associate two different
outputs with the same input.

A type (i) chain repeats after some number of elements 𝑠0, 𝑡0, 𝑠1, 𝑡1, ... , 𝑠𝑛−1, 𝑡𝑛−1, 𝑠𝑛 = 𝑠0 (because the sets
are disjoint it cannot repeat after a single element, and we can thus take the first element to be a member
of 𝑆). The function 𝑓 makes these associations.

𝑠0 ↦→ 𝑡0 𝑠1 ↦→ 𝑡1, ... 𝑠𝑛−1 ↦→ 𝑡𝑛−1

This is clearly a correspondence among the elements of the chain. It is manifestly onto the set {𝑡0, 𝑡1, ... 𝑡𝑛−1 }
and it is one-to-one because the 𝑡 𝑗 ’s are distinct, or else the chain would be shorter.

For a type (ii) chain

... 𝑓 −1(𝑔−1(𝑠)), 𝑔−1(𝑠), 𝑠, 𝑓 (𝑠), 𝑔(𝑓 (𝑠)), 𝑓 (𝑔(𝑓 (𝑠))), ...
the function 𝑓 associates these.

... 𝑓 −1(𝑔−1(𝑠)) ↦→ 𝑔−1(𝑠) 𝑠 ↦→ 𝑓 (𝑠) 𝑔(𝑓 (𝑠)) ↦→ 𝑓 (𝑔(𝑓 (𝑠))), ...

This also is clearly a correspondence.
A type (iii) chain

𝑠, 𝑓 (𝑠), 𝑔(𝑓 (𝑠)), 𝑓 (𝑔(𝑓 (𝑠))), ...
has these associations.

𝑠 ↦→ 𝑓 (𝑠) 𝑔(𝑓 (𝑠)) ↦→ 𝑓 (𝑔(𝑓 (𝑠))), ...

Again, clearly a correspondence.
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The one that takes some thought is a chain of type (iv).

𝑡, 𝑔(𝑡), 𝑓 (𝑔(𝑡)), 𝑔(𝑓 (𝑔(𝑡)), ...

We want a correspondence function from 𝑆 to 𝑇 . Consider these associations.

𝑔(𝑡) ↦→ 𝑡 𝑔(𝑓 (𝑡)) ↦→ 𝑓 (𝑡), ...

Because the function 𝑔 is one-to-one its inverse is defined, over its range. So this association is a well-defined
function. Like the chain types above, this also is clearly a correspondence.

II.4.6 A Universal Turing machine is a regular machine, in that it is just another machine in the list P0,
P1, . . . Perhaps your friend meant something more like, “What does a Universal Turing machine do that a
non-universal machine does not do?” Every machine does a job. Some machines expect a single input and
then double it, some interpret their input as two numbers and then add them. A Universal Turing machine
expects two inputs, 𝑒 and 𝑥 , and the output of this machine is the same as the output of the machine P𝑒 on
input 𝑥 , including failing to halt if that machine fails to halt. It is universal in that any input-output behavior
that can be mechanically produced can be produced by this one device.

II.4.7 Every general purpose computer, including any standard laptop or cell phone, is equivalent in computable
power to a Universal Turing machine.

A person can object that a standard laptop for instance does not have unboundedly much memory. That’s
true. But such a machine can store things in the Cloud and so is not restricted to the installed memory, and in
this sense its memory is unbounded.

A person can go on to worry that there are only so many bits available in the physical universe and thus
memory is not in the end unbounded. Perhaps that is true—although we could worry back that we have not
got enough time to exhaust what bits that there are before the Big Bang becomes a Big Crunch, or whatever it
will become—but at the least we can take general purpose devices to be so very close to Universal Turing
machines that it is quite hard to tell them apart. In any event, the Universal Turing machine is the right
mathematical idealization.

II.4.8 Yes. If P𝑒0 and P𝑒1 are universal then giving the first one the inputs 𝑒1 and 𝑥 will result in an input-output
behavior exactly like the second. Likewise, giving P𝑒0 the inputs 𝑒0 and 𝑥 will result in the machine behaving
just like itself.

II.4.9 The answer is that it does those things in software. The universal machine does not use its states to
simulate the states of the simulated machine. Rather, it has codes for those states that it manipulates on the
tape.

Chucklehead.
II.4.10 Yes, every computable function has infinitely many indices by Lemma 2.16. So if P𝑒 is universal, then
the associated function 𝜙𝑒 has infinitely many unequal indices so that 𝜙𝑒 = 𝜙𝑒0 = 𝜙𝑒1 = · · · . The machines
P𝑒0 , P𝑒1 , . . . are all universal.

II.4.11 We know that 5 equals cantor(2, 0), that is, pair(5) = ⟨2, 0⟩. So in 𝜙𝑒0 (𝑒0, 5) the argument to 𝜙𝑒0 is the
value of 𝜙2(0). So, where pair(𝜙2(0)) = ⟨𝑎, 𝑏⟩, the value of 𝜙𝑒0 (𝑒0, 5) is 𝜙𝑎 (𝑏).

II.4.12 We write 𝑓𝑖,𝑎 for the function produced by freezing 𝑥𝑖 to the value 𝑎.
(a) The resulting one-variable function is 𝑓0,4(𝑥1) = 12 + 4𝑥1.
(b) The one-variable function is 𝑓0,5(𝑥1) = 15 + 5𝑥1.
(c) The one-variable function is 𝑓1,0(𝑥0) = 3𝑥0.
II.4.13 We use 𝑓 for the name of each function.
(a) The resulting two-variable function is 𝑓 (𝑥1, 𝑥2) = 1 + 2𝑥1 + 3𝑥2.
(b) The result is the two-variable function 𝑓 (𝑥1, 𝑥2) = 2 + 2𝑥1 + 3𝑥2.
(c) This gives 𝑓 (𝑥1, 𝑥2) = 𝑎 + 2𝑥1 + 3𝑥2.
(d) This results in the one-variable function 𝑓 (𝑥2) = 11 + 3𝑥2.
(e) The result is 𝑓 (𝑥2) = 𝑎 + 2𝑏 + 3𝑥2.
II.4.14
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(a) The two subscripts on 𝑠1,1 mean that we will freeze the first input and leaves the second one as a variable.
So 𝜙𝑠1,1 (𝑒0,1) will be a one-input function. The arguments 𝑒0 and 1 indicate that we are working on Turing
machine 𝑒0, the one whose flow chart is given in the problem statement, and that the input is frozen to be
𝑥0 = 1. This flowchart gives a sense of the result.

Start
Read G1

Print 1 + G1

End
The function is 𝜙𝑠1,1 (𝑒0,1) (𝑥1) = 1 + 𝑥1.

(b) The values are 𝜙𝑠1,1 (𝑒0,1) (0) = 1, 𝜙𝑠1,1 (𝑒0,1) (1) = 2, and 𝜙𝑠1,1 (𝑒0,1) (2) = 3.
(c) The notation 𝑠1,1(𝑒0, 0) means that we work on Turing machine 𝑒0, that we freeze the first input to 𝑥0 = 0,

and that we leave the second input as a variable. This flowchart gives the idea.
Start

Read G1
Print 0 + G1

End
The function is 𝜙𝑠1,1 (𝑒0,1) (𝑥1) = 0 + 𝑥1 = 𝑥1.

(d) We have 𝜙𝑠1,1 (𝑒0,0) (0) = 0, 𝜙𝑠1,1 (𝑒0,0) (1) = 1, and 𝜙𝑠1,1 (𝑒0,0) (2) = 2.
II.4.15
(a) The notation 𝑠1,2(𝑒0, 1) indicates that we work on P𝑒0 , that we freeze the first input to 𝑥0 = 1, and that we

leave the second and third inputs as variables This flowchart sketches the behavior.
Start

Read G1, G2
Print 1 + G1 · G2

End
The function is 𝜙𝑠1,2 (𝑒0,1) (𝑥1, 𝑥2) = 1 + 𝑥1 · 𝑥2.

(b) We have 𝜙𝑠1,2 (𝑒0,1) (0, 1) = 1, 𝜙𝑠1,2 (𝑒0,1) (1, 0) = 1, and 𝜙𝑠1,2 (𝑒0,1) (2, 3) = 7.
(c) The 𝑠2,1(𝑒, 1, 2) says that we start with P𝑒0 , that we freeze the first input to 𝑥0 = 1 and the second input to

𝑥1 = 2, and leave the third input as a variable. This sketches the result.
Start

Read G2
Print 1 + 2 · G2

End
The function is 𝜙𝑠2,1 (𝑒0,1,2) (𝑥2) = 1 + 2 · 𝑥2.

(d) The values are 𝜙𝑠2,1 (𝑒0,1,2) (0) = 1, 𝜙𝑠2,1 (𝑒0,1,2) (1) = 3, and 𝜙𝑠2,1 (𝑒0,1,2) (2) = 5.
II.4.16
(a) 𝜙𝑠1,1 (𝑒0,0) (𝑥1) = 𝑥1
(b) 𝜙𝑠1,1 (𝑒0,0) (5) = 5
(c) 𝜙𝑠1,1 (𝑒0,1) (𝑥1) = 𝑥1
(d) 𝜙𝑠1,1 (𝑒0,1) (5) = 5
(e) 𝜙𝑠1,1 (𝑒0,2) (𝑥1)↑
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(f) 𝜙𝑠1,1 (𝑒0,2) (5)↑
II.4.17
(a) This flowchart sketches P𝑠 (𝑒0,0,3) .

Y N

Start
Read ~
0 even?

Print 3 · ~ Print 3 + ~

End
The function is 𝜙𝑠 (𝑒0,0,3) (𝑦) = 3𝑦. Consequently, 𝜙𝑠 (𝑒0,0,3) (5) = 15.

(b) This is the flowchart sketching P𝑠 (𝑒0,1,3) .

Y N

Start
Read ~
1 even?

Print 3 · ~ Print 3 + ~

End
The computed function is 𝜙𝑠 (𝑒0,1,3) (𝑦) = 3 + 𝑦, and consequently 𝜙𝑠 (𝑒0,1,3) (5) = 8.

(c) This is the flowchart sketching P𝑠 (𝑒0,𝑎,𝑏 ) .

Y N

Start
Read ~
0 even?

Print 1 · ~ Print 1 + ~

End
The distinction between this and the flowchart in the question statement is that here the machine does not
read in 𝑥0 or 𝑥1. Those two are hard-coded, as 𝑎 and 𝑏, into the program body. This is a family of functions
parametrized by 𝑎 and 𝑏, and the indices of these functions are uniformly computable from 𝑒0, 𝑎, and 𝑏,
using the s-m-n function 𝑠.

II.4.18 Start with the function𝜓 : N2 → N defined by𝜓 (𝑥,𝑦) = 𝑦 + 𝑥2. It is intuitively computable, since it is
computed by the machine sketched by this flowchart.

Start
Read G , ~
Print ~ + G2

End
By Church’s Thesis there is a Turing machine that computes it. Suppose that machine has index 𝑒0, that is,
suppose that𝜓 (𝑥,𝑦) = 𝜙𝑒0 (𝑥,𝑦). By the s-m-n theorem there is a family of computable functions parametrized
by 𝑛, 𝜙𝑠1,1 (𝑒0,𝑛) , with the desired behavior, 𝜙𝑠1,1 (𝑒0,𝑛) (𝑦) = 𝑦 + 𝑛2. Take 𝑔(𝑛) to be 𝑠1,1(𝑒0, 𝑛).

II.4.19 Start with the function𝜓 (𝑢, 𝑣, 𝑥) = 𝑢𝑥 + 𝑣 . It is intuitively computable as sketched by this flowchart.
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Start
ReadD , E, G
PrintD · G + E

End
By Church’s Thesis there is a Turing machine that computes it. Let that machine have index 𝑒0, that is,
suppose that𝜓 (𝑢, 𝑣, 𝑥) = 𝜙𝑒0 (𝑢, 𝑣, 𝑥). The s-m-n theorem gives a family of computable functions 𝜙𝑠2,1 (𝑒0,𝑚,𝑏 )
parametrized by𝑚 and𝑏 with the desired behavior, 𝜙𝑠2,1 (𝑒0,𝑚,𝑏 ) (𝑥) =𝑚 ·𝑥+𝑏. Take𝑔(𝑚,𝑏) to be 𝑠2,1(𝑒0,𝑚,𝑏).

II.4.20
(a) This gives the same result as 𝜙𝑒1 (5), that is, it converges and gives 20.
(b) This returns 4 times the the value of cantor(𝑒0, 5).
(c) This returns 𝜙𝑒1 (5) = 20.
II.4.21
(a) This gives the same result as 𝜙𝑒1 (4), that is, it gives 6.
(b) This returns the value of 𝜙4(𝑒1), whatever that is.
(c) This returns 𝜙𝑒2 (3) plus 2, which is 11.
(d) Because pair(4) = ⟨1, 1⟩, this returns the same as 𝜙1(1), whatever that is.
II.5.8 We have shown that there are tasks that no computer can do. The Halting problem is a concrete example

of such a task. We will see many more.
Besides, there are many programs that we want to run without a time bound. One is an operating system.

II.5.9 False. There is such a function. But it is not computable; there is no Turing machine whose behavior is
that function.

II.5.10 The unsolvability results do not say that you cannot prove that a particular machine does a particular
thing. The given machine does indeed fail to halt on all inputs and it is indeed obvious. Instead the results say
that no machine can take in the index 𝑥 and correctly determine whether P𝑥 does that thing.

II.5.11 First, to detect a loop we must look for a repeated configuration, not just a repeated state-character
pair. Machines can run forever without repeating a configuration, for instance by just writing more characters
to the tape, as in code that keeps incrementing a variable.

Further, the Halting problem is not to detect an infinite loop. Rather, the Halting problem is to detect
whether the machine will halt. Here also, code that just keeps incrementing a variable will not loop, but also
not halt.

II.5.12 A machine could do that.
However, as to the unsolvability of the Halting problem, a machine can fail to halt for reasons other than

that it is in an infinite loop. The code below would not be flagged as being in an infinite loop by the runtime
environment described, but this routine does not halt.

i=0
while True:

i=i+1

II.5.13 No, it is not an unsolvable problem. Either 𝑓 does halt on all inputs or it doesn’t. There are two
possibilities, both of which are computable. (It is perhaps a unsettling that we don’t know which of the two is
true but nonetheless both are computable.)

II.5.14
(a) False. The function exists. We say that the problem is unsolvable because that function is not mechanically

computable.
(b) False. Church’s Thesis asserts that Turing machines are a maximally-powerful model of computation. The

existence of unsolvable problems is inherent in effective computation.
II.5.15 Any finite set is computable, so yes it is computable. We should be cautious about coflating ‘computable’
with knowable.

II.5.16
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Start
Read G , ~
Print 3G + ~

End

Start
Read ~
Print ~
End

Start
Read ~

Print 3 + ~

End

Start
Read ~

Print 6 + ~

End
Figure 10, for question II.5.16: The machine associated with the function 𝑓 = 𝜙𝑒 and the machines associated with
𝜙𝑠 (𝑒,𝑥 ) for 𝑥 = 0, 𝑥 = 1, and 𝑥 = 2.

Start
Read G , ~
Print G · ~2

End

Start
Read ~
Print 0
End

Start
Read ~
Print ~2

End

Start
Read ~
Print 2~2

End
Figure 11, for question II.5.16: The machine associated with the function 𝑓 = 𝜙𝑒 and machines associated with
𝜙𝑠 (𝑒,𝑥 ) for 𝑥 = 0, 𝑥 = 1, and 𝑥 = 2.

(a) The function 𝑓 (𝑥,𝑦) = 3𝑥 + 𝑦 is intuitively computable, as sketched on the left of Figure 10 on page 58.
Church’s Thesis gives that there is a Turing machine with that behavior; let that machine have index 𝑒, so
that 𝑓 (𝑥,𝑦) = 𝜙𝑒 (𝑥,𝑦) for all 𝑥,𝑦 ∈ N. Applying the s-m-n Theorem to parametrize 𝑥 gives this computable
family of one-input computable functions: 𝜙𝑠 (𝑒,𝑥 ) (𝑦) = 3𝑥 + 𝑦. Flowcharts sketching some associated
machines are on the right side of Figure 10 on page 58.

(b) The function 𝑓 (𝑥,𝑦) = 𝑥𝑦2 is intuitively computable, as in Figure 11 on page 58. Church’s Thesis gives that
there is a Turing machine P𝑒 with that behavior, so that 𝑓 (𝑥,𝑦) = 𝜙𝑒 (𝑥,𝑦) for all 𝑥,𝑦 ∈ N. Applying the
s-m-n Theorem to parametrize 𝑥 gives 𝜙𝑠 (𝑒,𝑥 ) (𝑦) = 𝑥𝑦2, which is a family of one-input functions. Flowcharts
sketching some associated machines are on the right side of Figure 11 on page 58.

(c) The function 𝑓 is intuitively computable, as sketched on the left of Figure 12 on page 59. Church’s Thesis
gives that there is a Turing machine P𝑒 with that behavior, so that 𝑓 (𝑥,𝑦) = 𝜙𝑒 (𝑥,𝑦) for all 𝑥,𝑦 ∈ N. Apply
the s-m-n Theorem to parametrize 𝑥 . The resulting family of one-input functions is this.

𝜙𝑠 (𝑒,𝑥 ) (𝑦) =
{
𝑥 – if 𝑥 is odd
0 – otherwise

Flowcharts sketching associated machines are on the right side of Figure 12 on page 59.
II.5.17 The answer to all three is the same. Running a Turing machine for a fixed number of steps is not a

problem (and in the third item, the number of steps is fixed for a given input).
II.5.18 We will show that this function is not mechanically computable.

total_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑦)↓ for all 𝑦
0 – otherwise

The function

𝜓 (𝑥,𝑦) =
{
42 – if 𝜙𝑥 (𝑥)↓
↑ – otherwise

is intuitively computable by the flowchart on the left of Figure 13 on page 59. Thus Church’s Thesis says that
there is a Turing machine that computes it; let that machine have index 𝑒0, so that𝜓 (𝑥,𝑦) = 𝜙𝑒0 (𝑥,𝑦). The
s-m-n Theorem gives a family of functions parametrized by 𝑥 , whose machines are sketched on the right of
Figure 13 on page 59. Notice that 𝜙𝑥 (𝑥)↓ if and only if total_decider(𝑠 (𝑒0, 𝑥)) = 1.
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Figure 12, for question II.5.16: A sketch of the machine for the function 𝑓 = 𝜙𝑒 and of the machines associated
with 𝜙𝑠 (𝑒,𝑥 ) when 𝑥 = 0, 𝑥 = 1, and 𝑥 = 2.
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Figure 13, for question II.5.18: The machine associated with the function𝜓 = 𝜙𝑒 and the machine for 𝜙𝑠 (𝑒,𝑥 ) .

Since 𝑠 is computable, if we can mechanically compute total_decider then we can mechanically solve
the Halting problem. We cannot mechanically solve the Halting problem, so we cannot mechanically compute
total_decider.

II.5.19 We will show that this function is not mechanically computable.

square_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑦) = 𝑦2 for all 𝑦
0 – otherwise

Consider this function.

𝜓 (𝑥,𝑦) =
{
𝑦2 – if 𝜙𝑥 (𝑥)↓
↑ – otherwise

The flowchart on the left of Figure 14 on page 60 shows that𝜓 is intuitively computable so by Church’s Thesis
there is a Turing machine that computes it. Let that machine have index 𝑒0. Apply the s-m-n Theorem to get a
family of functions parametrized by 𝑥 , whose machines are sketched on the right of Figure 14 on page 60.
Then 𝜙𝑥 (𝑥)↓ if and only if square_decider(𝑠 (𝑒0, 𝑥)) = 1.

So, since the function 𝑠 is computable, if we can mechanically compute square_decider, then we can
mechanically solve the Halting problem. But we can’t mechanically solve the Halting problem so we cannot
mechanically compute square_decider.

II.5.20 We will show that this is not computable.

same_value_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑦) = 𝜙𝑒 (𝑦 + 1) for some 𝑦
0 – otherwise

This function

𝜓 (𝑥,𝑦) =
{
42 – if 𝜙𝑥 (𝑥)↓
↑ – otherwise

is intuitively computable by the flowchart on the left of Figure 15 on page 60. So, by Church’s Thesis there is a
Turing machine that computes it; let that machine have index 𝑒. Apply the s-m-n Theorem to get a family of
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Figure 14, for question II.5.19: The machine associated with the function𝜓 = 𝜙𝑒0 and the machine associated with
𝜙𝑠 (𝑒0,𝑥 ) .
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Figure 15, for question II.5.20: The machine associated with the function𝜓 = 𝜙𝑒0 and the machine for 𝜙𝑠 (𝑒0,𝑥 ) .

functions parametrized by 𝑥 , whose machines are sketched on the right of Figure 15 on page 60. Observe that
these machines produce the function with constant output 42 if and only if the machine gets through the
middle box. More precisely stated, 𝜙𝑥 (𝑥)↓ if and only if same_value_decider(𝑠 (𝑒0, 𝑥)) = 1.

Since the function 𝑠 is computable, if we can mechanically compute same_value_decider then we can
mechanically solve the Halting problem, which we cannot do.

II.5.21 We will show that this function is not computable; no Turing machine has this input-output behavior.

diverges_on_five_decider(𝑒) =
{
1 – if 𝜙𝑒 (5)↑
0 – otherwise

The function

𝜓 (𝑥,𝑦) =
{
42 – if 𝜙𝑥 (𝑥)↓
↑ – otherwise

is intuitively computable by the flowchart on the left of Figure 16 on page 61. So Church’s Thesis says that
there is a Turing machine that computes it. Let that machine have index 𝑒, so that𝜓 (𝑥,𝑦) = 𝜙𝑒 (𝑥,𝑦). The s-m-
n Theorem gives a family of functions parametrized by 𝑥 , whose machines are sketched on the right of Figure 16
on page 61. Then 𝜙𝑥 (𝑥)↓ if and only if diverges_on_five_decider(𝑠 (𝑒0, 𝑥)) = 1. Because the function 𝑠 is
mechanically computable, this means that if we could mechanically compute diverges_on_five_decider
then we could mechanically solve the Halting problem. But we cannot mechanically solve the Halting problem,
so we cannot mechanically compute diverges_on_five_decider.

II.5.22 We want to show that this function is not computable.

diverge_on_odds_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑦)↑ for all odd 𝑦 ∈ N
0 – otherwise

The argument given in the prior item will do again here.
II.5.23 We will show that no Turing machine has this input-output behavior.

successor_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑥) = 𝑥 + 1 for all 𝑥 ∈ N
0 – otherwise
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Figure 16, for question II.5.21: The machine associated with𝜓 = 𝜙𝑒0 and the machine for 𝜙𝑠 (𝑒0,𝑥 ) .
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Figure 17, for question II.5.23: Sketches of the machine associated with 𝜓 = 𝜙𝑒0 and the machine associated with
𝜙𝑠 (𝑒0,𝑥 ) .

The function

𝜓 (𝑥,𝑦) =
{
𝑦 + 1 – if 𝜙𝑥 (𝑥)↓
↑ – otherwise

is intuitively computable by the flowchart on the left of Figure 17 on page 61. So Church’s Thesis says that there
is a Turing machine that computes it. Let that machine have index 𝑒0, so that𝜓 (𝑥,𝑦) = 𝜙𝑒0 (𝑥,𝑦). The s-m-
n Theorem gives a family of functions parametrized by 𝑥 , whose machines are sketched on the right of Figure 17
on page 61. Then 𝜙𝑥 (𝑥)↓ if and only if successor_decider(𝑠 (𝑒0, 𝑥)) = 1. The function 𝑠 is mechanically
computable, so if we could mechanically compute successor_decider then we could mechanically solve theHalting problem. But we can’t do that, so we cannot mechanically compute successor_decider.

II.5.24 The function

𝜓 (𝑥,𝑦) =
{
42 – if 𝜙𝑥 (𝑥)↓
↑ – otherwise

is intuitively computable by the flowchart on the left of Figure 18 on page 62. So Church’s Thesis says that
there is a Turing machine that computes it. Let that machine have index 𝑒0. Apply the s-m-n Theorem
to get a family of functions parametrized by 𝑥 , whose machines are sketched on the right of Figure 18
on page 62. Then 𝜙𝑥 (𝑥) ↓ if and only if converges_on_twice_input_decider(𝑠 (𝑒0, 𝑥)) = 1. So if we
could mechanically compute converges_on_twice_input_decider then we could mechanically solve theHalting problem. But we cannot mechanically solve the Halting problem, so we cannot mechanically compute
converges_on_twice_input_decider.

II.5.25
(a) (1) same_output_as_input, (2) there exists 𝑦 ∈ N such that 𝜙𝑒 (𝑦) = 𝑦, (3) Print 𝑦.
(b) (1) outputs_42, (2) there exists 𝑦 ∈ N such that 𝜙𝑒 (𝑦) = 42, (3) Print 42.
(c) (1) ever_adds_2, (2) there exists 𝑦 ∈ N such that 𝜙𝑒 (𝑦) = 𝑦 + 2, (3) Print 𝑦 + 2.
II.5.26 This problem is solvable. We can write a program that inputs cantor(𝑥,𝑦), applies the unpairing

function to get 𝑥 and 𝑦, and then plugs them into 𝑎𝑥 + 𝑏𝑦, to see if the result equals 𝑐.
II.5.27
(a) Unsolvable.
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Figure 18, for question II.5.24: Outline of the machine for𝜓 = 𝜙𝑒0 and the machine for 𝜙𝑠 (𝑒0,𝑥 ) .
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Figure 19, for question II.5.29: A single machine that reflects the Halting problem.

(b) Unsolvable.
(c) Cannot tell; whether this is solvable or not depends on the specifics of the way Turing machines are counted,

that is, it depends on the details of P4.
(d) Solvable. The set of five-tuples P𝑒 is finite so we can just search.
II.5.28 Suppose that we could compute 𝐾0. That is, suppose that there is a Turing machine P𝑒0 such that
𝜙𝑒0 (⟨𝑒, 𝑥⟩) = 1 if 𝜙𝑒 (𝑥) ↓ and 𝜙𝑒0 (⟨𝑒, 𝑥⟩) = 0 if 𝜙𝑒 (𝑥) ↑. Then we could solve the Halting problem by just
applying P𝑒0 to the input ⟨𝑥, 𝑥⟩.

II.5.29
(a) One such machine takes input 𝑥 , uses a Universal Turing machine to run P𝑥 on input 𝑥 , and then exits.

Figure 19 on page 62 has a flowchart.
(b) For a fixed input 𝑦, one of these two machines works: (1) for all input, print 1, or (2) for all inputs, print 0.
II.5.30
(a) This is solvable. Given the index 𝑒, start by translating it to the set of Turing machine instructions, P𝑒

(remember that we are using numberings that are acceptable in the sense defined on page 69). Now count
the number of states that appear in that Turing machine.

(b) This is not solvable; halts_on_empty is not mechanically computable. For, consider this function.

𝜓 (𝑥) =
{
42 – if 𝜙𝑥 (𝑥)↓
↑ – otherwise

It is intuitively mechanically computable, and so by Church’s Thesis there is a Turing machine that computes
it. Let the index of that machine be 𝑒0. Apply the s-m-n theorem to parametrize 𝑥 , giving a uniformly
computable family of functions 𝜙𝑠 (𝑒0,𝑥 ) . (The 𝜙𝑠 (𝑒0,𝑥 ) ’s are functions of no input; that’s fine as the associated
Turing machine simply does not read any input from the tape.)

Then 𝜙𝑥 (𝑥) ↓ if and only if halts_on_empty(𝑠 (𝑒0, 𝑥)) = 1. If halts_on_empty were mechanically
computable then we could mechanically solve the Halting problem, so halts_on_empty is not mechanically
computable.

(c) This is solvable. From the index 𝑒, use a Universal Turing machine to run P𝑒 on input 𝑒 for one hundred
steps. By the end either it has halted or it hasn’t.

II.5.31 Yes. If 𝐾 were finite then it would be computable, since any finite set is computable. For example, we
could compute membership in a finite set with a sequence of if-then-else statements.
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Figure 20, for question II.5.34: Goldbach’s conjectures. (Courtesy xkcd.com)

II.5.32 False. It is indeed infinite, but it is uncountably infinite. There are uncountably infinitely many problems,
that is, functions from N to N, but only countably many Turing machines.

II.5.33 Either 𝑓 does halt on all inputs, or it doesn’t. So there are two possibilities, both of which are computable
(either the answer is ‘yes’ or the answer is ‘no’), although we may possibly not know which one is true.

II.5.34 Consider a Turing machine that, for any input, just searches for an even number greater than two
that is not the sum of two primes. If, on any input, that Turing machine halts then the conjecture is false.
Otherwise it is true. So if we determined whether that Turing machine halts then we would have settled the
question. See Figure 20 on page 63.

II.5.35 We can write a program that takes input 𝑥 , ignores it, and searches for a solution larger than 7, and
halts if it finds one. With a solution to the Halting problem we could check whether that program halts.

II.5.36 No. The set of Turing machines is countable. So the set of solvable problems is countable. Adding one
more, by adding the Halting problem, would still mean that we have uncountably many problems but only
countably many are solvable. So there would still be problems that are not solvable.

II.5.37 The set of functions 𝑓 : N → N is the disjoint union of two subsets: the functions that are computable
and the functions that are not. We know that the set of computable functions is countable. Because the union
of two countable sets is countable, if the set of non-computable functions were also countable then there
would be countably many functions overall, which there are not. Thus the set of non-computable functions is
not countable.

II.5.38 Fix an element 𝑘 ∈ 𝐾 . The range of this function is 𝐾 .

𝑓 (𝑥, 𝑛) =
{
𝑥 – if P𝑥 with input 𝑥 halts in 𝑛 steps
𝑘 – otherwise

Clearly the function is computable and converges on all inputs. For all elements of 𝐾 there is an 𝑛 where 𝑥
appears in the range. And, for the same reason, only the elements of 𝐾 appear in the range.

II.5.39 Start with decidable languages L0 and L1 and consider the union L = L0 ∪ L1. Because they are
decidable, there are Turing machines P𝑒0 and P𝑒1 that decide membership.

𝜙𝑒0 (𝑥) =
{
1 – if 𝑥 ∈ L0
0 – if 𝑥 ∉ L0

𝜙𝑒1 (𝑥) =
{
1 – if 𝑥 ∈ L1
0 – if 𝑥 ∉ L1

Note that because they decide membership, these machines halt on all inputs.
(a) A sketch of the machine that decides membership in L0 ∪ L1 is in Figure 21 on page 64. A number is an

element of the union if it is a member of either set. So, given 𝑥 , this machine first runs P𝑒0 on 𝑥 . If that
returns 1 then 𝑥 is a member of the union, so the new machine outputs 1. Otherwise the new machine
runs P𝑒1 on 𝑥 and returns the result.

(b) A sketch of the machine that decides membership in L0 ∩ L1 is in Figure 21 on page 64. A number is an
element of the union if it is a member of both sets. So, given 𝑥 , this machine first runs P𝑒0 on 𝑥 . If that
returns 0 then 𝑥 is not a member of the intersection, so the new machine outputs 0. Otherwise the new
machine runs P𝑒1 on 𝑥 and returns the result.

https://xkcd.com/1310/
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Figure 21, for question II.5.39: Sketches of machines to decide union and intersection of decidable languages.

(c) Complement is straightforward. For the complement of L0 the new machine just runs P𝑒0 and subtracts the
result from 1.

II.6.10 Briefly, we have to distinguish between a machine and the function that it computes. Many different
machines compute the same function. Rice’s theorem is about those properties of the machine that extend to
be properties of the computed functions. For instance, “Does this code compute the squaring function?” is
unsolvable, but “Does this code contain the letter K?” is not.

A more sophisticated answer is that two machines ‘extensionally equal’ if they compute the same function,
so that for every input either both machines run forever on that input, or they both terminate and output the
same value. An ‘extensional property’ of programs is a property that respects extensional equality, i.e., if two
machines are extensionally equal then they either both have the property or both not have it. Then Rice’s
Theorem says that a computable extensional property of machines either holds of all machines or of none.

Here are some non-extensional properties, to which Rice’s Theorem does not apply: (i) the machine halts
within 100 steps (we can always modify a machine to an extensionally equal one that runs longer), (ii) the
machine uses fewer than 𝑛 memory cells within the first𝑚 steps of execution (we can always modify a machine
to an extensionally equal one so that it uses extra memory), and (iii) the machine source contains state 𝑞10
(we can add extra states).

II.6.11 No, it is not an index set. We can write two Turing machines with the same behavior, say, on input 𝑥
they return output 𝑥 . But one of them takes only a few steps to do this while the other takes 101 steps. The
index of the second set is a member of I but the index of the first set is not a member.

II.6.12 The set of indices 𝑒 ∈ N such that ∅ ⊆ {𝑥
�� 𝜙𝑒 (𝑥)↓} is all of N. This problem is solvable, although

trivially in the sense that for any 𝑒, the answer is ‘yes’.
II.6.13
(a) True, this is about the input-output behavior of the machine.
(b) False, we can make two machines with the same behavior but where one has four instructions and the other

does not.
(c) True.
(d) False, we can make two machines with the same behavior but where one has this behavior and the four

other does not.
II.6.14 There is only one empty set, but there are of course many ways to describe it; one is I0 =
{𝑒

�� P𝑒 solves the Halting problem}.
II.6.15 There is only one setN but there are of coursemanyways to describe it; one is I0 = {𝑒

�� every member of P𝑒 is a four-tuple}.

II.6.16
(a) {𝑒 ∈ N

�� 𝜙𝑒 (7)↓ and equals 7}
(b) {𝑒 ∈ N

�� 𝜙𝑒 (𝑒)↓ and equals 𝑒 }
(c) {𝑒 ∈ N

�� there is a 𝑦 where 𝜙2𝑒 (𝑦)↓ and equals 7}



Page 65

Start
Read ~
Print 42
End

Start
Read ~

Infinite loop

Figure 22, for question II.6.17: The machines used to show that the set I is not trivial.
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Figure 23, for question II.6.18: The machines used to show that the set I of indices of the squarer funtion is not
trivial.

(d) {𝑒 ∈ N
�� 𝜙𝑒 (7)↓ and is prime}

II.6.17 Let I = {𝑒 ∈ N
�� 𝜙𝑒 is total}. We will show that it is a nontrivial index set.

We first show that I is not the empty set. Consider the program sketched on the left of Figure 22 on
page 65. Clearly this sketch outlines a computation. By Church’s Thesis, there is a Turing machine fitting this
sketch. It has an index and that index is an element of I. So I is not empty.

Next we show that I is not all of N. Consider the program sketched on the right of Figure 22 on page 65.
By Church’s Thesis, there is a Turing machine fitting this sketch. Its index is not an element of I and so I is
not all of N.

To finish, we show that I is an index set. So suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because
𝑒 ∈ I, we know that 𝜙𝑒 (𝑎)↓ for all 𝑎 ∈ N. Because 𝜙𝑥 ≃ 𝜙𝑒 we therefore know that 𝜙𝑒 (𝑎)↓ for all 𝑎 ∈ N. Thus,
𝑒 ∈ I and consequently I is an index set.

By the prior three paragraphs, Rice’s theorem shows that the problem of determining totality, the problem
of computing whether, given 𝑒, the Turing machine P𝑒 halts on all inputs, is unsolvable.

II.6.18 Let I = {𝑒 ∈ N
�� 𝜙𝑒 (𝑦) = 𝑦2 for all 𝑦 }. We will show that it is a nontrivial index set.

We first show that I is not the empty set. Consider the program sketched on the left of Figure 23 on
page 65. Clearly this sketch outlines a computable routine. By Church’s Thesis, there is a Turing machine
matching this sketch. It has an index, and that index is an element of I. So I is not empty.

Next we show that I is not all of N. Consider the program sketched on the right of Figure 23 on page 65.
By Church’s Thesis, there is a Turing machine fitting this sketch. Its index is not an element of I and so I is
not all of N.

To finish we show that I is an index set. So suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because
𝑒 ∈ I we know that 𝜙𝑒 (𝑦) = 𝑦2 for all 𝑦 ∈ N. Because 𝜙𝑒 ≃𝜙𝑒 we therefore know that 𝜙𝑒 (𝑦) = 𝑦2 for all 𝑦 ∈ N.
Thus, 𝑒 ∈ I and consequently I is an index set.

By the prior three paragraphs, Rice’s theorem shows that the problem of determining totality, the problem
of computing whether, given 𝑒, the Turing machine P𝑒 halts on all inputs, is unsolvable.

II.6.19 We will show that I = {𝑒 ∈ N
�� 𝜙𝑒 (𝑦) = 𝜙𝑒 (𝑦 + 1) for some 𝑦 ∈ N} is a nontrivial index set.

We first show that I is not empty. Consider the program sketched on the left of Figure 24 on page 66. It
is intuitively computable so by Church’s Thesis there is a Turing machine fitting this sketch. That Turing
machine’s index is an element of I. So I is not empty.

Next we argue that I ≠ N. Consider the program outlined on the right of Figure 24 on page 66. By
Church’s Thesis, there is a Turing machine fitting this. Its index is not an element of I, and so I is not all of N.

To finish, we show that I is an index set. Suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because
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Figure 24, for question II.6.19: The machines used to show that the set I is not trivial.
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Figure 25, for question II.6.20: Outlines of the Turing machines used to show that I is not trivial.

𝑒 ∈ I, there exists 𝑦 ∈ N so that 𝜙𝑒 (𝑦) = 𝜙𝑒 (𝑦 + 1). Because 𝜙𝑒 ≃ 𝜙𝑒 , we know that 𝜙𝑒 (𝑦) = 𝜙𝑒 (𝑦 + 1) for the
same 𝑦. Thus, 𝑒 ∈ I also. Therefore I is an index set.

Consequently, by Rice’s theorem, the problem of determining membership in I is unsolvable.
II.6.20 We will show that I = {𝑒 ∈ N

�� 𝜙𝑒 (5)↑} is a nontrivial index set.
First we show that I ≠ ∅. Consider the program sketched on the left of Figure 25 on page 66. It is

intuitively computable, so by Church’s Thesis there is a Turing machine fitting this sketch. That machine’s
index is an element of I.

Next we argue that I ≠ N. Consider the program outlined on the right of Figure 25 on page 66. By
Church’s Thesis, there is a Turing machine fitting this. Its index is not an element of I.

To finish, we show that I is an index set. Suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃𝜙𝑒 . Because 𝑒 ∈ I,
we know that 𝜙𝑒 (5)↑. But 𝜙𝑒 ≃ 𝜙𝑒 so we have that 𝜙𝑒 (5)↑ also. Thus, 𝑒 ∈ I. Therefore I is an index set.

Consequently, by Rice’s theorem, the problem of determining membership in I is unsolvable.
II.6.21 We will show that I = {𝑒 ∈ N

�� 𝜙𝑒 (𝑦)↑ for all odd 𝑦 } is a nontrivial index set. Note that this answer is
essentially a copy of the answer to the prior exercise.

First we show that I ≠ ∅. Consider the program sketched on the left of Figure 26 on page 67. It is
intuitively computable, so by Church’s Thesis there is a Turing machine fitting this sketch. That machine’s
index is an element of I.

Next we argue that I ≠ N. Consider the program outlined on the right of Figure 26 on page 67. By
Church’s Thesis, there is a Turing machine fitting this. Its index is not an element of I.

To finish we show that I is an index set. Suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because 𝑒 ∈ I
we know that 𝜙𝑒 (𝑦) ↑ for all odd inputs 𝑦. Because 𝜙𝑒 ≃ 𝜙𝑒 we also know that 𝜙𝑒 (𝑦) ↑ for all odd 𝑦. Thus,
𝑒 ∈ I. Therefore I is an index set.

Consequently, by Rice’s theorem, the problem of determining membership in I is unsolvable.
II.6.22 We will show that I = {𝑒 ∈ N

�� 𝜙𝑒 (𝑥) = 𝑥 + 1} is a nontrivial index set.
First we show that I ≠ ∅. Consider the program sketched on the left of Figure 27 on page 67. It is

intuitively computable, so by Church’s Thesis there is a Turing machine fitting this sketch. That machine’s
index is an element of I.

Next we argue that I ≠ N. Consider the program outlined on the right of Figure 27 on page 67. By
Church’s Thesis, there is a Turing machine matching this. Its index is not an element of I.

We finish by showing that I is an index set. Suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because
𝑒 ∈ I, we know that 𝜙𝑒 (𝑥) = 𝑥 + 1 for all inputs 𝑥 . Because 𝜙𝑒 ≃ 𝜙𝑒 we also know that 𝜙𝑒 (𝑥) = 𝑥 + 1 for all 𝑥 .
Thus, 𝑒 ∈ I. Therefore I is an index set.

Consequently, by Rice’s theorem, the problem of determining membership in I is mechanically unsolvable.
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Figure 26, for question II.6.21: The machines used to show that I is not trivial.
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Figure 27, for question II.6.22: The machines used to show that I is not trivial.

II.6.23 We will show that I = {𝑒 ∈ N
�� both 𝜙𝑒 (𝑥)↑ and 𝜙𝑒 (2𝑥)↑ for some 𝑥 } is a nontrivial index set.

First we show that I ≠ ∅. Consider the program sketched on the left of Figure 28 on page 68. It is
intuitively computable, so by Church’s Thesis there is a Turing machine fitting this sketch. That machine’s
index is an element of I.

Next we argue that I ≠ N. Consider the program outlined on the right of Figure 28 on page 68. By
Church’s Thesis, there is a Turing machine fitting this. Its index is not an element of I.

To finish, we show that I is an index set. Suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because
𝑒 ∈ I, we know that for some input 𝑥 we have both 𝜙𝑒 (𝑥) ↑ and 𝜙𝑒 (2𝑥) ↑. Because 𝜙𝑒 ≃ 𝜙𝑒 we know that
𝜙𝑒 (𝑥)↑ and 𝜙𝑒 (2𝑥)↑, for the same 𝑥 . Thus, 𝑒 ∈ I. Therefore I is an index set.

Consequently, by Rice’s theorem, the problem of determining membership in I is unsolvable.
II.6.24
(a) We first state the problem precisely: given an index 𝑒, decide whether 𝜙𝑒 (𝑦)↓ for all 𝑦 ∈ N. To show that

this problem is unsolvable we will verify that I = {𝑒 ∈ N
�� 𝜙𝑒 (𝑦)↓ for all 𝑦 ∈ N} is a nontrivial index set.

It is not empty because we can write a program that returns its input. By Church’s Thesis there is a
Turing machine with that behavior. That machine’s index is a member of I.

It is not equal to N because we can write a program that does not halt on any input. By Church’s Thesis
there is a Turing machine with that behavior and the machine’s index is not a member of I.
We finish verifying that I is an index set. Suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because

𝑒 ∈ I we know that 𝜙𝑒 (𝑦)↓ for all 𝑦 ∈ N. Because the two have the same behavior, 𝜙𝑒 (𝑦)↓ for all 𝑦 also.
Therefore 𝑒 ∈ I and I is an index set.

(b) This set is the complement of the one in the prior item. Exercise 6.33 shows that the complement of an
index set is also an index set. But we don’t have that result in the main section body so we will verify that
the given problem is unsolvable without reference to it.

The problem is: given an index 𝑒, decide whether 𝜙𝑒 (𝑦)↑ for some 𝑦 ∈ N. To show that this is unsolvable
we will verify that I = {𝑒 ∈ N

�� 𝜙𝑒 (𝑦)↑ for some 𝑦 ∈ N} is a nontrivial index set.
The set I is not empty because we can write a program that that does not halt on any input and then by

Church’s Thesis there is a Turing machine with that behavior. That machine’s index is a member of I.
The set is not equal to N because we can write a program that returns its input and then by Church’s

Thesis there is a Turing machine with that behavior. That machine’s index is not a member of I.
We finish verifying that I is an index set. Suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because

𝑒 ∈ I we know that 𝜙𝑒 (𝑦)↑ for at least one 𝑦 ∈ N. Because the two have the same behavior, 𝜙𝑒 (𝑦)↑ for at
least one 𝑦 also. Therefore 𝑒 ∈ I and I is an index set.

II.6.25 Each answer just gives the numbered fill-ins.
(a) (1) 𝜙𝑒 (𝑥)↓ for all inputs 𝑥 that are is a multiple of 5. (2) and (3) See Figure 29 on page 68. (4) 𝜙𝑒 (5𝑘)↓ for
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Figure 28, for question II.6.23: The machines used to show that I is not trivial.
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Figure 29, for question II.6.25: The machines used to argue that I is not trivial.

all 𝑘 ∈ N. (4) 𝜙𝑒 (5𝑘)↓ for all 𝑘 ∈ N also.
(b) (1) 𝜙𝑒 (𝑥) = 7 for some input 𝑥 . (2) and (3) See Figure 30 on page 69. (4) 𝜙𝑒 (𝑥) = 7 for some input 𝑥 ∈ N.

(4) 𝜙𝑒 (𝑥) = 7 for the same 𝑥 .
II.6.26 For both items we will use Rice’s Theorem.
(a) We will show that this is a nontrivial index set: I = {𝑒 ∈ N

�� P𝑒 accepts an infinite language}.
First, I is nonempty because the set L = B∗ is infinite and we can easily write a Turing machine to

output 1 on all inputs, which accepts this subset of B. The index of that Turing machine is an element of I.
Second, I does not equal N because we can easily write a Turing machine to output 0 on all inputs, which

accepts the empty subset of B, which is not infinite. The index of that Turing machine is not an element
of I.

Finally, to verify that I is an index set, suppose that 𝑒 ∈ I and that 𝑒 ∈ N is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because
𝑒 ∈ I there is an infinite L ⊆ B∗ so that P𝑥 accepts L. Because 𝜙𝑒 ≃ 𝜙𝑒 the set of bit strings for which P𝑒

outputs 1 equals the set for which P𝑥 outputs 1, and so P𝑒 also accepts an infinite set of bit strings. Thus
𝑒 ∈ I, and I is an index set.

(b) We will show that I = {𝑒 ∈ N
�� P𝑒 accepts 101} is a nontrivial index set. First, I is nonempty because we

can write a Turing machine to output 1 on all inputs, which accepts the string 101. The index of that Turing
machine is an element of I. Second, I does not equal N because we can write a Turing machine to output 0
on all inputs, which does not accept the string 101. The index of that Turing machine is not an element of I.

Finally, to verify that I is an index set, suppose that 𝑒 ∈ I and that 𝑒 ∈ N is such that 𝜙𝑥 ≃ 𝜙𝑥 . Because
𝑒 ∈ I the machine P𝑒 accepts 101. Because 𝜙𝑒 ≃ 𝜙𝑒 , the machine P𝑒 also accepts 101. Thus 𝑒 ∈ I and I is
an index set.

II.6.27 We will use Rice’s Theorem so consider I = {𝑒
�� 𝜙𝑒 (𝑥)↓ for some 𝑥 ∈ N}. This set is not empty because

we can write a Turing machine that halts on all inputs. This set is not equal to N because we can write a
Turing machine that fails to halt for any input.

To show this is an index set suppose that 𝑒 ∈ I and that the number 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because 𝑒 ∈ I
there is a number 𝑥0 such that 𝜙𝑒 (𝑥0)↓. Then 𝜙𝑒 (𝑥0)↓ also, because 𝜙𝑒 ≃ 𝜙𝑒 . Thus 𝑒 ∈ I and this is an index
set.

II.6.28 We can produce two Turing machines, P𝑒 and P𝑒 that have the same behavior, 𝜙𝑒 ≃ 𝜙𝑒 , but 𝑒 ∈ J and
𝑒 ∉ J . Here are two such machines.

P𝑒 = {𝑞0BB𝑞0, 𝑞011𝑞0, 𝑞1BB𝑞0 }
P𝑒 = {𝑞0BB𝑞0, 𝑞011𝑞0 }
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Figure 30, for question II.6.25: The machines used to argue that I is not trivial.

II.6.29 Briefly, we cannot tell anything by whether the machine ‘goes on’. It can go on to do quite complex
things.

For more, we can reduce this problem to the Halting problem. Consider this𝜓 : N2 → N.

𝜓 (𝑥,𝑦) =
{
42 – if machine P𝑥 halts on 𝑥 and 𝑦 = 𝜀

↑ – otherwise

(We take this machine to have tape alphabet Σ = {B, 1}.) This is intuitively computable so Church’s Thesis
gives that there is a Turing machine with this behavior, and we can assume it has index 𝑒0.

Apply the s-m-n Theorem to parametrize 𝑥 , giving a family of machines and associated computable
functions as here.

𝜙𝑠 (𝑒0,𝑥 ) (𝑦) =
{
42 – if machine P𝑥 halts on 𝑥 and 𝑦 = 𝜀

↑ – otherwise

Then 𝜙𝑥 (𝑥)↓ if and only if the function 𝜙𝑠 (𝑒0,𝑥 ) halts only on𝑦 = 𝜀. So if we could check the latter mechanically
then we could mechanically solve the Halting problem, which of course we cannot.

II.6.30 The Padding Lemma, Lemma 2.16, says that every computable function has infinitely many indices. So
if the set contains 𝑒 then it must contain the infinitely many indices 𝑒 such that 𝜙𝑒 ≃ 𝜙𝑒 .

II.6.31 We will call each set I.
(a) Suppose that 𝑒 ∈ I and suppose that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because 𝑒 ∈ I the machine P𝑒 halts on at least

five inputs, that is, the function 𝜙𝑒 converges on at least five inputs. Because 𝜙𝑒 ≃ 𝜙𝑒 , the function 𝜙𝑒 also
halts on at least five inputs, namely, the same five. Thus 𝑒 ∈ I also.

(b) Suppose that 𝑒 ∈ I and suppose also that 𝑒 ∈ N is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because 𝑒 ∈ I the function 𝜙𝑒 is
one-to-one. Because 𝜙𝑒 ≃ 𝜙𝑒 , the function 𝜙𝑒 is also one-to-one. Thus 𝑒 ∈ I.

(c) Suppose that 𝑒 ∈ I and also that 𝑒 ∈ N is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because 𝑒 ∈ I the function 𝜙𝑒 is either total or
else 𝜙𝑒 (3)↑. In the first case, that 𝜙𝑒 is total, because 𝜙𝑒 ≃ 𝜙𝑒 , the function 𝜙𝑒 is also total. In the case that
𝜙𝑒 (3)↑, because they have the same behavior, 𝜙𝑒 (3)↑ also. In either case, 𝑒 ∈ I.

II.6.32
(a) The relation ≃ is reflexive because a Turing machine P𝑒 has the same behavior as itself: 𝜙𝑒 ≃ 𝜙𝑒 . It is

symmetric because if P𝑒 has the same behavior as P𝑒 then the converse also holds. Transitivity is just as
clear.

(b) Each equivalence class is a set of integers 𝑒 ∈ N. Two integers are together in a class, 𝑒, 𝑒 ∈ C if the input-
output behaviors of the associated Turing machines P𝑒 and P𝑒 are the same, 𝜙𝑒 ≃ 𝜙𝑒 . (As an example, one
class contains the indices of all Turing machines that double the input, C = {𝑒 ∈ N

�� 𝜙𝑒 (𝑥) = 2𝑥 for all 𝑥 }.)
(c) We follow the hint. Suppose that I is an index set and that 𝑒 ∈ C is an element of I. If 𝑒 ∈ C then 𝜙𝑒 ≃ 𝜙𝑒

because C is an equivalence class for the relation ≃. But I is an index set so 𝑒 ∈ I also.
II.6.33
(a) Let I be an index set and consider the complement, Ic. Suppose that 𝑒 ∈ Ic and suppose also that 𝑒 ∈ N is

such that 𝜙𝑒 ≃ 𝜙𝑒 . We will show that 𝑒 ∈ Ic.
By the definition of set complement, either 𝑒 ∈ I or 𝑒 ∈ Ic. If 𝑒 ∈ I then because 𝜙𝑒 ≃ 𝜙𝑒 and because I

is an index set, we have that 𝑒 ∈ I also. This contradicts that 𝑒 ∈ Ic and therefore 𝑒 ∈ Ic.
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Figure 31, for question II.6.34: Sketches of machines for the proof of half of Rice’s Theorem.

(b) Fix a collection I𝑗 of index sets and consider the union I = ∪𝑗I𝑗 . Suppose that 𝑒 ∈ I and suppose also that
𝑒 ∈ N is such that 𝜙𝑒 ≃ 𝜙𝑒 . We will show that 𝑒 ∈ I.

The number 𝑒 is an element of the union ∪𝑗I𝑗 = I so it is an element of some I𝑗0 . Because 𝜙𝑒 ≃ 𝜙𝑒 and
because I𝑗0 is an index set, the number 𝑒 is an element of I𝑗0 , and is therefore an element of the union I.
Thus I is an index set.

(c) Let I𝑗 be a collection of index sets and let I = ∩𝑗I𝑗 . Suppose that 𝑒 ∈ I, and also that 𝑒 ∈ N is such that
𝜙𝑒 ≃ 𝜙𝑒 . We will show that 𝑒 ∈ I

Since 𝑒 is an element of the intersection ∩𝑗I𝑗 = I, it is an element of each set I𝑗 . Because 𝜙𝑒 ≃ 𝜙𝑒 and
because I𝑗 is an index set, the number 𝑒 is an element of I𝑗 also. As 𝑒 is an element of each I𝑗 , it is an
element of the intersection I. Thus I is an index set.

II.6.34 The differences between this case and the one in the section are very small. The proof there starts
by considering an index set I. It fixes an index 𝑒0 ∈ N so that 𝜙𝑒0 (𝑦)↑ for all inputs 𝑦 ∈ N. It then does the
𝑒0 ∉ I case. So what’s left is to do 𝑒0 ∈ I. Here’s a difference: because I is nontrivial, it does not equal N so
there is some 𝑒1 ∉ I. Because I is an index set, 𝜙𝑒0 ; 𝜙𝑒1 . Thus there is an input 𝑦 such that 𝜙𝑒1 (𝑦)↓.

Consider the flowchart on the left of Figure 31 on page 70. By Church’s Thesis there is a Turing machine
with that behavior; call it P𝑒 . Apply the s-m-n theorem to parametrize 𝑥 , resulting in the uniformly computable
family of functions 𝜙𝑠 (𝑒,𝑥 ) , whose computation is outlined on the right of Figure 31 on page 70. We’ve
constructed the machines so that if 𝜙𝑥 (𝑥)↑ then 𝜙𝑠 (𝑒,𝑥 ) ≃ 𝜙𝑒0 and thus 𝑠 (𝑒, 𝑥) ∈ I. Further, if 𝜙𝑥 (𝑥)↓ then
𝜙𝑠 (𝑒,𝑥 ) ≃ 𝜙𝑒1 and thus 𝑠 (𝑒, 𝑥) ∉ I. Therefore if I were mechanically computable, so that we could effectively
check whether 𝑠 (𝑒, 𝑥) ∈ I, then we could mechanically solve the Halting problem. (This part of the argument
is like the one in the section, but with the cases of 𝑠 (𝑒, 𝑥) ∈ I and 𝑠 (𝑒, 𝑥) ∉ I reversed.)

II.7.7 Not completely right. It is right that a set is computably enumerable if it can be enumerated by a
Turing machine. That is, a Turing machine exists that, when started on a blank tape, will print all of the sets
members on the tape. (This machine just outputs 𝑓 (0), 𝑓 (1), . . . It may run forever if there are infinitely
many elements in the set.) However, the “but is not computable” is wrong. Any computable set is computably
enumerable (although there are computably enumerable sets that are not computable). For instance, the set of
even numbers is computably enumerable and also computable.

II.7.8 For each part we will produce a computable total function 𝑓 : N → N that has the given set as range.
(a) The identity function, 𝑓 (𝑥) = 𝑥 , works.
(b) The function 𝑓 (𝑥) = 2𝑥 comes to mind.
(c) 𝑓 (𝑥) = 𝑥2
(d) This will do.

𝑓 (𝑥) =

5 – if 𝑥 = 0
7 – if 𝑥 = 1
11 – otherwise

II.7.9 For each item we produce an effective function 𝑓 : N → N.
(a) The association 𝑛 ↦→ 𝑛-th prime is a function. Clearly we can write a program that computes it, so by

Church’s Thesis it is effective.
(b) To compute this function one approach is brute force: generate the 𝑛-th one by searching through the
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natural numbers, 0, 1, . . . , checking each to see if its digits appear in non-increasing order. Output the 𝑛-th
such number.

II.7.10 Yes to all four. For the first and fourth, we can easily write a Turing machine that halts on all numbers,
so the set of all natural numbers is computably enumerable. For the second and third, in the first section of
the first chapter we saw a Turing machine for which there are no inputs that result in it halting, so the empty
set is computably enumerable.

II.7.11 The first is computable, since to decide if a number 𝑒 is a member of this set we can run a simulation
for twenty steps. The second is computably enumerable but not computable. It is computably enumerable
because we can dovetail computations for the indices 𝑒 ∈ N. It is not computable because clearly if we could
solve it then we could solve the problem of deciding membership in {𝑒

�� 𝜙𝑒 (𝑦)↓}, but we cannot solve that
problem by Rice’s Theorem.

II.7.12
(a) This set is computable, since we can just run the machine for a hundred steps. Because it is computable, it

is also computably enumerable.
(b) This set is also computable, again since we can just run the machine for a hundred steps. Because it is

computable, it is also computably enumerable.
II.7.13
(a) Decidable. Indices are source-equivalent: there is a program that takes in the index 𝑒 and puts out the set

of instructions for P𝑒 . With that set of instructions, just scan it for 𝑞4,
(b) Semidecidable but not decidable. To show it is computably enumerable, use dovetailing on the indices 𝑒 ∈ N

to run P𝑒 on input 3. When a the machines halts, enumerate its 𝑒 into the set. As to being not computable,
we know from the prior section that this is not a computable set.

(c) Computable. Given 𝑒, decide if it is in the set by running P𝑒 on 3 for the hundred steps.
II.7.14 The function is an enumeration but unless it is computable, it is not a computable enumeration. This

can happen; an example of a countable set that is not computably enumerable is 𝐾c.
II.7.15 Briefly, we dovetail. First run P0 on input 5 for one step. Then run P0 on input 5 for a second step
and P1 on input 5 for one step. Then run P0 for a third step, along with P1 for its second step and P2 on
input 5 for one step. Continue in this way. The enumerating function 𝑓 : N → N is: 𝑓 (0) is the index of the
first such computation to halt, 𝑓 (1) is the index of the second, etc. (Note that 𝐴5 is infinite since any finite set
is computable, so computation of any 𝑓 (𝑖) will halt in a finite number of steps.)

II.7.16 Dovetail. Start by running P0 on input 2 for one step. Then run P0 on input 2 for a second step and P1
on input 2 for one step. Next, run P0 for a third step, along with P1 for its second step and P2 on input 2 for
one step. Continue in this way. Then 𝑓 (0) is the index of the first such computation to halt and output 4,
𝑓 (1) is the index of the second, etc. (This set is infinite since any finite set is computable and this set is clearly
not computable. Thus computation of any 𝑓 (𝑖) will halt in a finite number of steps.)

II.7.17 The complement of the Halting problem set, 𝐾c, is countable since it is a subset of N. Thus it has
an enumeration, a function with domain N whose range is this set. But Corollary 7.6 shows that it has no
computable enumeration.

II.7.18 There are of course many correct answers. One answer is to take 𝐾 as the first set. For the second,
take 𝐾 with its smallest element omitted and for the third, take 𝐾 with the smallest two elements omitted.

A perhaps less wiseguy-ish answer is to take 𝐾 along with some sets that we used as examples in the prior
section, such as {𝑒 ∈ N

�� 𝜙𝑒 (3)↓} and {𝑒 ∈ N
�� there is 𝑥 ∈ N so that 𝜙𝑒 (𝑥) = 7}.

II.7.19
(a) Enumerate it by dovetailing. The difference from some of the dovetail examples is that here there are two

numbers, 𝑒 and 𝑥 . So recall Cantor’s pairing function.

Number 0 1 2 3 4 5 6 . . .
Pair ⟨0, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 2⟩ ⟨1, 1⟩ ⟨2, 0⟩ ⟨0, 3⟩ . . .

To dovetail, first run P0 on input 0 for one step. Then run P0 on input 0 for a second step along with P0 on
input 1 for one step. Next, run P0 on input 0 for its third step, and P0 on input 1 for its second step, and P1
on input 0 for one step. The enumerating function outputs ⟨𝑒, 𝑥⟩ when P𝑒 halts on 𝑥 .
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(b) This is immediate from the second item of Lemma 7.3.
II.7.20 The two collections are not disjoint. Rather, the collection of computable sets is a subset of the collection

of computably enumerable sets.
Further, clearly the collection {𝑊𝑒

�� 𝑒 ∈ N} is countable. Since there are uncountably many subsets of N
(because the power set of N has cardinality greater than N), the computably enumerable sets do not include
every subset of N.

II.7.21 The computable sets are also computably enumerable so we will have shown that Tot is neither
computable nor computably enumerable if we have shown that it is not computably enumerable.

So, assume that Tot = {𝑒
�� 𝜙𝑒 (𝑥)↓ for all 𝑥 } is computably enumerable, enumerated by 𝑓 : N → N.

Following the hint, that gives a table like the one starting Section on Unsolvability, because the 𝑖, 𝑗 entry 𝜙𝑖 ( 𝑗)
is sure to halt. Diagonalize: consider ℎ : N → N given by ℎ(𝑒) = 1 + 𝜙𝑒 (𝑒). It is clearly effective, total, and
unequal to any member of Tot, which is a contradiction.

II.7.22 We can easily show that the set 𝑆 = {𝑒
�� 𝜙𝑒 (3)↑} is unsolvable, for instance with Rice’s theorem. Clearly

the complement, 𝑆c = {𝑒
�� 𝜙𝑒 (3)↓}, is computably enumerable. If 𝑆 were also computably enumerable then

by Lemma 7.5 that would contradict that it is not computable.
II.7.23 Yes, the Halting problem set 𝐾 fits both criteria. Three other examples are the set {𝑒 ∈ N

�� 𝜙𝑒 (3)↓},
the set {𝑒 ∈ N

�� there is 𝑥 ∈ N so that 𝜙𝑒 (𝑥) = 7}, and {𝑒 ∈ N
�� 𝜙𝑒 (𝑥) = 2𝑥 for all 𝑥 ∈ N}.

II.7.24 There are only countably many Turing machines to do the enumeration.
II.7.25 The answer to the second effectively answers the first, but we will do both items anyway.
(a) Let 𝑆 = {𝑠0, ... 𝑠𝑘−1 } for 𝑘 ∈ N. Then this function enumerates 𝑆 .

𝑓 (𝑥) =
{
1 – if 𝑥 = 𝑠0 or . . . or 𝑥 = 𝑠𝑘−1
0 – otherwise

It is clearly computable.
(b) The algorithm inputs a set of numbers 𝑆 = {𝑠0, ... 𝑠𝑘−1 }. It returns a function, the one in the prior item.

This function is clearly computable.
Another approach is to start with the number 𝑘 = |𝑆 |. Define a function with 𝑘 + 1 inputs, 𝑥0, ... 𝑥𝑘−1, 𝑦

that tests whether 𝑦 equals any of the 𝑥𝑖 ’s, and returns 1 if it does or 0 if it does not. Where 𝑆 = {𝑠0, ... 𝑠𝑘−1 },
apply the s-m-n Theorem to freeze the value of each 𝑥𝑖 to be 𝑠𝑖 . That’s the desired function.

II.7.26 Let the computably enumerable set be𝑊 and fix a computable enumeration 𝜙 (0), 𝜙 (1), . . . We will
define an 𝑆 ⊆𝑊 that is computable. The first element of 𝑆 is 𝑠0 = 𝜙 (0). The second element 𝑠1 is the first
member of the enumeration that is larger than 𝑠0; such a number must eventually appear because𝑊 is infinite.
In general 𝑠𝑖 is the first element of the enumeration that is larger than 𝑠𝑖−1 (as with 𝑠1, one must eventually
appear).

The set 𝑆 is computably enumerable because we have just described a mechanical procedure to enumerate
it. It is computable because given a number 𝑛 ∈ N, to determine whether it is an element of 𝑆 just wait until
either it is enumerated into 𝑆 or a number larger than it is enumerated into 𝑆 , which shows 𝑛 ∉ 𝑆 .

II.7.27
(a) Arguing by Church’s Thesis: compute steps(𝑒) by running P𝑒 on input 𝑒 and if it ever halts, outputting the

number of steps.
(b) If steps were total in addition to being computable then we could solve the Halting problem. To decide

whether 𝑒 ∈ 𝐾 , first compute steps(𝑒). Then run P𝑒 on input 𝑒 for steps(𝑒)-many steps. If this computation
has not halted by then, it will never halt.

(c) This is the same as the prior argument, but with 𝑓 in place of steps.
II.7.28 Fix an 𝑟 ∈ 𝑅. Then this function

𝑔(𝑖) =
{
𝑓 (𝑖) – if 𝑓 (𝑖)↓
𝑟 – otherwise

is total, computable, and enumerates 𝑅.



Page 73

Y
N

Y N

Start
Read G

q40 (G ) = 1?
Print 1 q41 (G ) = 1?

Print 1 Print 0
End

N
Y

Y
N

Start
Read G

q40 (G ) = 1?

Print 0
q41 (G ) = 1?

Print 1
End

Start
Read G

Print 1 − q4 (G )

End

Figure 32, for question II.7.32: Machines to decide union, intersection, and complement of computable sets.

II.7.29 Suppose that 𝑆 is computable, so that its characteristic function

1𝑆 (𝑥) =
{
1 – if 𝑥 ∈ 𝑆
0 – if not

is a computable function. To enumerate 𝑆 in increasing order the idea is to run 1𝑆 (0), 1𝑆 (1), . . . , each of
which must converge because the function is computable, and then the first element of 𝑆 is the smallest, the
second element is the second smallest, etc.

More formally, we define the enumerating function by: where 𝑠0 is the smallest element of 𝑆 then 𝑓 (0) = 𝑠0,
and where we have values for 𝑓 (0), . . . 𝑓 (𝑘) then the value for 𝑓 (𝑘 + 1) is the smallest number 𝑥 such that
𝑥 > 𝑓 (𝑘) and 1𝑆 (𝑥) = 1. Because 𝑆 is infinite, there is always such an 𝑥 .

For the other direction, assume that 𝑆 is an infinite set that is enumerable in increasing order, by the
computable function ℎ. Given 𝑥 , to decide whether 𝑥 ∈ 𝑆 , compute ℎ(0), ℎ(1), . . . until one of the outputs
is 𝑥 (in which case 𝑥 ∈ 𝑆) or one of the outputs is a number larger than 𝑥 (in which case 𝑥 ∉ 𝑆).

II.7.30 One direction is easy. If a set is computably enumerable without repetition then it must be infinite,
simply because if it were finite then the enumeration would run out of new elements to output.

The other direction is about memoizing. Let the set 𝑆 be infinite and computably enumerable with
enumerating function 𝑓 . We will produce an enumerating function 𝑔 that is one-to-one. Define 𝑔(0) = 𝑓 (0).
For each 𝑖 ∈ N define 𝑔(𝑖 + 1) to be the first element of 𝑆 enumerated by 𝑓 after it enumerates 𝑔(𝑖) that is not
an element of {𝑔(0), ... 𝑔(𝑖) }.

II.7.31 The set of ordered pairs { ⟨𝑎, 𝑏⟩
�� 𝑎 ∈ 𝐾 and 𝑏 ∈ 𝐾c } is not computably enumerable, or else 𝐾c would

be computably enumerable. Similarly it is not co-computably enumerable.
II.7.32
(a) No. The set N is obviously computable. Its subset 𝐾 is not.
(b) Yes. Let 𝑆0 ⊆ N and 𝑆1 ⊆ N be computable via the functions 𝜙𝑒0 and 𝜙𝑒1 . A sketch of the machine to

compute the union is in Figure 32 on page 73.
(c) Yes. A sketch of the machine to compute the intersection is in Figure 32 on page 73.
(d) Yes. A sketch of the machine to compute the complement is in Figure 32 on page 73.
II.7.33
(a) No. The set N is computably enumerable. Its subset, the complement of the Halting problem set, ∁𝐾 , is not

computably enumerable.
(b) Yes. Let𝑊𝑒0,𝑊𝑒1 ⊆ N be computably enumerable, via 𝜙𝑒0, 𝜙𝑒1 : N → N. Dovetail enumerations of the two

sets. That is, run P𝑒0 and P𝑒1 on input 0 for a step each. Then, run P𝑒0 and P𝑒1 on input 0 for a second
step, and also run P𝑒0 and P𝑒1 on input 1 for a step each. Continue in this way, and when a number is
enumerated into either of𝑊𝑒0 or𝑊𝑒1 , enumerate it into their union.

(c) Yes. As in the prior item, dovetail enumerations of the two sets. When a number has been enumerated into
both of𝑊𝑒0 or𝑊𝑒1 , enumerate it into their intersection.
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(d) No. The Halting problem set 𝐾 is computably enumerable but its complement is not.
II.7.34 Let 𝑆 be the domain of a partial computable function 𝑓 . We will produce a partial computable function 𝑔
whose range is 𝑆 by dovetailing.

First run the computation of 𝑓 (0) for a step. Then run the computation of 𝑓 (0) for a second step and
the computation of 𝑓 (1) for a step. Next run the computation of 𝑓 (0) for its third step, run the computation
of 𝑓 (1) for its second step, and run the computation of 𝑓 (2) for a step. Continue in this way. Define 𝑔(0) to
be the first number 𝑖 where the computation of 𝑓 (𝑖) halts, define 𝑔(1) to be the next number 𝑗 where the
computation of 𝑓 ( 𝑗) halts, etc. Clearly 𝑔 is partial computable and has range 𝑆 .

The other direction works much the same way. We are given a partial computable 𝑔 whose range is 𝑆
and we will produce a partial computable 𝑓 whose domain is 𝑆 by dovetailing computations of 𝑔. First
run 𝑔(0) for a step. Then run the computation of 𝑔(0) for a second step and the computation of 𝑔(1) for
a step. Next run 𝑔(0) for its third step, 𝑔(1) for its second step, and 𝑔(2) for a step. Continue in this way.
When a computation halts, 𝑔(𝑖) = 𝑘, define 𝑓 (𝑘) to have some nominal value, such as 42. Clearly 𝑓 is partial
computable and has domain 𝑆 .

II.8.12
(a) This is wrong. For instance, the empty set is reducible to the Halting problem set, ∅ ≤𝑇 𝐾 , but while a

decider for ∅ is trivial, there is no computable decider for 𝐾 .
The correct statement is the opposite: if 𝐴 ≤𝑇 𝐵 then a decider for 𝐵 can be used to decide the set 𝐴.

(b) This is wrong. As in the prior item, if 𝐴 is the empty set then it is computable. Then 𝐴 ≤𝑇 𝐵 where 𝐵 equals
the Halting problem set 𝐾 , but 𝐵 is not decidable. The other way around is right: if 𝐵 is decidable then 𝐴 is
decidable also.

(c) True. If 𝐴 ≤𝑇 𝐵 then 𝜙𝐵𝑒 = 1𝐴 for some index 𝑒 ∈ N. If we could compute 𝐵 then we could use that ability
to compute 𝐴. So if 𝐴 is uncomputable then 𝐵 is also uncomputable.

II.8.13 A decider is a Turing machine (whose computed function is the characteristic function of some set). An
oracle is an addition to a Turing machine, a set that the machine can query.

II.8.14 First of all, they are fascinating and fun. Is that not enough?
Beyond that, they help us understand the relationships among problems. In the Complexity chapter we

will expand on the idea to help understand how many everyday, practical, problems are related. This will
include trying to understand which are easy and which are hard.

II.8.15 Their answer captures the spirit of the reason for considering oracle computations. But it is lacking in
two ways. The first is a technicality: there are oracles such as the empty set, where computations relative to
that oracle can only solve problems that you could solve already.

The second lack is that their answer doesn’t refer to the mechanism at all. That is, the oracle set doesn’t
solve the problems. We might informally speak of an oracle as solving problems but for a definition we should
say that we give a machine access to answers about membership in the set and then the input-output behavior
of the machine is the solution to those problems.

II.8.16 We take the first question to ask: is there a most-powerful oracle, one that solves every problem? The
answer is no. Given an oracle 𝑋 ⊆ N, the problem of deciding membership in 𝐾𝑋, the Halting problem in that
oracle, is not solvable from 𝑋 .

The second question asks whether, given a set 𝑆 ⊆ 𝑁 , there is an oracle that suffices to determine
membership in 𝑆 . The answer is yes; the oracle 𝑆 will do.

II.8.17 Each oracle can only compute answers to some problems. (Countably many of them.) But for each
oracle there are problems that it cannot solve. (Because there are uncountably many subsets of N, uncountably
many problems.)

II.8.18 In an oracle computation that halts, there are indeed only finitely many calls to the oracle. But the calls
when the computation’s input is 0 may well differ from the calls when the computation’s input is 1.

II.8.19 See Figure 33 on page 75.
(a) The flowchart on the left is straightforward.
(b) For the flowchart on the right, notice that is 𝑥 is odd then 𝑥/2 is a natural number.
II.8.20 See Figure 34 on page 75.
II.8.21 Mimicing Example 8.2, we go in two steps. First, on the left of Figure 35 on page 76 is a flowchart
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Figure 33, for question II.8.19: Showing that 𝐵 ≤𝑇 2𝐵 and 2𝐵 ≤𝑇 𝐵.
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Figure 34, for question II.8.20: Oracle machine that can use the set of primes to find prime in the input.

sketching a program. By Church’s Thesis there is a Turing machine that computes it. Let the index of that
machine be 𝑒. Apply the s-m-n theorem to get a family of machines parametrized by 𝑥 . The 𝑥 -th member
of that family is shown in the middle. Clearly it halts for all input if and only if P𝑥 halts on inputs 3 and 4.
Thus, P𝑥 halts on inputs 3 and 4 if and only if 𝑠 (𝑒, 𝑥) ∈ 𝐾 . Restated, there is a computable function, namely
𝑥 ↦→ 𝑠 (𝑒, 𝑥), so that 𝑥 ∈ {𝑥

�� 𝜙𝑥 (3)↓} if and only if 𝑠 (𝑒, 𝑥) ∈ 𝐾 , and therefore {𝑥
�� 𝜙𝑥 (3)↓} ≤𝑇 𝐾 .

The second step uses that computable function 𝑥 ↦→ 𝑠 (𝑒, 𝑥) for the oracle machine. That machine is on the
right of the figure.

II.8.22 By definition, 𝐾0 = { ⟨𝑒, 𝑥⟩
�� 𝜙𝑒 (𝑥)↓}. So 𝑒 ∈ 𝑆 if and only if ⟨𝑒, 3⟩ ∈ 𝐾0.

II.8.23 Let 𝐷 = {𝑥
�� 𝜙𝑥 (𝑦) = 2𝑦 for all inputs 𝑦 }. Consider this function.

𝜓 (𝑥,𝑦) =
{
2𝑦 – if P𝑥 halts on input 𝑥
↑ – otherwise

We can produce this behavior with a program that takes two inputs, 𝑥,𝑦 ∈ N, simulates running P𝑥 on input 𝑥 ,
prints 2𝑦, and then stops. See the flowchart on the left of Figure 36 on page 76. Church’s Thesis gives that
there is a Turing machine, with an index 𝑒, so that 𝜙𝑒 = 𝜓 .

Apply the s-m-n theorem to get a family of functions 𝜙𝑠 (𝑒,𝑥 ) that take in one input 𝑦 and output 2𝑦 if
𝜙𝑥 (𝑥) ↓, or diverges otherwise. These are sketched in the middle of the figure. Then 𝑥 ∈ 𝐾 if and only if
𝑠 (𝑒, 𝑥) ∈ 𝐷. On the right of the figure is an oracle machine giving that 𝐾 ≤𝑇 𝐷, as required.

II.8.24
(a) Let I = {𝑒

�� 𝜙𝑒 ( 𝑗) = 7 for some 𝑗 }. This set is not empty because one element is an index of a Turing
machine that outputs 7 for all inputs. This set is not all of N because one non-element is an index of a
Turing machine that fails to halt on all inputs.

To see that I is an index set, suppose that 𝑒 ∈ I and that 𝑒 is such that 𝜙𝑒 ≃ 𝜙𝑒 . Because 𝑒 ∈ I, there is
an input 𝑗 so that 𝜙𝑒 ( 𝑗) = 7. Because 𝜙𝑒 ≃ 𝜙𝑒 , for the same 𝑗 we have 𝜙𝑒 ( 𝑗) = 7, and therefore 𝑒 ∈ I also.
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Figure 35, for question II.8.21: The set {𝑥
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Figure 36, for question II.8.23: Showing that 𝐾 ≤𝑇 {𝑥

�� 𝜙𝑥 (𝑦) = 2𝑦 for all input 𝑦 }.

(b) As in Example 8.2, we go in two steps. The first is that on the left of Figure 37 on page 77 is a flowchart
sketching a program. The second chart expands on the nested loop involved in ‘dovetail’. By Church’s Thesis
there is a Turing machine that computes this flowchart. Let the index of that machine be 𝑒. Apply the s-m-n
theorem to get a family of machines parametrized by 𝑥 , shown in the third flowchart. Clearly it halts for all
inputs 𝑦 if and only if P𝑥 outputs a 7 for any input. Thus, P𝑥 ever outputs a 7 if and only if 𝑠 (𝑒, 𝑥) ∈ 𝐾 .
That means there is a computable function, 𝑥 ↦→ 𝑠 (𝑒, 𝑥), where 𝑥 ∈ {𝑥

�� 𝜙𝑥 ( 𝑗) = 7 for some 𝑗 } if and only
if 𝑠 (𝑒, 𝑥) ∈ 𝐾 .

The second step is to use the computable function 𝑥 ↦→ 𝑠 (𝑒, 𝑥) to get the oracle machine in Figure 38 on
page 77.

II.8.25 On the left of Figure 39 on page 77 is a sketch of a program. By Church’s Thesis there is a Turing
machine with the same behavior. Let the index of that machine be 𝑒. Apply the s-m-n theorem to get a family
of machines parametrized by 𝑥 , whose 𝑥 -th member, P𝑠 (𝑒,𝑥 ) , is shown in the middle. Clearly it halts for all
inputs 𝑦 if and only if 𝑥 ∈ 𝑆 . In particular, it halts for 𝑦 = 𝑠 (𝑒, 𝑥) if and only if 𝑥 ∈ 𝑆 . Thus, we have a
computable function 𝑥 ↦→ 𝑠 (𝑒, 𝑥) so that 𝑥 ∈ 𝑆 if and only if 𝑠 (𝑒, 𝑥) ∈ 𝐾 . With that, the oracle machine on the
right gives that 𝑆 ≤𝑇 𝐾 .

II.8.26 Consider the routine sketched on the left of Figure 40 on page 77. By Church’s Thesis there is a Turing
machine with that behavior. Let its index be 𝑒. Apply the s-m-ntheorem to get, as shown in the middle, the
machine P𝑠 (𝑒,𝑥 ) that computes the partial function 𝜙𝑠 (𝑒,𝑥 ) . This shows that there is a computable function,
namely 𝑥 ↦→ 𝑠 (𝑒, 𝑥), so that 𝑘 ∈ 𝐾 if and only if 𝑠 (𝑒, 𝑘) ∈ Tot. On the right is an oracle machine using that
computable function to show that 𝐾 ≤ Tot.

II.8.27
(a) If this function had a computable extension 𝑔 then we could solve the Halting problem, by running P𝑥 on

input 𝑥 for 𝑔(𝑥)-many steps. If it hasn’t halted by then, it will never halt.
(b) Consider the routine sketched on the left of Figure 41 on page 78. By Church’s Thesis there is a Turing

machine with that behavior. Let its index be 𝑒. In the middle is P𝑠 (𝑒,𝑥 ) , computing the partial function
𝜙𝑠 (𝑒,𝑥 ) . If 𝑥 ∉ 𝐾 then 𝜙𝑠 (𝑒,𝑥 ) (𝑦) is undefined for all inputs 𝑦, and this function is a member of Ext, since
for instance it is extended by the function that always returns 0, which is obviously computable. If 𝑥 ∈ 𝐾
then 𝜙𝑠 (𝑒,𝑥 ) (𝑦) = steps(𝑦) for all inputs 𝑦, and by the first item this is not a member of Ext. This gives a
computable function, namely 𝑥 ↦→ 𝑠 (𝑒, 𝑥), so that, by the first part of this question, 𝑘 ∈ 𝐾 if and only if
𝑠 (𝑒, 𝑘) ∉ Ext. The oracle machine on the right shows 𝐾 ≤ Ext.

II.8.28 The computation will proceed in exactly the same way, so it will come to the same result.
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Figure 37, for question II.8.24: Computing {𝑥
�� 𝜙𝑥 ( 𝑗) = 7 for some 𝑗 } with a 𝐾 oracle.
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Figure 38, for question II.8.24: Oracle machine for computing {𝑥

�� 𝜙𝑥 ( 𝑗) = 7 for some 𝑗 } from 𝐾 .
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Figure 39, for question II.8.25: The set {𝑥
�� 𝜙𝑥 (3)↓= 𝜙2𝑥 (3)↓} is 𝑇 -equivalent to 𝐾 .
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Figure 40, for question II.8.26: Computing 𝐾 with a Tot oracle.
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Figure 41, for question II.8.27: Computing 𝐾 with a Ext oracle.
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Figure 42, for question II.8.29: Computing 𝐴 from an 𝐴c oracle.

II.8.29 See Figure 42 on page 78.
II.8.30 If 𝐾 ≤𝑇 ∅ were true then there would be an oracle machine whose computed function 𝜙∅ is the

characteristic function of 𝐾 . But because membership in ∅ is itself computable we could replace oracle calls
with the computation itself, so that any time the machine asks if 𝑥 is an element of the oracle, we replace that
with ‘no’. That mechanically computes 𝐾 , which is impossible.

II.8.31 Refer to Figure 43 on page 79. The flowchart give in the question statement is on the left.
(a) True. This is shown in the flowchart in the middle. Basically, interchange the outputs of 1 and 0.
(b) True. This is shown in the right-hand flowchart. It is the same as the left-hand one but it tests whether 𝑓 (𝑥)

is not a member of the oracle.
(c) True. This is the left-hand flowchart again.
II.8.32 Any subset of N can be an oracle, so there are uncountably many oracles.
II.8.33 One is 𝐶 = {cantor(0, 𝑎)

�� 𝑎 ∈ 𝐴 } ∪ {cantor(1, 𝑏)
�� 𝑏 ∈ 𝐵 }. Clearly from this set we can answer

questions about membership in each of 𝐴 and 𝐵.
II.8.34 There are only countably many programs that can involve an oracle call. That is, there are only

countably many oracle-enhanced Turing machines.
II.8.35
(a) No. The Halting problem set 𝐾 is a subset of the natural numbers N but 𝐾 ≰𝑇 N, because the Halting

problem is unsolvable.
(b) No. The Halting problem set 𝐾 is not Turing reducible to N, but N = 𝐾 ∪ 𝐾c.
(c) No. The Halting problem set 𝐾 is not Turing reducible to ∅, but ∅ = 𝐾 ∩ 𝐾c.
(d) Yes. We can write this oracle-using program: read the input 𝑥 and if oracle(x) then output 0, otherwise

output 1.
II.8.36
(a) The natural definition is that a set 𝐵 is computably enumerable in the set 𝐴 if 𝐵 is the range of a total

𝐴-computable function, or if 𝐵 is empty. That is, 𝐵 is c.e. in 𝐴 if 𝐵 = {𝜙𝐴𝑒 (𝑥)
�� 𝑥 ∈ N} for some index 𝑒

where the function is total, or if 𝐵 = ∅.
(b) As in Lemma 8.4, we can output the elements of N without even referring to the oracle. The function

𝜙𝐴 (𝑥) = 𝑥 is computable, and does not need to ever refer to the oracle.
(c) Dovetail. First run the computation of P𝐴

0 on input 0 for one step. Then run the computation of P𝐴
0 on
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Y N

Start
Read G

Compute some 5 (G )
5 (G ) ∈ oracle?

Print 1 Print 0
End

Y N

Start
Read G

Compute some 5 (G )
5 (G ) ∈ oracle?

Print 0 Print 1
End

Y N

Start
Read G

Compute some 5 (G )
5 (G ) ∉ oracle?

Print 1 Print 0
End

Figure 43, for question II.8.31: Oracle machines for what 𝐴 ≤𝑇 𝐵 implies.

input 0 for a second step, and the computation of P𝐴
1 on input 1 for one step. Next run the computation of

P𝐴
0 on input 0 for its third step, the computation of P𝐴

1 on input 1 for its second step, and the computation
of P𝐴

2 on input 2 for one step. As computations halt, enumerate the index into 𝐾𝐴.
II.9.6
(a) Apply the Fixed Point Theorem to the computable function 𝑓 (𝑥) = 𝑥 + 7.
(b) Apply the Fixed Point Theorem to 𝑓 (𝑥) = 2𝑥 .
II.9.7 Consider the function 𝑓 : N → N defined by 𝑓 (𝑥) = 𝑦 where all of the digits in 𝑦 are one greater than
the digits in 𝑥 , except that a 9 in 𝑥 changes to a 0 in 𝑦. Thus 𝑓 (35) = 46 and 𝑓 (99) = 0. Clearly this is a
computable function that is total. Apply the Fixed Point theorem.

II.9.8
(a) No matter what numbering scheme we use for Turing machines, if it is acceptable then there is a Turing

machine that computes the same function as the machine with three times its index. That is, there exists a
𝑘 ∈ N so that 𝜙𝑘 = 𝜙3𝑘 .

(b) For any acceptable numbering scheme, there is a Turing machine that computes the same function as the
machine whose index is the square. That is, there exists a 𝑘 ∈ N so that 𝜙𝑘 = 𝜙𝑘2 .

(c) Consider this 𝑓 : N → N.

𝑓 (𝑥) =
{
1 – if 𝑥 = 5
0 – otherwise

For any acceptable numbering for Turing machines there will be a 𝑘 ∈ N so that 𝜙𝑘 = 𝜙 𝑓 (𝑘 ) .
(d) If the function is 𝑓 (𝑥) = 42 then the Fixed Point Theorem gives that for any acceptable numbering there is

a 𝑘 ∈ N so that 𝜙𝑘 = 𝜙 𝑓 (𝑘 ) = 𝜙42. The number 𝑘 = 42 comes to mind, but the Padding Lemma shows that
there are infinitely many such indices 𝑘.

II.9.9
(a) Consider the function on the left and observe that it is computed by the program sketched on the left of

Figure 44 on page 80. Church’s Thesis gives there is a Turing machine with this behavior. Let that machine’s
index be 𝑒0.

𝜓 (𝑥,𝑦) =
{
42 – if 𝑦 = 𝑥2

↑ – otherwise 𝜙𝑠 (𝑒0,𝑥 ) (𝑦) =
{
42 – if 𝑦 = 𝑥2

↑ – otherwise

Apply the s-m-n Theorem to get the family of functions on the right.
(b) The number 𝑒0 is fixed because it is the index of the Turing machine that we chose to compute𝜓 . So, define

𝑔 : N → N by 𝑔(𝑥) = 𝑠 (𝑒0, 𝑥).
(c) The Fixed Point Theorem gives a𝑚 ∈ N with 𝜙𝑚 = 𝜙𝑔 (𝑚) = 𝜙𝑠 (𝑒0,𝑚) . Thus𝑊𝑚 = {𝑚2 }.
II.9.10
(a) The function 𝑝 : N → N such that 𝑝 (𝑥) is the 𝑥 -th prime number is computable by Church’s Thesis.
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Y N

Start
Read G , ~
~ = G2?

Print 42 Infinite loop
End

Y N

Start
Read ~
~ = G2?

Print 42 Infinite loop
End

Figure 44, for question II.9.9: Flowcharts sketching the machine for𝜓 = 𝜙𝑒0 and the machine for 𝜙𝑠 (𝑒0,𝑥 ) .

Y N

Start
Read G , ~
~ = ? (G )?

Print 42 Infinite loop
End

Y N

Start
Read ~

~ = ? (G )?
Print 42 Infinite loop

End
Figure 45, for question II.9.10: Flowcharts outlining the machine for𝜓 = 𝜙𝑒0 and the machine for 𝜙𝑠 (𝑒0,𝑥 ) .

(b) We want to get the family of functions on the right side below, computed by the machines sketched on
the right of Figure 45 on page 80, as a uniformly computable family. By now this is a familiar situation.
Consider the function on the left, observe that it is computed by the machine sketched on the left of the
figure, cite Church’s Thesis to get that it has an index, and let that index be 𝑒0.

𝜓 (𝑥,𝑦) =
{
42 – if 𝑦 = 𝑝 (𝑥)
↑ – otherwise 𝜙𝑠 (𝑒0,𝑥 ) (𝑦) =

{
42 – if 𝑦 = 𝑝 (𝑥)
↑ – otherwise

Apply the s-m-n Theorem to get the uniformly computable family of functions on the right.
(c) The number 𝑒0 is fixed so 𝑠 (𝑒0, 𝑥) is a function only of the variable 𝑥 . To emphasize that, define 𝑔 : N → N

by 𝑔(𝑥) = 𝑠 (𝑒0, 𝑥). The Fixed Point Theorem gives a𝑚 ∈ N with 𝜙𝑚 = 𝜙𝑔 (𝑚) = 𝜙𝑠 (𝑒0,𝑚) , which halts only
when the input is the𝑚-th prime.

II.9.11 Consider the function on the left. By Church’s Thesis it is computable and so has an index; let that
index be 𝑒0.

𝜓 (𝑥,𝑦) =
{
42 – if 𝑦 = 10𝑥
↑ – otherwise 𝜙𝑠 (𝑒0,𝑥 ) (𝑦) =

{
42 – if 𝑦 = 10𝑥
↑ – otherwise

Apply the s-m-n Theorem to get the uniformly computable family of functions on the right. The number 𝑒0 is
fixed so define 𝑔 : N → N by 𝑔(𝑥) = 𝑠 (𝑒0, 𝑥). The Fixed Point Theorem gives 𝑘 ∈ N with 𝜙𝑘 = 𝜙𝑔 (𝑘 ) = 𝜙𝑠 (𝑒0,𝑘 ) ,
and so𝑊𝑘 = {10𝑥 }.

II.9.12 We use Corollary 9.3 as a guide. Consider the function on the left below. It is computed by the machine
sketched on the left in Figure 46 on page 81, so Church’s Thesis gives that there is a Turing machine index for
this machine; let it be 𝑒0.

𝜓 (𝑥,𝑦) =
{
42 – if 𝑦 ≤ 𝑥
↑ – otherwise 𝜙𝑠 (𝑒0,𝑥 ) (𝑦) =

{
42 – if 𝑦 ≤ 𝑥
↑ – otherwise (*)

Apply the s-m-n Theorem to get the family of machines sketched on the right, which compute the family of
functions given on the right of (∗).

Because 𝑒0 is the index of the machine on the left, it is fixed. So 𝑠 (𝑒0, 𝑥) is a function of the single variable 𝑥 .
Let 𝑔 : N → N be defined by 𝑔(𝑥) = 𝑠 (𝑒0, 𝑥). By the Fixed Point Theorem Theorem 9.1, the function 𝑔 has a
fixed point so that there is a 𝑛 ∈ N with 𝜙𝑛 = 𝜙𝑠 (𝑒0,𝑛) . Observe that𝑊𝑛 = {0, 1, ... 𝑛 }.
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Y N

Start
Read G , ~
~ ≤ G?

Print 42 Infinite loop
End

Y N

Start
Read ~
~ ≤ G?

Print 42 Infinite loop
End

Figure 46, for question II.9.12: A sketch of the machine for𝜓 = 𝜙𝑒0 , and the machine for 𝜙𝑠 (𝑒0,𝑥 ) .

Y N

Start
Read G , ~
~ ≠ G?

Print 42 Infinite loop
End

Y N

Start
Read ~
~ ≠ G?

Print 42 Infinite loop
End

Figure 47, for question II.9.14: Sketches for𝜓 = 𝜙𝑒0 and for 𝜙𝑠 (𝑒0,𝑥 ) .

II.9.13 Yes, we can take 𝑓 (𝑥) = 𝑥 . Or, if we want 𝑓 (𝑛) ≠ 𝑛 then this is the Padding Lemma.
II.9.14
(a) The function on the left below is computed by the machine sketched on the left of Figure 47 on page 81.

Church’s Thesis gives that it has an index; let that index be 𝑒0.

𝜓 (𝑥,𝑦) =
{
42 – if 𝑦 ≠ 𝑥

↑ – otherwise 𝜙𝑠 (𝑒0,𝑥 ) (𝑦) =
{
42 – if 𝑦 ≠ 𝑥

↑ – otherwise

The s-m-n Theorem parametrizes 𝑥 to get the family of functions on the right. The number 𝑒0 is fixed so define
𝑔 : N → N by 𝑔(𝑥) = 𝑠 (𝑒0, 𝑥). Apply the Fixed Point Theorem to get a 𝑘 ∈ N with 𝜙𝑘 = 𝜙𝑔 (𝑘 ) = 𝜙𝑠 (𝑒0,𝑘 ) , and
so𝑊𝑘 = N − {𝑘 }.

(b) No such computably enumerable𝑊𝑚 exists. The set𝑀 = {𝑚
�� 𝜙𝑚 (𝑥)𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 } is computably enumerable,

by dovetailing. It is the complement of the given set, so if the given set were computably enumerable then
the two would be computable. But showing that they are not computable is routine, for instance with Rice’s
Theorem.

II.9.15
(a) Consider the function 𝜓 (𝑥,𝑦) = 𝑥 . By Church’s Thesis there is a Turing machine with that behavior— it

is computed by the machine on the left of Figure 48 on page 82—so let that be machine P𝑒0 . Apply the
s-m-n Theorem to get the machine on the right, which computes the family of functions 𝜙𝑠 (𝑒0,𝑥 ) (𝑦) = 𝑥 .
There, 𝑒0 is fixed since it is just the index of the Turing machine on the left, so let 𝑔 : N → N be given by
𝑔(𝑥) = 𝑠 (𝑒0, 𝑥). By the Fixed Point Theorem there is an𝑚 ∈ N where 𝜙𝑚 = 𝜙𝑔 (𝑚) = 𝜙𝑠 (𝑒0,𝑚) , which has
range {𝑚 }.

(b) This is the same as the prior answer, but starting with𝜓 (𝑥,𝑦) = 2𝑥 .
II.9.16 By Corollary 9.3 there is an index 𝑒 satisfying this.

𝜙𝑒 (𝑦) =
{
↓ – if 𝑦 = 𝑒

↑ – otherwise

Then 𝑒 ∈ 𝐾 .
By the Padding Lemma there exists 𝑒 ≠ 𝑒 such that 𝜙𝑒 ≃ 𝜙𝑒 . Then 𝜙𝑒 (𝑒)↑, and so 𝑒 ≠ 𝐾 . Thus 𝐾 is not an

index set.
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Start
Read G , ~
Print G
End

Start
Read ~
Print G
End

Figure 48, for question II.9.15: Flowcharts for𝜓 = 𝜙𝑒0 and for 𝜙𝑠 (𝑒0,𝑥 ) .

II.A.1 Put the passengers from bus 𝐵0 in rooms 0, 100, 200, etc. Put the passengers from 𝐵1 in rooms 1, 101,
201, etc. In general, put 𝑏𝑖, 𝑗 in room 𝑖 + 100 𝑗 .

II.A.2 Person 𝑗 from bus 𝐵𝑖 goes into 𝑓 (𝑏𝑖, 𝑗 ) = 2 · cantor(𝑖, 𝑗) + 1.
II.A.3 Each person is a triple. ⟨𝑖, 𝑗, 𝑘⟩ = ⟨floor number, space number for the bus, person number on that bus⟩.
One way to assign them rooms is to use cantor(cantor(𝑖, 𝑗), 𝑘).

II.A.4 No, the power set P (R) has more members than does R.
II.C.1
(define self
(lambda (w)
(( lambda (w) (list (quote lambda)
(quote (w))
(list w (( lambda (w) (list (quote quote) w)) w))))
(quote
(lambda (w) (list (quote lambda)
(quote (w))
(list w (( lambda (w) (list (quote quote) w)) w))))))))
;;; Explanation ...
;;;; PRINT_a <=> f(w) = a
;;;;<PRINT_a > <=> (quote a)
;;;; TM_q <=> q(w) = <PRINT_w >
;;;;<TM_q > <=> (lambda (w) (list (quote quote) w))
;;;; TM_p <=> w(q(w))
;;;;<TM_p > <=> (lambda (w) (list (quote lambda)
;;;; (quote (w))
;;;; (list w (<TM_q > w))))
;;;; SELF <=> TM_p(PRINT_ <TM_p >(w))
;;;;<SELF > <=> (lambda (w) (<TMP > (quote <TMP >)))

II.C.2 The code
# quine.py
s = r"print 's = r\"' + s + '\"' + '\nexec(s)'"
exec(s)

gives this command line output.
$ python quine.py
s = r"print 's = r\"' + s + '\"' + '\nexec(s)'"
exec(s)

Here is another, using Python’s string substitution operator %.
s = 's = %r\nprint(s%%s)'
print(s%s)

II.D.5
(
2(𝑐 + 1) (𝑛 + 2)) (𝑐+1)𝑛

II.E.1 > (cantor-pairing 42) ’(6 2)
II.E.2
> (cantor -pairing 666)
'(0 36)

II.E.3 The first gap has size zero, the next has size one, etc.
II.E.4
> (cantor -unpairing 3 0)
9
> (for ([i '(0 1 2 3 4 5 6 7 8 9)])
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(display (cantor -pairing -omega i)) (newline ))
()
(0)
(0 0)
(1)
(0 1)
(0 0 0)
(2)
(1 0)
(0 0 1)
(0 0 0 0)





Chapter III: Languages and graphs

III.1.17
(a) Five are 000, 001, 010, 011, and 100.
(b) These five work: 0, 1, 00, 11, and 000. (Is the empty string in that language? It is an arguable point.)
III.1.18 No. By definition, a language is a set of strings and also by definition, a string is of finite length. For

some real numbers the decimal representation does not make a finite string; one is 𝜋 = 3.14 ... and another is
1/3 = 0.33 ...

III.1.19 It is both.
III.1.20 If 𝛽 = ⟨𝑏0, ... , 𝑏𝑖−1⟩ is a string then 𝛽⌢𝛽R = ⟨𝑏0, ... , 𝑏𝑖−1⟩⌢ ⟨𝑏𝑖−1, ... , 𝑏0⟩ is clearly a palindrome.

There are palindromes not of that form. One is 𝛾 = 010, which cannot be decomposed into 𝛾 = 𝛽⌢𝛽R.
III.1.21
(a) These are the members of L0⌢L1.

𝜀, b, bb, bbb,

a, ab, abb, abbb

aa, aab, aabb, aabbb

aaa, aaab, aaabb, aaabbb

(b) These are the members of L1⌢L0.

𝜀, a, aa, aaa,

b, ba, baa, baaa

bb, bba, bbaa, bbaaa

bbb, bbba, bbbaa, bbbaaa

(c) We have this.

L2
0 = L0⌢L0 = {∅, a, aa, aaa, aaaa, aaaaa, aaaaaa}

(d) There are many different correct answers, but a natural ten are 𝜀, a, aa, . . . a9.
III.1.22
(a) The language consists of any number of a’s followed by a single b. Thus five members are b, ab, aab, aaab,

and aaaab.
(b) The language consists of a number of a’s followed by the same number of b’s. Thus five members are 𝜀, ab,

aabb, aaabbb, and aaaabbbb.
(c) The language is a set of strings of 1’s followed by 0’s, where there is one more 0 than 1. Five members are 0,

100, 11000, 1110000, and 111100000.
(d) The language consists of strings from B∗ where there is a string of 1’s, then a string of 0’s, then a single 1.

The number of 0’s is twice the number of leading 1’s. Five members are 1, 1001, 1100001, 13061, and 14081.
III.1.23
(a) L2 = {aa, aab, aba, abab}
(b) L3 = {aaa, aaab, aaba, aabab, abaa, abaab, ababa, ababab}
(c) L1 = L = {a, ab}
(d) L0 = {𝜀 }
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III.1.24
(a) L0⌢L1 = {ab, abb, abb, abbb}
(b) L1⌢L0 = {ba, bab, bba, bbab}
(c) L2

0 = {aa, aab, aba, abab}
(d) L2

1 = {bb, bbb, bbbb}
(e) L2

0
⌢L2

1 = {aabb, aabbb, aabbbb, aabbbbb, ababb, ababbb, ababbbb, ababbbbb}
III.1.25
(a) The minimum is three, which happens when the second is a subset of the first. The maximum is five, which

happens when the two are disjoint.
(b) The minimum is zero, which happens when the two are disjoint. The maximum is two, which happens

when the second is a subset of the first.
(c) The maximum is six, as with L0 = {a, b, c} and L1 = {x, y}, which gives L0⌢L1 = {ax, ay, bx, by, cx, cy}.

The minimum is four, as with L0 = {𝜀, a, aa} and L1 = {𝜀, a}, which gives L0⌢L1 = {𝜀, a, aa, aaa}.
(d) The minimum is three, as when L1 = {𝜀, a} gives L2

1 = {𝜀, a, aa}. The maximum is four, an example of
which is L1 = {a, b} giving L2

1 = {aa, ab, ba, bb}.
(e) The intersection can be infinite, as with L0 = {𝜀, a, b} and L1 = {𝜀, a}, where a𝑛 ∈ L0∗ ∩ L1∗ for all 𝑛 ∈ N.

The smallest the interesection can be is size one, as when L0 = {a, b, c} and L1 = {x, y} and the only
element of L0∗ ∩ L1∗ is the empty string.

III.1.26 It is the empty set, ∅∗ = ∅. By definition, L∗ = {𝜎0⌢ · · ·⌢𝜎𝑘−1
�� 𝑘 ∈ N and 𝜎0, ... , 𝜎𝑘−1 ∈ L}. If the

language is empty then the condition ‘𝜎0, ... , 𝜎𝑘−1 ∈ L’ is never met.
III.1.27 No. Let L = {a, b} and let 𝑘 = 2. Then the 𝑘-th power of the language is L𝑘 = {aa, ab, ba, bb}, while

the language of 𝑘-th powers is {𝜎2 �� 𝜎 ∈ L} = {aa, bb}.
III.1.28 Yes, but only in an edge case. If L = ∅ then L∗ = ∅ while (L ∪ {𝜀 })∗ = {𝜀 }.

We will show that ifL ≠ ∅ then the two sets are equal, L∗ = (L ∪ {𝜀 })∗. The containmentL∗ ⊆ (L ∪ {𝜀 })∗
is clear.

For the other direction, (L ∪ {𝜀 })∗ ⊆ L∗, assume that 𝜎 ∈ (L ∪ {𝜀 })∗. Then 𝜎 = 𝜎0⌢ · · ·⌢𝜎𝑛−1 for some
𝑛 ∈ N and 𝜎𝑖 ∈ L ∪ {𝜀 }. If for all 𝑖 ∈ {0, ... 𝑛 − 1} the string 𝜎𝑖 equals 𝜀 then 𝜎 = 𝜀, and is an element of L∗

because L ≠ ∅ and 𝜀 = 𝜌0 for any 𝜌 ∈ L. Otherwise there is at least one 𝑖 ∈ {0, ... 𝑛 − 1} such that 𝜎𝑖 ≠ 𝜀. In
this case, omitting from the string 𝜎 those 𝜎 𝑗 that equal the empty string gives that 𝜎 ∈ L𝑘 for some 𝑘 ≤ 𝑛,
and so 𝜎 ∈ L∗.

III.1.29 Let the alphabet be Σ.
(a) Consider unequal strings 𝜎0 ≠ 𝜎1. They can’t both be the empty string, and if one of them is the empty

string but the other is not then clearly 𝜎2
0 ≠ 𝜎2

1 because one of those two is empty while the other is not.
So now suppose that neither of the two strings 𝜎0 and 𝜎1 is empty. If they are different lengths then their
squares are also different lengths. The case remaining is that they are nonempty equal-length strings,
𝜎0 = ⟨𝑠0,0, 𝑠0,1, ... 𝑠0,𝑛⟩ and 𝜎1 = ⟨𝑠1,0, 𝑠1,1, ... 𝑠1,𝑛⟩ for some 𝑛 ∈ N. Fix the smallest index 𝑖 where 𝑠0,𝑖 ≠ 𝑠1,𝑖 .
For that same 𝑖 we have that 𝜎2

0 and 𝜎2
1 differ on index 𝑖, and are therefore unequal.

The prior paragraph implies that if L has 𝑘-many different elements L = {𝜎0, ... 𝜎𝑘−1 } then the elements
of the set {𝜎2

0 , ... 𝜎
2
𝑘−1 } ⊆ L2 are different.

(b) The language L = {𝜀 } has L2 = {𝜀 }.
(c) Let L = {𝜎0, 𝜎1, ... 𝜎𝑘−1 } for 𝑘 ∈ N+ (we take these strings to all be different from each other). Then the list

𝜎0⌢𝜎0, 𝜎0⌢𝜎1, . . . 𝜎𝑘−1⌢𝜎𝑘−1 has length 𝑘2. Hence the largest number of elements that L2 can have is 𝑘2.
(d) Consider the language L = {𝜎0, 𝜎1, ... 𝜎𝑘−1 } where the 𝑘-many strings have length one and are unequal, so

each consists of a single symbol that is different from the symbols used in any of the others. Clearly all of
the members of the list 𝜎0⌢𝜎0, 𝜎0⌢𝜎1, . . . 𝜎𝑘−1⌢𝜎𝑘−1 are unequal, and so L2 has 𝑘2-many elements.

III.1.30 Recall thatL𝑘 = {𝜎0⌢ · · ·⌢𝜎𝑘−1
�� 𝜎𝑖 ∈ L} and thatL∗ = {𝜎0⌢ · · ·⌢𝜎𝑘−1

�� 𝑘 ∈ N and 𝜎0, ... , 𝜎𝑘−1 ∈ L}.
If L = ∅ then both sets are empty, so we can assume L ≠ ∅.

We first show that L𝑘 ⊆ L∗. If 𝑘 = 0 then because we are assuming L ≠ ∅, we can take some 𝜎 ∈ L and
find 𝜎0 = 𝜀. Thus L0 = {𝜀 } and 𝜀 ∈ L∗. Now suppose that 𝑘 > 0 and fix 𝜎 ∈ L𝑘 , so that 𝜎 = 𝜎0⌢ · · ·⌢𝜎𝑘−1.
Then the definition of L∗ gives that 𝜎 ∈ L∗.

We finish by showing that L∗ ⊆ L0 ∪ L1 ∪ · · · . Fix 𝜎 ∈ L∗ (recall that L ≠ ∅), so that 𝜎 = 𝜎0⌢ · · ·⌢𝜎𝑘−1
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for some 𝑘 ∈ N. Note that 𝜎 ∈ L𝑘 (even if 𝑘 = 0). Thus L∗ ⊆ L0 ∪ L1 ∪ · · · .
III.1.31 The set of concatenations 𝜎1⌢𝜎0 where 𝜎1 ∈ L1 and 𝜎0 ∈ L0 is empty, because there are no 𝜎0

members of L0.
III.1.32 The intersection of a language over Σ0 with a language over Σ1 is a language over Σ0 ∩ Σ1. The

reason is that to be in the intersecton of the languages a string 𝜎 must involve only characters that are in both
alphabets.

III.1.33
(a) Yes, but it has nothing to do with the language being finite. An alphabet is finite by definition. (Appendix A

has a review.)
(b) Because the language is finite, there is a longest string and for 𝐵 we can take the length of that string (or

else the language is empty and we can take 𝐵 = 0).
(c) Let L0, ...L𝑘 be finite languages over Σ∗ for some 𝑘 ∈ N. Then the union is also finite because it contains at

most |L0 | + · · · + |L𝑘 | elements.
(d) Let L0, ...L𝑘 be finite languages over Σ∗. Then the intersection contains at most min( |L0 |, ... |L𝑘 |)-many

elements, so it is finite also. The number of strings in the concatenation L0⌢L1⌢ · · ·⌢L𝑘 is at most the
product |L0 | · |L0 | · · · |L𝑘 |.

(e) If Σ = {a, b} then the complement of the finite language L = { } is Lc = Σ∗, which is infinite since it
contains a𝑛 for all 𝑛. For the same alphabet, L = {a, b} is finite but L∗ is infinite.

III.1.34 In L̂ all strings are of even length. The language L contains all palindromes, of any length.
III.1.35 The prefixes are 𝜀, a, b, ab, bb, aba, bba, abaa, abaab, and abaaba.
III.1.36
(a) Concatenating 𝜎0⌢ · · ·⌢𝜎𝑚−1 ∈ L𝑚 with 𝜏0⌢ · · ·⌢𝜏𝑛−1 ∈ L𝑛 gives 𝜎0⌢ · · ·⌢𝜎𝑚−1⌢𝜏0⌢ · · ·⌢𝜏𝑛−1 ∈ L𝑚+𝑛.
(b) By definition L0⌢L1 = {𝜎0⌢𝜎1

�� 𝜎0 ∈ L0 and 𝜎1 ∈ L1 }. If one of the two is the empty set then the condition
is never satisfied, so the result is the empty set.

(c) For any string 𝜎 ∈ L∗ we have that 𝜎0 = 𝜀. Thus, if there are any strings in the language then when raised
to the zero power they all give the empty string, so the result is L0 = {𝜀 }.

(d) By the second item, if L = ∅ gave that L0 = ∅ for L = ∅, then for any language L̂, extending the formula
for the prior item results in L̂ = L̂ 1 = L̂ 1+0 = L̂⌢∅ = ∅, which is nonsense.

III.1.37
(a) Consider the set 𝑆 = Σ × · · · × Σ (we are avoiding calling this Σ𝑛 because the two differ, in that the cross

product is set of 𝑛-tuples while Σ𝑛 is a subset of Σ∗). It is the cross product of countably many countable sets
and so is countable by Chapter Two’s Corollary 2.10. So there is a one-to-one and onto function 𝑔 : N → 𝑆 .
The function concat : 𝑆 → Σ𝑛 that concatenates its arguments together 𝑓 (𝜎0, ... 𝜎𝑛−1) = 𝜎0⌢ · · ·⌢𝜎𝑛−1
is clearly onto. So the composition 𝑓 ◦ 𝑔 : N → Σ𝑛 is onto. Then by Chapter Two’s Lemma 2.12, Σ𝑛 is
countable.

(b) The set Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the countable union of countable sets and so by Chapter Two’s Corollary 2.13
is a countable set.

III.1.38 To prevent confusion between the two forms, denote {𝜎0⌢ · · ·⌢𝜎𝑘−1
�� 𝜎𝑖 ∈ L} as 𝑘L, for the purpose

of this argument.
We first show that any element of 𝑘L is an element of L𝑘 . We do a simple induction argument. The base

cases are that 0L and L0 both equal to {𝜀 } by definition, and that 𝜎0 ∈ L1 and 𝜎0 ∈ 1L for any 𝜎0 ∈ L. The
inductive step is that from the hypothesis that 𝜎0⌢ · · ·⌢𝜎𝑖−1 ∈ 1L implies that 𝜎0⌢ · · ·⌢𝜎𝑖−1 ∈ L1 we get that
𝜎0⌢ · · ·⌢𝜎𝑖−1⌢𝜎𝑖 ∈ L𝑖+1, because it is (𝜎0⌢ · · ·⌢𝜎𝑖−1)⌢𝜎𝑖 .

The other direction is that any element of any L𝑘 is an element of 𝑘L. Again we do this by a simple
induction. Again the base cases are that 0L and L0 both equal to {𝜀 } by definition, and that 𝜎0 ∈ L1 and
𝜎0 ∈ 1L for any 𝜎0 ∈ L. The inductive step is that if 𝜎 ∈ L𝑖 then 𝜎 ∈ 𝑖L and so 𝜎 = 𝜎0⌢ · · ·⌢𝜎𝑖−1. Then 𝜎⌢𝜏
has the form 𝜎0⌢ · · ·⌢𝜎𝑖−1⌢𝜏 and so is an element of 𝑖+1L.

III.1.39 The statement is true. As motivation for the argument, the natural language to try for a counterexample
is L = {a, aa, ... }. However, L⌢L is a proper subset of L since it does not contain a.

With that, suppose L ≠ ∅. Then there is a string 𝜎 ∈ Σ∗ such that 𝜎 ∈ L. From among all language
members, take 𝜎 to have minimal length. If 𝜀 ≠ L then 𝜎⌢𝜏 ∈ L⌢L is strictly longer than 𝜎 for any 𝜏 ∈ L,
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and by the minimality of 𝜎 , it is not an element of L⌢L. This means that L⌢L is not equal to L.
III.1.40 Every language is countable, since it is a subset of Σ∗, which is countable. But there are uncountably

many reals.
III.1.41
(a) For any sets, languages or not, union and intersection are commutative.
(b) We have L⌢{𝜀 } = {𝜎⌢𝜀

�� 𝜎 ∈ L} = {𝜎
�� 𝜎 ∈ L} = L.

(c) Where Σ = {a, b} take L0 = {a} and L1 = {b}. Then L0⌢L1 = {ab} while L1⌢L0 = {ba}.
(d) This is immediate from the fact that string concatenation is associative: the 𝑖-th entry of (𝜎0⌢𝜎1)⌢𝜎2 is the

same as the 𝑖-th entry of 𝜎0⌢ (𝜎1⌢𝜎2).
(e) This is immediate from the fact that for strings (𝜎0⌢_1)R equals 𝜎1R⌢𝜎0R.
(f) A string is an element of (L0 ∪ L1)⌢L2 if and only if it has the form 𝜎⌢𝜏 where 𝜏 ∈ L2, and 𝜎 ∈ L0 or

𝜎 ∈ L1. That’s true if and only if both 𝜏 ∈ L2 and 𝜎 ∈ L0, or both 𝜏 ∈ L2 and 𝜎 ∈ L1. In turn that holds if
and only if 𝜎 ∈ (L0⌢L2) ∪ (L1⌢L2). The right-distributive argument goes the same way.

(g) For any language L the definition gives ∅⌢L = {𝜎0⌢𝜎1
�� 𝜎0 ∈ ∅ and 𝜎1 ∈ L}. The condition ‘𝜎0 ∈ ∅’ is

never satisfied so this set is empty. The same goes for L⌢∅.
(h) For any strings, no matter how the concatenation is parenthesized we can remove the parentheses. For

instance, ((𝜎0⌢𝜎1)⌢𝜎2)⌢𝜎3 equals ((𝜎0⌢ (𝜎1⌢𝜎2))⌢𝜎3 because the 𝑖-th elements of the two are equal.
(We can easily show this statement by induction.) From this, the result is immediate.

III.2.12
(a) We’ve adopted the convention that the start symbol is the head of the first listed rule so it is ⟨expr⟩.
(b) The terminals are a, b, etc.
(c) The nonterminals are ⟨expr⟩, ⟨term⟩, and ⟨factor⟩.
(d) There are twenty seven rewrite rules on the final line. The other two lines have a total of four, so that makes

thirty one.
(e) Two are a+b and j*h+k*m.
(f) Three are a+, and +, and **.
III.2.13
(a) The start symbol, by our convention that it is the head of the first listed rule, is ⟨sentence⟩.
(b) The terminals are the, young, caught, man, and ball.
(c) The nonterminals are ⟨sentence⟩, ⟨noun phrase⟩, ⟨verb phrase⟩, ⟨article⟩, ⟨noun⟩, ⟨adjective⟩, and ⟨verb⟩.
(d) Three are the ball caught the young man, the ball caught the man, and the man caught the man.
(e) Three are ball, man man man, and 𝜀.
III.2.14
(a) The alphabet is Σ = {0, ... 9}. The terminals are 0, . . . 9. The nonterminals are ⟨natural⟩ and ⟨digit⟩. The

start symbol is ⟨natural⟩.
(b) For the production

⟨natural⟩ → ⟨digit⟩
the head is ⟨natural⟩ while the body is ⟨digit⟩. For the production
⟨natural⟩ → ⟨digit⟩⟨natural⟩

the head is ⟨natural⟩ while the body is ⟨digit⟩⟨digit⟩. For the production
⟨digit⟩ → 0

the head is ⟨digit⟩ and the body is 0. The remaining eight productions are similar.
(c) The two metacharacters are → and | .
(d) Here is a derivation.

⟨natural⟩ ⇒ ⟨digit⟩⟨natural⟩
⇒ 4⟨natural⟩
⇒ 4⟨digit⟩
⇒ 42

For the associated parse tree, see Figure 49 on page 89.
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〈natural〉

〈digit〉 〈natural〉

〈digit〉4

2

Figure 49, for question III.2.14: Parse tree for 42.

〈natural〉

〈digit〉 〈natural〉

9 〈digit〉 〈natural〉

9 〈digit〉

3

Figure 50, for question III.2.14: Parse tree associated with the derivation of 993.

(e) Here is a derivation.

⟨natural⟩ ⇒ ⟨digit⟩⟨natural⟩
⇒ ⟨digit⟩⟨digit⟩⟨natural⟩
⇒ ⟨digit⟩⟨digit⟩⟨digit⟩
⇒ ⟨digit⟩9⟨digit⟩
⇒ ⟨digit⟩93
⇒ 993

The parse tree is Figure 50 on page 89.
(f) We want to start at the start symbol and end at the desired string. Just willy-nilly expanding is not the

game.
(g) Here is one answer

⟨integer⟩ → +⟨natural⟩ | -⟨natural⟩ | ⟨natural⟩
⟨natural⟩ → ⟨digit⟩ | ⟨digit⟩⟨natural⟩
⟨digit⟩ → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(h) Yes, we can derive both +0 and -0.
III.2.15
(a) Here is a derivation of ‘the car hit a wall’.

⟨sentence⟩ ⇒ ⟨subject⟩ ⟨predicate⟩ ⇒ ⟨article⟩ ⟨noun⟩ ⟨predicate⟩
⇒ ⟨article⟩ ⟨noun⟩ ⟨verb⟩ ⟨direct object⟩ ⇒ ⟨article⟩ ⟨noun⟩ ⟨verb⟩ ⟨article⟩ ⟨noun⟩
⇒ the ⟨noun⟩ ⟨verb⟩ ⟨article⟩ ⟨noun⟩ ⇒ the car ⟨verb⟩ ⟨article⟩ ⟨noun⟩
⇒ the car hit ⟨article⟩ ⟨noun⟩ ⇒ the car hit a ⟨noun⟩
⇒ the car hit a wall

(b) Here is a derivation of ‘the car hit the wall’.
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⟨sentence⟩ ⇒ ⟨subject⟩ ⟨predicate⟩ ⇒ ⟨article⟩ ⟨noun⟩ ⟨predicate⟩
⇒ the ⟨noun⟩ ⟨predicate⟩ ⇒ the car ⟨predicate⟩
⇒ the car ⟨verb⟩ ⟨direct object⟩ ⇒ the car hit ⟨direct object⟩
⇒ the car hit ⟨article⟩ ⟨noun⟩ ⇒ the car hit the ⟨noun⟩
⇒ the car hit the wall

(c) This is one for ‘the wall hit a car’.
⟨sentence⟩ ⇒ ⟨subject⟩ ⟨predicate⟩ ⇒ ⟨article⟩ ⟨noun⟩ ⟨predicate⟩

⇒ ⟨article⟩ ⟨noun⟩ ⟨verb⟩ ⟨direct object⟩ ⇒ ⟨article⟩ ⟨noun⟩ ⟨verb⟩ ⟨article⟩ ⟨noun⟩
⇒ ⟨article⟩ ⟨noun⟩ hit ⟨article⟩ ⟨noun⟩ ⇒ ⟨article⟩ wall hit ⟨article⟩ ⟨noun⟩
⇒ ⟨article⟩ wall hit ⟨article⟩ car ⇒ ⟨article⟩ wall hit a car
⇒ the wall hit a car

III.2.16
(a) This is a derivation for ‘dog bites man’.

⟨sentence⟩ ⇒ ⟨subject⟩ ⟨predicate⟩ ⇒ ⟨article⟩ ⟨noun1⟩ ⟨predicate⟩
⇒ ⟨article⟩ ⟨noun1⟩ ⟨verb⟩ ⟨direct object⟩ ⇒ ⟨article⟩ ⟨noun1⟩ ⟨verb⟩ ⟨article⟩ ⟨noun2⟩
⇒ 𝜀 ⟨noun1⟩ ⟨verb⟩ ⟨article⟩ ⟨noun2⟩ ⇒ 𝜀 dog ⟨verb⟩ ⟨article⟩ ⟨noun2⟩
⇒ 𝜀 dog bites ⟨article⟩ ⟨noun2⟩ ⇒ 𝜀 dog bites 𝜀 ⟨noun2⟩
⇒ 𝜀 dog bites 𝜀 man =dog bites man

(b) The start symbol ⟨subject⟩ expands to ⟨article⟩ ⟨noun1⟩, but man is derived only from ⟨noun2⟩. So man
cannot be the first word of the sentence.

III.2.17 There is no nonterminal ⟨dog|flea⟩ or ⟨man|dog⟩. This is confusing nonterminals with terminals.
III.2.18 The outermost operation is the *, so we go for that first. Next we get the parentheses and the +. Here

is a derivation.
⟨expr⟩ ⇒ ⟨term⟩

⇒ ⟨term⟩ * ⟨factor⟩
⇒ ⟨factor⟩ * ⟨factor⟩
⇒ ( ⟨expr⟩ ) * ⟨factor⟩
⇒ ( ⟨term⟩ + ⟨expr⟩ ) * ⟨factor⟩
⇒ ( ⟨term⟩ + ⟨term⟩ ) * ⟨factor⟩
⇒ ( ⟨factor⟩ + ⟨term⟩ ) * ⟨factor⟩
⇒ ( a + ⟨term⟩ ) * ⟨factor⟩
⇒ ( a + ⟨factor⟩ ) * ⟨factor⟩
⇒ ( a + b ) * ⟨factor⟩
⇒ ( a + b ) * c

III.2.19
(a) First the leftmost derivation.

S ⇒ T b U ⇒ a T b U ⇒ a a T b U ⇒ a a 𝜀 b U =a a b U
⇒ a a b a U ⇒ a a b a b U ⇒ a a b a b 𝜀 =a a b a b

Next the rightmost derivation.
S ⇒ T b U ⇒ T b a U ⇒ T b a b U ⇒ T b a b 𝜀 = T b a b

⇒ a T b a b ⇒ a a T b a b ⇒ a a 𝜀 b a b =a a b a b

(b) This is the leftmost derivation.
S ⇒ T b U ⇒ 𝜀 b U = b U ⇒ b a U

⇒ b a a U ⇒ b a a b U ⇒ b a a b 𝜀 = b a a b

Here is the rightmost.
S ⇒ T b U ⇒ T b a U ⇒ T b a a U ⇒ T b a a b U

⇒ T b a a b 𝜀 = T b a a b ⇒ 𝜀 b a a b = b a a b
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S

a S b

a S b

Y

Figure 51, for question III.2.22: Parse tree for a2b2.

(c) The start symbol expands to something that includes a b.
III.2.20
(a) Here are the derivations of aabb,

S ⇒ aABb ⇒ aaBb ⇒ aabb

of aaabb,
S ⇒ aABb ⇒ aaABb ⇒ aaaBb ⇒ aabb

and of aabbb
S ⇒ aABb ⇒ aABb ⇒ aaBb ⇒ aaBbb ⇒ aabbb

(b) The production starting with the start symbol S shows that every derived string must begin with a and end
with b. So three strings that cannot be derived are a, ba, and 𝜀 (the empty string).

(c) L = {a𝑛b𝑚
�� 𝑛,𝑚 ≥ 2}

III.2.21 Here is one.
S → TU
T → aTb | 𝜀
U → bUa | 𝜀

III.2.22 Figure 51 on page 91 shows the tree.
III.2.23 We will use induction to show that in the course of a derivation all of the results are of either the form
either a𝑘 S b𝑘 or of the form a𝑘b𝑘 . By the definition of the language generated by a grammar, only strings
without any nonterminals are in the language so that will give the verification.

The induction is on the number of derivation steps, that is, on the number of rule applications. The base
step is that there are zero-many rule applications. In this case the string is ‘S’, which is the 𝑘 = 0 instance of
the desired form.

For the inductive step assume that the statement is true where the number of rule applications is 𝑛 = 0,
𝑛 = 1, . . .𝑛 = 𝑘 and consider the 𝑛 = 𝑘 + 1 case. We get the string for the 𝑘 + 1 case by applying a rule to a
string after the 𝑘 case. The inductive hypothesis is that such a string has one of two forms, a𝑘 S b𝑘 or a𝑘b𝑘 .
The rules don’t apply to the latter string so consider the former one.

Applied to a𝑘 S b𝑘 the first rule gives a𝑘+1 S b𝑘+1, which has the right form. The second rule gives a𝑘+1b𝑘+1,
again of the right form.

III.2.24 Bit of a trick question: this grammar has no terminating derivations so it generates the empty language
L = ∅.

III.2.25 Here is one.
⟨identifier⟩ → ⟨letter⟩ | ⟨letter-or-digit-string⟩
⟨letter-or-digit-string⟩ → ⟨letter⟩ ⟨letter-or-digit-string⟩
| ⟨digit⟩ ⟨letter-or-digit-string⟩
| 𝜀

⟨letter⟩ → a | . . . | z | A | . . . | Z
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⟨digit⟩ → 0 | . . . | 9
III.2.26

⟨identifier⟩ → ⟨letter⟩ ⟨second⟩
⟨second⟩ → ⟨letter-or-digit⟩ ⟨third⟩ | 𝜀
⟨third⟩ → ⟨letter-or-digit⟩ ⟨fourth⟩ | 𝜀
⟨fourth⟩ → ⟨letter-or-digit⟩
⟨letter-or-digit⟩ → ⟨letter⟩ | ⟨digit⟩
⟨letter⟩ → a | . . . | z | A | . . . | Z
⟨digit⟩ → 0 | . . . | 9

III.2.27 It is the empty language, L = ∅.
III.2.28
(a) This is one derivation.

⟨CNF⟩ ⇒ ( ⟨Disjunction⟩ ) ∧ ⟨DNF⟩
⇒ ( ⟨Disjunction⟩ ) ∧ ( ⟨Disjunction⟩ )
⇒ ( ⟨Literal⟩ ∨ ⟨Disjunction⟩ ) ∧ ( ⟨Disjunction⟩ )
⇒ ( ⟨Literal⟩ ∨ ⟨Literal⟩ ) ∧ ( ⟨Disjunction⟩ )
⇒ ( ⟨Variable⟩ ∨ ⟨Literal⟩ ) ∧ ( ⟨Disjunction⟩ )
⇒ ( x0 ∨ ⟨Literal⟩ ) ∧ ( ⟨Disjunction⟩ )
⇒ ( x0 ∨ ¬ ⟨Variable⟩ ) ∧ ( ⟨Disjunction⟩ )
⇒ ( x0 ∨ ¬ x1 ) ∧ ( ⟨Disjunction⟩ )
⇒ ( x0 ∨ ¬ x1 ) ∧ ( ⟨Literal⟩ ∨ ⟨Disjunction⟩ )
⇒ ( x0 ∨ ¬ x1 ) ∧ ( ⟨Literal⟩ ∨ ⟨Literal⟩ )
⇒ ( x0 ∨ ¬ x1 ) ∧ ( x1 ∨ ⟨Literal⟩ )
⇒ ( x0 ∨ ¬ x1 ) ∧ ( x1 ∨ x2 )

(b) In the grammar the only way to have a multiple clause expression is to join them with ∧’s.
III.2.29
(a) ⟨string⟩ → ⟨letter⟩ ⟨sring⟩ | 𝜀

⟨letter⟩ → a | . . . | z
(b) ⟨string1⟩ → ⟨digit⟩ ⟨sring2⟩

⟨string2⟩ → ⟨digit⟩ ⟨sring2⟩ | 𝜀
⟨digit⟩ → 0 | . . . | 9

III.2.30 Here is the start of a derivation.
⟨postal address⟩ ⇒ ⟨name⟩ ⟨EOL⟩ ⟨street address⟩ ⟨EOL⟩ ⟨town⟩

⇒ ⟨personal part⟩ ⟨last name⟩ ⟨opt suffix⟩ ⟨EOL⟩ ⟨street address⟩ ⟨EOL⟩ ⟨town⟩
⇒ ⟨first name⟩ ⟨last name⟩ ⟨opt suffix⟩ ⟨EOL⟩ ⟨street address⟩ ⟨EOL⟩ ⟨town⟩
⇒ ⟨char string⟩ ⟨last name⟩ ⟨opt suffix⟩ ⟨EOL⟩ ⟨street address⟩ ⟨EOL⟩ ⟨town⟩
⇒ ⟨char string⟩ ⟨char string⟩ ⟨opt suffix⟩ ⟨EOL⟩ ⟨street address⟩ ⟨EOL⟩ ⟨town⟩
⇒ ⟨char string⟩ ⟨char string⟩ 𝜀 ⟨EOL⟩ ⟨street address⟩ ⟨EOL⟩ ⟨town⟩
= ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨house num⟩ ⟨street name⟩ ⟨apt num⟩ ⟨EOL⟩ ⟨town⟩

⇒ ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨digit string⟩ ⟨street name⟩ ⟨apt num⟩ ⟨EOL⟩ ⟨town⟩
⇒ ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨digit string⟩ ⟨char string⟩ ⟨apt num⟩ ⟨EOL⟩ ⟨town⟩
⇒ ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨digit string⟩ ⟨char string⟩ 𝜀 ⟨EOL⟩ ⟨town⟩
= ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨digit string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨town⟩

⇒ ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨digit string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨town name⟩ , ⟨state or region⟩
⇒ ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨digit string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨char string⟩ , ⟨state or region⟩
⇒ ⟨char string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨digit string⟩ ⟨char string⟩ ⟨EOL⟩ ⟨char string⟩ , ⟨char string⟩

(a) From the above derivation steps we can easily get to the address.
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(b) The above derivation steps get us most of the way there. The problem is the ‘B’ in 221B; it is not part of a
digit string.

(c) Some are that you may need more than one line for the address, that some addresses do not have a house
number, and that some names or addresses require non-ASCII letters.

III.2.31
(a) These two rules suffice: 𝑆 → 11𝑆 | 𝜀.
(b) As with the prior item, this is straightforward: 𝑆 → 111𝑆 | 𝜀.
III.2.32
(a) This is a sentence of length one.

⟨sentence⟩ ⇒ buffalo ⟨sentence⟩ ⇒ buffalo 𝜀 = buffalo

Here is a sentence of length one.
⟨sentence⟩ ⇒ buffalo ⟨sentence⟩ ⇒ buffalo buffalo ⟨sentence⟩

⇒ buffalo buffalo 𝜀 = buffalo buffalo

And, a sentence of length three.
⟨sentence⟩ ⇒ buffalo ⟨sentence⟩ ⇒ buffalo buffalo ⟨sentence⟩

⇒ buffalo buffalo buffalo ⟨sentence⟩ ⇒ buffalo buffalo buffalo 𝜀
= buffalo buffalo buffalo

(b) In English ‘buffalo’ is a noun referring to the American bison, or to a city in New York State, and it is a verb
referring to fooling or confusing someone. So, the sentence of length one could be a command instructing
the listener to fool someone. The sentence of length two could be a command instructing that same listener
to fool all of a city in upstate New York. The length three sentence could exhort American bison in particular
to confuse that entire city.

III.2.33
(a) This is a derivation of (a . b).

⟨s expression⟩ ⇒ ( ⟨s expression⟩ . ⟨s expression⟩ ) ⇒ ( ⟨atomic symbol⟩ . ⟨s expression⟩ )
⇒ ( ⟨atomic symbol⟩ . ⟨atomic symbol⟩ ) ⇒ ( ⟨letter⟩ ⟨atom part⟩ . ⟨atomic symbol⟩ )
⇒ ( ⟨letter⟩ 𝜀 . ⟨atomic symbol⟩ ) = ( ⟨letter⟩ . ⟨atomic symbol⟩ )
⇒ ( a . ⟨atomic symbol⟩ ) ⇒ ( a . ⟨letter⟩ ⟨atom part⟩ )
⇒ ( a . ⟨letter⟩ 𝜀 ) = ( a . ⟨letter⟩ ) ⇒ ( a . b )

(b) This is a derivation of (a . (b . c)).
⟨s expression⟩ ⇒ ( ⟨s expression⟩ . ⟨s expression⟩ )

⇒ ( ⟨s expression⟩ . ( ⟨s expression⟩ . ⟨s expression⟩ ) )
⇒ ( ⟨s expression⟩ . ( ⟨s expression⟩ . ⟨s expression⟩ ) )
⇒ ( ⟨atomic symbol⟩ . ( ⟨s expression⟩ . ⟨s expression⟩ ) )
⇒ ( ⟨letter⟩ ⟨atomic part⟩ . ( ⟨s expression⟩ . ⟨s expression⟩ ) )
⇒ ( a ⟨atomic part⟩ . ( ⟨s expression⟩ . ⟨s expression⟩ ) )
⇒ ( a 𝜀 . ( ⟨s expression⟩ . ⟨s expression⟩ ) ) = ( a . ( ⟨s expression⟩ . ⟨s expression⟩ ) )
⇒ ( a . ( ⟨atomic symbol⟩ . ⟨s expression⟩ ) ) ⇒ ( a . ( ⟨atomic symbol⟩ . ⟨atomic symbol⟩ ) )
⇒ ( a . ( ⟨letter⟩ ⟨atomic part⟩ . ⟨atomic symbol⟩ ) )
⇒ ( a . ( ⟨letter⟩ ⟨atomic part⟩ . ⟨letter⟩ ⟨atomic part⟩ ) )
⇒ ( a . ( ⟨letter⟩ 𝜀 . ⟨letter⟩ ⟨atomic part⟩ ) ) = ( a . ( ⟨letter⟩ . ⟨letter⟩ ⟨atomic part⟩ ) )
⇒ ( a . ( ⟨letter⟩ . ⟨letter⟩ 𝜀 ) ) = ( a . ( ⟨letter⟩ . ⟨letter⟩ ) )
⇒ ( a . ( b . ⟨letter⟩ ) ) ⇒ ( a . ( b . c ) )

(c) This is the first few steps of a derivation of ((a . b) . c).
⟨s expression⟩ ⇒ ( ⟨s expression⟩ . ⟨s expression⟩ )

⇒ ( ( ⟨s expression⟩ . ⟨s expression⟩ ) . ⟨s expression⟩ )
The rest proceeds as does the prior answer.

III.2.34 The steps are tedious but routine.
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VT NH ME
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Figure 52, for question III.3.16: Adjancency relation among the New England states.

R P

S

Figure 53, for question III.3.16: Relation of ‘beats’ among Rock, Paper, and Scissors.

⟨expr⟩ ⇒ ⟨expr⟩ + ⟨term⟩ ⇒ ⟨expr⟩ + ⟨factor⟩
⇒ ⟨expr⟩ + ( ⟨expr⟩ ) ⇒ ⟨expr⟩ + ( ⟨term⟩ )
⇒ ⟨expr⟩ + ( ⟨term⟩ * ⟨factor⟩ ) ⇒ ⟨expr⟩ + ( ⟨factor⟩ * ⟨factor⟩ )
⇒ ⟨term⟩ + ( ⟨factor⟩ * ⟨factor⟩ ) ⇒ ⟨factor⟩ + ( ⟨factor⟩ * ⟨factor⟩ )
⇒ a + ( ⟨factor⟩ * ⟨factor⟩ ) ⇒ a + ( b * ⟨factor⟩ )
⇒ a + ( b * c )

III.2.35
(a) It is L = {𝜀 }.
(b) This is one leftmost derivation.

S ⇒ 𝜀

and here is another.
S ⇒ S ⇒ 𝜀

III.2.36 One leftmost derivation is this.

⟨bit-string⟩ ⇒ ⟨bit-string⟩ ⟨bit-string⟩ ⇒ 0 ⟨bit-string⟩
⇒ 0 ⟨bit-string⟩ ⟨bit-string⟩ ⇒ 0 0 ⟨bit-string⟩
⇒ 0 0 0

Here is another.

⟨bit-string⟩ ⇒ ⟨bit-string⟩ ⟨bit-string⟩ ⇒ ⟨bit-string⟩ 0
⇒ ⟨bit-string⟩ ⟨bit-string⟩ 0 ⇒ 0 ⟨bit-string⟩ 0
⇒ 0 0 0

III.2.37
(a) One leftmost derivation is E ⇒ E - E ⇒ a - E ⇒ a - E - E ⇒ a - b - E ⇒ a - b - a. A second one is

E ⇒ E - E ⇒ E - E - E ⇒ a - E - E ⇒ a - b - E ⇒ a - b - a.
(b) Here we go: E ⇒ E - T ⇒ E - T - T ⇒ T - T - T ⇒ a - T - T ⇒ a - b - T ⇒ a - b - a.
III.2.38 S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBabccc ⇒ aaBBabccc ⇒ aaBaBbccc ⇒ aaaBBbccc ⇒
aaaBbbccc ⇒ aaabbbccc

III.3.16
(a) Figure 52 on page 94 shows the graph.
(b) The graph is a loop, Figure 53 on page 94.
(c) The graph is Figure 54 on page 95.
(d) This graph is Figure 55 on page 95.
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Figure 54, for question III.3.16: Divisibility relation among small numbers.

<0 <1

<2 <3

Figure 55, for question III.3.16: Bridge connection relation between land masses.

(e) This prerequisite structure is Figure 56 on page 96.
III.3.17

Vertices can
repeat?

Edges can
repeat?

Can be
closed?

Can be
open?

Walk Y Y Y Y
Trail Y N Y Y

Circuit Y N Y N
Path N N Y Y
Cycle N N Y N

III.3.18
(a) One possible picture is Figure 57 on page 96.
(b) Here is the matrix.

M(G) =

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5©«
ª®®®®®®¬

𝑣0 0 1 0 1 0 1
𝑣1 1 0 0 0 1 0
𝑣2 0 0 0 0 0 0
𝑣3 1 0 1 0 0 0
𝑣4 0 1 0 1 0 1
𝑣5 1 0 0 0 1 0

(c) From the picture, Figure 57 on page 96, there are clearly only two: 𝐺0 = {𝑣0, 𝑣1, 𝑣4, 𝑣5 } and 𝐺1 =
{𝑣0, 𝑣3, 𝑣4, 𝑣5 }.

(d) It is the same two as in the prior item.
III.3.19
(a) See Figure 58 on page 96.
(b) See Figure 59 on page 96.
(c) It is

(𝑛
2
)
= 𝑛(𝑛 + 1)/2.

III.3.20 See Figure 60 on page 96.
III.3.21
(a) There are ten vertices, N = {𝑣0, ... 𝑣9 }. There are fifteen edges.

E = 𝑠𝑒𝑡𝑣0𝑣1, 𝑣0𝑣4, 𝑣0𝑣5, 𝑣1𝑣2, 𝑣1𝑣6, 𝑣2𝑣3, 𝑣2𝑣7, 𝑣3𝑣4, 𝑣3𝑣8, 𝑣4𝑣9, 𝑣5𝑣7, 𝑣5𝑣8, 𝑣6𝑣8, 𝑣6𝑣9, 𝑣7𝑣9
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Figure 56, for question III.3.16: Prerequisite structure among courses.
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Figure 57, for question III.3.18: A graph with some edges.
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Figure 58, for question III.3.19: Complete graphs 𝐾4, 𝐾3, 𝐾2, and 𝐾1.
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Figure 59, for question III.3.19: Complete graph 𝐾5.
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Figure 60, for question III.3.20: Prefix relation for Morse code representations of ASCII letters.
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Figure 61, for question III.3.22: Drawings of the same graph, with edge crossings and without.
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Figure 62, for question III.3.24: Relation of incompatibility between fish species.

(b) The walk 𝑤1 = ⟨𝑣0𝑣5, 𝑣5𝑣7⟩ has length two. The walk 𝑤2 = ⟨𝑣0𝑣1, 𝑣1𝑣2, 𝑣2𝑣7⟩ has length three.
(c) A closed walk is ⟨𝑣4𝑣0, 𝑣0𝑣1, 𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4⟩. An open one is ⟨𝑣4𝑣9, 𝑣9𝑣6, 𝑣6𝑣8, 𝑣8𝑣3, 𝑣3𝑣2⟩.
(d) One cycle is ⟨𝑣5𝑣0, 𝑣0𝑣1, 𝑣1𝑣6, 𝑣6𝑣8, 𝑣8𝑣5⟩.
(e) Yes, this graph is connected since we can find a path between any two vertices.
III.3.22
(a) On the left of Figure 61 on page 97 is the drawing with the vertices connected by the given edges.
(b) See the right side of Figure 61 on page 97 for the planar drawing.
III.3.23 Fix a vertex (if the tree is empty then the problem is trivial). Give it one color, and give its neighbors

the second color. Assign the first color to all the vertices that are two away from the initial vertex. In general,
where a vertex is 𝑘 away from the initial vertex, give it the first color if 𝑘 is even and the second color if 𝑘 is
odd. Trees don’t have loops, so this assignment is well-defined.

III.3.24
(a) See Figure 62 on page 97.
(b) The chromatic number is three; see the right-hand graph in the same figure.
(c) It is the number of fish tanks needed to safely keep all the fish species.
III.3.25 The minimal number of frequencies is three. Figure 63 on page 98 gives a three-coloring. Starting
with 𝑣6 and tracing around shows that no two-coloring will suffice.

III.3.26 The degree sequence is ⟨3, 3, 2, 2, 2, 2, 2, 2, 1⟩.
III.3.27 The directed graph is Figure 64 on page 98. Every type is compatible with itself so every vertex is
shown with a loop. The type O− can donate to everyone, as we see from its row below, so it is a universal
donor. The type AB+ is a universal receptor, as we see from its column.

Here is the graph’s adjacency matrix.
O− O+ A− A+ B− B+ AB− AB+©«

ª®®®®®®®®®®¬

O− 1 1 1 1 1 1 1 1
O+ 0 1 0 1 0 1 0 1
A− 0 0 1 1 0 0 1 1
A+ 0 0 0 1 0 0 0 1
B− 0 0 0 0 1 1 1 1
B+ 0 0 0 0 0 1 0 1
AB− 0 0 0 0 0 0 1 1
AB+ 0 0 0 0 0 0 0 1

III.3.28 The graph in Example 3.2 has this degree sequence: ⟨4, 4, 3, 3, 2⟩. The vertices 𝑣1 and 𝑣2 have degree 4,
the vertices 𝑣3 and 𝑣4 have degree 3, and the vertex 𝑣0 has degree 2.
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Figure 63, for question III.3.25: Cell tower three-coloring.
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O+ A−

A+
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AB+

Figure 64, for question III.3.27: Compatibility for blood types.
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E0

E1
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Figure 65, for question III.3.30: Graph associated with the given matrix.

In Example 3.4 the graph on the left has degree sequence ⟨3, 3, 3, 3⟩. The graph on the right has
⟨3, 3, 3, 3, 3, 3, 3, 3⟩ (there are eight 3’s, one for each corner of the cube).

III.3.29 Both of these graphs are complete in the sense that every possible node-to-node connection is there
(except that there are no loops). Here is the adjacency matrix for the graph on the left.

𝑢0 𝑢1 𝑢2 𝑢3©«
ª®®¬

𝑢0 0 1 1 1
𝑢1 1 0 1 1
𝑢2 1 1 0 1
𝑢3 1 1 1 0

And this is the adjacency matrix for the cube graph on the right.

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7©«

ª®®®®®®®®®®¬

𝑣0 0 1 1 1 1 1 1 1
𝑣1 1 0 1 1 1 1 1 1
𝑣2 1 1 0 1 1 1 1 1
𝑣3 1 1 1 0 1 1 1 1
𝑣4 1 1 1 1 0 1 1 1
𝑣5 1 1 1 1 1 0 1 1
𝑣6 1 1 1 1 1 1 0 1
𝑣7 1 1 1 1 1 1 1 0

III.3.30 The simple graph is Figure 65 on page 99.
III.3.31
(a) The function is suggested by the names of the vertices: 𝑎 ↦→ 𝐴, 𝑏 ↦→ 𝐵, etc. It is one-to-one and onto by

inspection so it is a correspondence.
(b) The edges on the left are: 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧, 𝑏𝑥 , 𝑏𝑦, 𝑏𝑧, 𝑐𝑥 , 𝑐𝑦, and 𝑐𝑧. The edges on the right are: 𝐴𝑋 , 𝐴𝑌 , 𝐴𝑍 ,

𝐵𝑋 , 𝐵𝑌 , 𝐵𝑍 , 𝐶𝑋 , 𝐶𝑌 , and 𝐶𝑍 . Under the mapping the edge 𝑎𝑥 is associated with 𝐴𝑋 , the edge 𝑎𝑦 is
associated with 𝐴𝑌 , etc., and this exhausts the edges on the right.

III.3.32 Both graphs have six nodes of degree 3. So for both graphs the degree sequence is {3, 3, 3, 3, 3, 3}.
III.3.33
(a) A path is a trail with distinct vertices (except that possibly the starting vertex equals the ending vertex).

This trail meets that criteria.
(b) The vertex 𝐵 appears twice, not both at the start and end.
(c) Figure 66 on page 100 illustrates. By definition every tree is connected, so there is a path. Suppose for

contradiction that there are two unequal paths from 𝑣0 to 𝑣𝑛. Then there is some vertex 𝑣𝑖 where the paths
diverge and also a vertex 𝑣𝑘 where they come together again. But that makes a cycle from 𝑣𝑖 , around the
one path to 𝑣𝑘 , and back by the other path to return to 𝑣𝑖 . The contradiction is that trees do not have cycles.

III.3.34 There are three nodes of degree 2 and four nodes of degree 1. The degree sequence is {2, 2, 2, 1, 1, 1, 1}.
III.3.35
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... F?

... G@

E: ... E=

Figure 66, for question III.3.33: Two distinct paths makes a cycle.

Figure 67, for question III.3.35: A 3-coloring of the Petersen graph.

(a) The outside is a ring of five nodes. With only two colors, in a path around it we must alternate colors but
then because it has an odd number of vertices, the fourth node and the fifth are then the same color.

(b) See Figure 67 on page 100.
III.3.36
(a) A breadth first traversal is the sequence ⟨𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺⟩.
(b) A depth-first traversal is ⟨𝐴, 𝐵, 𝐷, 𝐸,𝐶, 𝐹,𝐺⟩.
III.3.37
(a) For each edge we choose two vertices. Thus the number of potential edges is

(𝑛
2
)
= 𝑛 · (𝑛 − 1)/2.

(b) For each edge, we either include it or leave it out. So with 𝑛 vertices there are 2𝑛· (𝑛−1)/2 graphs. (Some of
these may be isomorphic, but they are different in that they involve different vertices connected.)

(c)
𝑛 0 1 2 3 4 5 6

2𝑛 · (𝑛−1)/2 1 1 2 8 64 1024 32768
III.3.38
(a) By the definition of graph isomorphism, Definition 3.15, if two graphs G and Ĝ are isomorphic then there is

a correspondence between their vertices. They therefore have the same number of vertices.
(b) As in the prior item, the definition of graph isomorphism states that the edges correspond.
(c) Suppose that G = ⟨N , E⟩ and Ĝ = ⟨N̂ , Ê⟩ are isomorphic via the function 𝑓. Let vertex 𝑣 ∈ N have degree 𝑘 .

Then in the set E the vertex 𝑣 occurs 𝑘 times (counting once for edges in which the vertex occurs once, and
twice for loops on 𝑣).
Apply the correspondence. That is, consider the vertex 𝑓 (𝑣) and the set Ê . Because 𝑓 gives a

correspondence among edges, the vertex must occur 𝑘 times in the set. So 𝑓 (𝑣) has degree 𝑘.
(d) This is the same as the prior item, but instead of a single vertex 𝑣 there is a sequence of vertices 𝑣0, ... 𝑣𝑛.
(e) Clearly they have the same degree sequence, ⟨3, 1, 1, 1, 1, 1⟩. Suppose that the two are isomorphic via the

correspondence 𝑓 . Then 𝑓 must associate the two degree-3 vertices. The graph on the left has two unequal
length 2 paths that start with its degree 3 vertex. The graph on the right does not have two.

(f) The degree sequences differ. On the left the degree sequence is ⟨3, 3, 3, 3⟩ while on the right it is
⟨4, 4, 4, 4, 4, 4, 4, 4⟩.

III.3.39
(a) There is a length 2 walk from 𝑣𝑖 to 𝑣 𝑗 if and only if there is some 𝑣𝑘 where both 𝑣𝑖𝑣𝑘 and 𝑣𝑘𝑣 𝑗 are edges.

Thus the number of such walks is𝑚𝑖,1𝑚1, 𝑗 +𝑚𝑖,2𝑚2, 𝑗 + · · ·𝑚𝑖,𝑛𝑚𝑛,𝑗 , where each𝑚𝑎,𝑏 is an entry from M(G).
But that is the the 𝑖, 𝑗 entry of

(
M(G))2.

(b) For induction assume the hypothesis that the statement is true for 𝑛 = 2, . . . 𝑛 = 𝑝 and consider 𝑛 = 𝑝 + 1.
There is a length 𝑝 + 1 walk from 𝑣𝑖 to 𝑣 𝑗 if and only if there is some 𝑣𝑘 where there is a length 𝑝
walk from 𝑣𝑖 to 𝑣𝑘 , and also 𝑣𝑘𝑣 𝑗 is an edge. By the inductive hypothesis the number of such walks is
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𝑞𝑖,1𝑚1, 𝑗 + 𝑞𝑖,2𝑚2, 𝑗 + · · ·𝑞𝑖,𝑛𝑚𝑛,𝑗 , where each 𝑞𝑖,𝑏 is an entry from
(
M(G))𝑝 and𝑚𝑏,𝑗 is an entry from M(G).

We recognize that as the 𝑖, 𝑗 entry of
(
M(G))𝑝+1.

III.3.40
(a) The vertices are N0 = {𝑣0, ... 𝑣7 }. These are the edges.

E0 = {𝑣0𝑣1, 𝑣0𝑣2, 𝑣0𝑣4, 𝑣1𝑣3, 𝑣2𝑣3, 𝑣2𝑣6, 𝑣4𝑣5, 𝑣4𝑣6, 𝑣5𝑣7, 𝑣6𝑣7 }
The vertices of G1 are N1 = {𝑛0, ... 𝑛7 }. These are the edges.

E1 = {𝑛0𝑛4, 𝑛0𝑛5, 𝑛1𝑛4, 𝑛1𝑛5, 𝑛2𝑛3, 𝑛2𝑛6, 𝑛3𝑛4, 𝑛3𝑛7, 𝑛5𝑛6, 𝑛6𝑛7 }
(b) The degree sequences are equal. Each is 3, 3, 3, 3, 2, 2, 2, 2.
(c) These are the images of edges from the left-hand graph.

edge of G0 𝑣0𝑣1 𝑣0𝑣2 𝑣0𝑣4 𝑣1𝑣3 𝑣2𝑣3 𝑣2𝑣6 𝑣4𝑣5 𝑣4𝑣6 𝑣5𝑣7 𝑣6𝑣7
image edge 𝑛6𝑛2 𝑛6𝑛7 𝑛6𝑛5 𝑛2𝑛3 𝑛7𝑛3 𝑛7𝑛0 𝑛5𝑛1 𝑛5𝑛0 𝑛1𝑛4 𝑛0𝑛4

That list has no 𝑛3𝑛4, although G1 has such an edge. Further, that list shows 𝑛7𝑛0, although G1 has no such
edge. So the given correspondence between vertices does not induce a correspondence between edges. This
map is not a graph isomorphism.

(d) The graph G1 has a pair of degree 3 vertices, 𝑛6 and 𝑛3, that are separated by a degree 2 vertex, 𝑛2. But G0
has no such pair (there, the degree 3 vertices are separated by two degree 2 vertices).

III.3.41
(a) We will keep track of a set 𝑅 of reachable vertices. To start, put 𝑞0 into a set 𝑅0. For the first step find all

vertices connected to 𝑞0, and enter them into the set 𝑅1 ⊇ 𝑅0. At step 𝑘 + 1 put all vertices connected to
any vertex in 𝑅𝑘 into a set 𝑅𝑘+1 ⊇ 𝑅𝑘 . When there are no new vertices then we are done (this must happen
after finitely many steps because there are finitely many vertices, by our definition of a graph). The result is
the set 𝑅. The unreachable vertices are those that are not members of 𝑅.

(b) For the graph on the left these are the steps.
step 𝑘 𝑅𝑘

0 {𝑤0 }
1 {𝑤0,𝑤1 }
2 {𝑤0,𝑤1,𝑤2 } = 𝑅

Here are the steps for the graph on the right.
step 𝑘 𝑅𝑘

0 {𝑤0 }
1 {𝑤0,𝑤1 }
2 {𝑤0,𝑤1,𝑤3 } = 𝑅

III.A.4

⟨zip⟩ ::= ⟨digit⟩⟨digit⟩⟨digit⟩⟨digit⟩⟨digit⟩[-⟨digit⟩⟨digit⟩⟨digit⟩⟨digit⟩]
⟨digit⟩ ::= 0 | 1 . . . | 9

III.A.5 Here we stick to lower-case ASCII letters.
⟨palindrome⟩ ::= a ⟨palindrome⟩ a | b ⟨palindrome⟩ b | . . . z ⟨palindrome⟩ z | ⟨letter⟩ | 𝜀
⟨letter⟩ ::= a | b | . . . z

You could omit 𝜀 if you don’t like it as a palindrome.
III.A.6 Here is one way to do it.

⟨course code⟩ ::= ⟨dept⟩ ⟨space⟩ ⟨course-number⟩
⟨dept⟩ ::= ⟨two-letter⟩ | ⟨three-letter⟩
⟨two-letter⟩ ::= ⟨letter⟩⟨letter⟩
⟨three-letter⟩ ::= ⟨two-letter⟩⟨letter⟩
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⟨course-number⟩ ::= ⟨digit⟩⟨digit⟩⟨digit⟩
⟨digit⟩ ::= 0 | . . . 9

The ⟨space⟩ produces a hard-to-show blank space.
You could also put the department names in on a case-by-case basis, as here.
⟨dept⟩ ::= MA | PSY | . . .
This has the disadvantage that if a department code changes then this part of the description also changes. It
has the advantage of being more correct, of not allowing department names that are nonsensical.

III.A.7
(a) This will do.

⟨pointfloat⟩ ::= ⟨intpart⟩ ⟨fraction⟩ | ⟨intpart⟩ . | ⟨fraction⟩
(b)

⟨intpart⟩ ::= ⟨intpart⟩ ⟨digit⟩ | ⟨digit⟩
(c) This is just a list of cases

⟨exponent⟩ ::= e ⟨intpart⟩ | e+ ⟨intpart⟩ | e- ⟨intpart⟩ | E ⟨intpart⟩ | E+ ⟨intpart⟩ | E- ⟨intpart⟩
III.A.8
(a) This is a grammar for standard notation.

⟨start⟩ ::= ⟨thousands⟩ ⟨hundreds⟩ ⟨tens⟩ ⟨ones⟩
⟨thousands⟩ ::= M*
⟨hundreds⟩ ::= C | CC | CCC | CCCC | D | DC | DCC | DCCC | DCCCC | 𝜀
⟨tens⟩ ::= X | XX | XXX | XXXX | L | LX | LXX | LXXX | LXXXX | 𝜀
⟨ones⟩ ::= I | II | III | IIII | V | VII | VIII | VIIII | 𝜀

(b) This is a grammar for subtractive notation.
⟨start⟩ ::= ⟨thousands⟩ ⟨hundreds⟩ ⟨tens⟩ ⟨ones⟩
⟨thousands⟩ ::= M*
⟨hundreds⟩ ::= CM | CD | (D | 𝜀) (𝜀 | C | CC | CCC )
⟨tens⟩ ::= XC | XL | ( L| 𝜀) ( 𝜀 | X | XX | XXX)
⟨ones⟩ ::= IX | IV | ( V | 𝜀) ( 𝜀 | I | II | III )

III.A.9
(a) Here is a derivation. We feel free to use the BNF notation to, for instance, put in multiple ⟨statement⟩’s on

the third line instead of putting them in one at a time.
⟨program⟩ ⇒ { ⟨statement-list⟩ }

⇒ { ⟨statement⟩ ; ⟨statement⟩ ; ⟨statement⟩ ; }
⇒ { ⟨data-type⟩ ⟨identifier⟩ ; ⟨statement⟩ ; ⟨statement⟩ ; }
⇒ { boolean ⟨identifier⟩ ; ⟨statement⟩ ; ⟨statement⟩ ; }
⇒ { boolean ⟨letter⟩ ; ⟨statement⟩ ; ⟨statement⟩ ; }
⇒ { boolean A ; ⟨statement⟩ ; ⟨statement⟩ ; }
⇒ { boolean A ; ⟨identifier⟩ = ⟨expression⟩ ; ⟨statement⟩ ; }
⇒ { boolean A ; ⟨letter⟩ = ⟨expression⟩ ; ⟨statement⟩ ; }
⇒ { boolean A ; A = ⟨expression⟩ ; ⟨statement⟩ ; }
⇒ { boolean A ; A = ⟨number⟩ ; ⟨statement⟩ ; }
⇒ { boolean A ; A = ⟨digit⟩ ; ⟨statement⟩ ; }
⇒ { boolean A ; A = 1 ; ⟨statement⟩ ; }
⇒ { boolean A ; A = 1 ; print ⟨identifier⟩ ; }
⇒ { boolean A ; A = 1 ; print ⟨letter⟩ ; }
⇒ { boolean A ; A = 1 ; print A ; }
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〈program〉
{ 〈statement-list〉 }

〈statement〉 ; 〈statement〉 ; 〈statement〉 ;

〈datatype〉 〈identifier〉 〈identifier〉 = 〈expression〉 print 〈identifier〉
boolean 〈letter〉 〈letter〉 〈number〉 〈letter〉

A A 〈digit〉 A

1

Figure 68, for question III.A.9: Parse tree for C-like language.

Figure 68 on page 103 shows the tree.
(b) Yes, because all derivations must go from ⟨program⟩ through ⟨statement-list⟩, which forces them to have

curly braces.
III.A.10 In this partial derivation we feel free to leverage the BNF notation to, for instance, put in multiple
⟨s-expression⟩’s for a ⟨list⟩ at one time, instead of putting them in one at a time.

⟨s-expression⟩ ⇒ ⟨list⟩
⇒ ( ⟨s-expression⟩ ⟨s-expression⟩ ⟨s-expression⟩ )
⇒ ( ⟨s-expression⟩ ⟨list⟩ ⟨s-expression⟩ )
⇒ ( ⟨s-expression⟩ ( ⟨s-expression⟩ ⟨s-expression⟩ ) ⟨s-expression⟩ )
⇒ ( ⟨atomic-symbol⟩ ( ⟨s-expression⟩ ⟨s-expression⟩ ) ⟨s-expression⟩ )
⇒ ( ⟨letter⟩ ⟨atomic-part⟩ ( ⟨s-expression⟩ ⟨s-expression⟩ ) ⟨s-expression⟩ )
⇒ ( ⟨letter⟩ ⟨letter⟩ ⟨atomic-part⟩ ( ⟨s-expression⟩ ⟨s-expression⟩ ) ⟨s-expression⟩ )
⇒ ( ⟨letter⟩ ⟨letter⟩ ⟨letter⟩ ⟨atomic-part⟩ ( ⟨s-expression⟩ ⟨s-expression⟩ ) ⟨s-expression⟩ )
⇒ ( ⟨letter⟩ ⟨letter⟩ ⟨letter⟩ ⟨letter⟩ ( ⟨s-expression⟩ ⟨s-expression⟩ ) ⟨s-expression⟩ )
⇒ ( c ⟨letter⟩ ⟨letter⟩ ⟨letter⟩ ( ⟨s-expression⟩ ⟨s-expression⟩ ) ⟨s-expression⟩ )

Expanding the remaining nonterminals to letters is tedious, so we will stop here.
III.A.11
(a) Here we will leverage the BNF notation to, for instance, substitute for multiple nonterminals, instead of

putting them in one at a time.
⟨format-spec⟩ ⇒ 0 ⟨width⟩ ⟨type⟩

⇒ 0 ⟨integer⟩ ⟨type⟩
⇒ 0 ⟨digit⟩ ⟨type⟩
⇒ 0 3 ⟨type⟩
⇒ 0 3 f

(b) ⟨format-spec⟩ ⇒ ⟨sign⟩ # 0 ⟨width⟩ ⟨type⟩
⇒ + # 0 ⟨width⟩ ⟨type⟩
⇒ + # 0 ⟨integer⟩ ⟨type⟩
⇒ + # 0 ⟨digit⟩ ⟨type⟩
⇒ + # 0 2 ⟨type⟩
⇒ + # 0 2 X

III.B.1
(a) Here is the code.

(define (exercise -tree -make)
(let* ([t (tree -create "a")]

[nb (node -add -child! t "b")]
[nc (node -add -child! t "c")]
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[nd (node -add -child! nb "d")]
[ne (node -add -child! nb "e")]
[nf (node -add -child! nc "f")]
[ng (node -add -child! nc "g")]
[nh (node -add -child! ng "h")]
[ni (node -add -child! ng "i")]
)

t))

(b) From the interpreter after running the definitions we get this.
> (define t (exercise -tree -make))
> (tree -bfs t show -node -name)
a

c
b

e
d
g
f

i
h

(c) We get this.
> (tree -dfs t 0 show -node -name)
a

b
d
e

c
f
g

h
i

III.B.2
(a) The difference with this graph is that some nodes have more than one parent. This will do.

(define (cantor -DAG -make)
(let* ([t (tree -create "0 ,0")]

[nb (node -add -child! t "0 ,1")]
[nc (node -add -child! t "1 ,0")]
[nd (node -add -child! nb "0 ,2")]
[ne (node -add -child! nb "1 ,1")]
[v0 (set -add! (node -children nc) ne)]
[nf (node -add -child! nb "2 ,0")]
[ng (node -add -child! nd "0 ,3")]
[nh (node -add -child! nd "1 ,2")]
[v1 (set -add! (node -children ne) nh)]
[ni (node -add -child! ne "2 ,1")]
[v2 (set -add! (node -children nf) ni)]
[nj (node -add -child! nf "3 ,0")]
)

t))

(b) In the result, nodes with multiple parents are visited multiple times.
> (define t (cantor -DAG -make))
> (tree -bfs t show -node -name)
0,0

1,0
0,1

2,0
1,1
0,2
1,1

2,1
1,2
0,3
1,2
2,1
1,2
2,1
3,0

(c) The issue is that next-level is a list. When nodes get added to that list multiple times, they then show up
multiple times. We can fix this by making it a set, and adjusting the related code.
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(define (tree -bfs -set node fcn #: maxrank [maxrank MAXIMUM -RANK])
(tree -bfs -set -helper (mutable -set node) 0 fcn #: maxrank maxrank ))

(define (tree -bfs -set -helper level rank fcn #: maxrank [maxrank MAXIMUM -RANK])
(when (< rank maxrank)

(let ([next -level (mutable -set)])
(for ([node level])

(fcn node rank)
(for ([child -node (node -children node )])

(set -add! next -level child -node)
))

(when (not (set -empty? next -level))
(tree -bfs -set -helper next -level (+ 1 rank) fcn )))))

Here is the result at the interpreter.
> (tree -bfs -set t show -node -name)
0,0

0,1
1,0

0,2
1,1
2,0

3,0
1,2
2,1
0,3





Chapter IV: Automata

IV.1.18

(a) Step Configuration

0 a b b a
q0

1 b b a
q1

2 b a
q2

Step Configuration

3 a
q2

4 q1

(b) Step Configuration

0 b a b
q0

1 a b
q0

Step Configuration

2 b
q1

3 q2

(c) Step Configuration

0 b b a a b b a a
q0

1 b a a b b a a
q0

2 a a b b a a
q0

Step Configuration

3 a b b a a
q1

4 b b a a
q1

5 b a a
q2

Step Configuration

6 a a
q2

7 a
q1

8 q1
IV.1.19 False. An example is that Example 1.8’s machine recognizes the set consisting of valid decimal

representations of integers and thus containing each of these: 0, 1, 2, . . .
IV.1.20 First, “𝑛 is infinite” is wrong. That set is a language {b, ab, a2b, ... } and in each string from that

language the number of a’s is finite.
Second, this Finite State machine recognizes the language.

b

a

any

any

@0 @1 @2

IV.1.21 Languages do not recognize strings, machines recognize strings. Maybe they mean that they have a
language that contains the empty string? Or maybe they mean that they have a machine that accepts the
empty string?

IV.1.22 Each input character consumed causes one transition. So an input string of length 𝑛 causes the machine
to undergo 𝑛 transitions. (This includes that the empty string 𝜀 causes no transitions.) With 𝑛 transitions, the
machine will have visited 𝑛 + 1 many not necessarily distinct states, including the start state.

IV.1.23
(a) A string is in this language when it has some number of a’s, followed by a single b, followed by the same

number of a’s (that is, the two strings of a’s have the same length). Five elements of the language are aba,
aabaa, b, aaabaaa, and aaaabaaaa. Five non-elements are ba, aaba, a, abba, and bbabb.
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(b) The strings in this language have some number of a’s followed by a single b, followed by a number of a’s.
The two numbers of a’s need not be the same, and may be zero. Five language elements are abaa, aabaa,
ab, baaaa, and b. Five non-elements are bab, aabb, bb, aabaab, and a.

(c) The criteria for a string to be in this language is that it must start with b and be followed by some number
of a’s. That could be zero-many a’s. Five elements of the language are baa, ba, b, ba3, and ba4. Five
non-elements are a, 𝜀, abaaa, baaab, and bb.

(d) A string is in this language if and only if it consists of some number of a’s followed by a b, followed by
some number of a’s, where the second string of a’s has two more than the first string. Five members of the
language are abaaa, aabaaaa, a3ba5, a4ba6, and baa. Five non-members are aba, abaaaa, ba, b, and bab.

(e) This language has members that are doubles in that a member consists of the concatenation of two copies of
some string. Five members of the language are aaabaaab, babbab, aa, bbbbabbbba, and abbaabba. Five
non-members are aba, b, aaabaab, babaa, and bbb.

IV.1.24
(a) For Example 1.6 the only accepting state is 𝑞2. In Example 1.8 also, the only accepting state is 𝑞2. For

Example 1.9 the accepting states are 𝑞3, 𝑞6, and 𝑞8. For Example 1.10 it is 𝑞0.
(b) Only Example 1.10 accepts the empty string 𝜀 because only in this machine is 𝑞0 an accepting state.
(c) For Example 1.6 the shortest accepted string is the length two string 00. For Example 1.8 it is any single-digit

length one string, such as 6. For Example 1.9 any of the length three strings jpg, png, and pdf. For
Example 1.10 it is the empty string 𝜀.

IV.1.25 This is the computation.
⟨𝑞0, 2332⟩ ⊢ ⟨𝑞2, 332⟩ ⊢ ⟨𝑞2, 32⟩ ⊢ ⟨𝑞2, 2⟩ ⊢ ⟨𝑞1, 𝜀⟩

The state 𝑞1 is not an accepting state so the machine rejects 2332.
IV.1.26 We must change the machine so that its initial state is not an accepting state. Below there there are
two states, 𝑞0 and 𝑞3, whose intuitive meaning is that the sum of the digits seen so far is congruent to 0
modulo 3. But the intiial state 𝑞0 is not accepting.

0,3,6,9

1,4,7

2,5,8

1,4,7

2,5,8

0,3,6,9

2,5,8

1,4,7

0,3,6,9

1,4,7 2,5,8

0,3,6,9

@0 @1

@2

@3

IV.1.27 This is the graph picture.
a

b

a

b
a,b@0 @1 @2

The language is {𝜎 ∈ {a, b}∗
�� 𝜎 = b(ab)𝑛 for 𝑛 ∈ N}.

IV.1.28 The language is the set of strings over Σ = {a, b} the contain exactly one b.
IV.1.29 In the section body is the advice to design machines by explicating an intuitive meaning for each state.
Although that is not a requirement and the question does not ask for it, for each item here we give those.

(a) Five members are ab, baab, ba, b7a3, and ab6a. Five nonmembers are aaaa, bbbb, a, 𝜀, and b. We take the
meaning of the states to be as here.

State Description
𝑞0 start state
𝑞1 have seen at least one a, no b’s
𝑞2 have seen at least one b, no a’s
𝑞3 at least one of each
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a

b

a

b

ab a, b

@0 @1

@2 @3

Δ a b
𝑞0 𝑞1 𝑞2
𝑞1 𝑞1 𝑞3
𝑞2 𝑞3 𝑞2

+𝑞3 𝑞3 𝑞3

Figure 69, for question IV.1.29: Finite State machine accepting strings with at least one a and b.

a

b

a

b

a

b a, b

@0 @1 @2 @3

Δ a b
+𝑞0 𝑞1 𝑞0
+𝑞1 𝑞2 𝑞1
+𝑞2 𝑞3 𝑞2
𝑞3 𝑞3 𝑞3

Figure 70, for question IV.1.29: Finite State machine accepting strings with fewer than three a’s.

The circle drawing and transition table are Figure 69 on page 109.
(b) Five members are: bb, 𝜀, aba, a, and bbbaab. Five nonmembers are aaa, baaa, a5, bababa, and a10. We

take the states with this meaning.
State Description
𝑞0 start state, no a’s seen yet
𝑞1 have seen one a, and maybe some number of b’s
𝑞2 have seen two a’s
𝑞3 have seen three or more a’s

For the circle diagram and transition table, see Figure 70 on page 109.
(c) Five members are ab, bab, aab, baab, and abab. Five nonmembers: a, bbb, 𝜀, b, and abababb. We use the

states with this meaning.
State Description
𝑞0 start state, have not just seen an a
𝑞1 have seen an a, waiting for a b
𝑞2 have just seen ab

The transition diagram and table are Figure 71 on page 110.
(d) Five members are aabb, aaabb, aabbb, a7b9, and a2b200. Five nonmembers are 𝜀, a, ab, ba, and b. We use

the states with this meaning.
State Description
𝑞0 start state, have not just seen anything
𝑞1 have seen one character, an a
𝑞2 have seen at least two a’s and no b’s
𝑞3 have seen at least two a’s and one b
𝑞4 have seen at least two a’s and at least two b’s

𝑞5 = 𝑒 error
See Figure 72 on page 110 for the circle diagram and the table.

(e) Five members are aabba, aabb, abb, bb, and a5bb7. Five nonmembers are 𝜀, bab, aabaa, aabbbaa,
and aabbaab. We take the states with this meaning.

State Description
𝑞0 have so far seen some number of a’s, including zero-many
𝑞1 have seen some a’s followed by one b
𝑞2 seen some a’s, two b’s, and some a’s
𝑒 error
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a

b a

b

a

b

@0 @1 @2

Δ a b
𝑞0 𝑞1 𝑞0
𝑞1 𝑞1 𝑞2

+𝑞2 𝑞1 𝑞0

Figure 71, for question IV.1.29: Finite State machine accepting strings that end in ab.

a

b

a

b

a

b

a

b

b

a

a,b

@0 @1 @2 @3 @4

4

Δ a b
𝑞0 𝑞1 𝑒
𝑞1 𝑞2 𝑒
𝑞2 𝑞2 𝑞3
𝑞3 𝑒 𝑞4

+𝑞4 𝑒 𝑞4
𝑒 𝑒 𝑒

Figure 72, for question IV.1.29: Finite State machine for strings of at least two a’s and then at least two b’s.

The two representations of the transition function are Figure 73 on page 111.
IV.1.30 Five elements of the language are aabb, bbaa, abab, aababb, and a3b4. Five non-elements are 𝜀, a, b,
aab, and bbbbabbbb. Here is the machine.

a

b

a

b

a

b

a

b

a

b b

a

a

b

a

b a,b

@0 @1 @2

@3 @4 @5

@6 @7 @8

The intuitive meaning of the states in the first row, 𝑞0, 𝑞1, and 𝑞2, is that when the machine is in those
states it has so far seen zero-many b’s. States in the second row are where the machine has so far seen one b.
The third row contains the states where the machine has seen two b’s. Similarly, the first column contains the
states where the machine has so far seen no a’s, in the second column are states where the machine has seen
a single a, and in the final column the machine has see two a’s.

IV.1.31
(a) Five strings that are elements of the language are aa, aaa, aab, aba, and baa. Five that are not are 𝜀, a, b,

abbbbbb, and ba. This machine accepts only strings in that language.

a

b

a

b a,b

@0 @1 @2

Δ a b

𝑞0 𝑞1 𝑞0
𝑞1 𝑞2 𝑞1

+ 𝑞2 𝑞2 𝑞2

(b) Five elements of the language are aa, aab, aba, baa, and aabb. Five that are not in the language are 𝜀, a,
ba, aaa, and baaa.
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a

b

a

b

a

b

a, b

@0 @1 @2

4

Δ a b
𝑞0 𝑞0 𝑞1
𝑞1 𝑒 𝑞2

+𝑞2 𝑞2 𝑒
𝑒 𝑒 𝑒

Figure 73, for question IV.1.29: Finite State machine for strings with some a’s, then two b’s, then some a’s.

a

b

a

b

a

b a,b

@0 @1 @2 @3

Δ a b

𝑞0 𝑞1 𝑞0
𝑞1 𝑞2 𝑞1

+ 𝑞2 𝑞3 𝑞2
𝑞3 𝑞3 𝑞3

(c) Five strings that are elements of the language are 𝜀, a, b, aa, and ab. Five that are not are aaa, aaab, aaba,
abaa, and baaa.

a

b

a

b

a

b a,b

@0 @1 @2 @3

Δ a b

+ 𝑞0 𝑞1 𝑞0
+ 𝑞1 𝑞2 𝑞1
+ 𝑞2 𝑞3 𝑞2
𝑞3 𝑞3 𝑞3

(d) Five from the language are ab, aab, aba, abb, and bab. Five that are not in the language are 𝜀, a, b, ba,
and bbbbaaaa.

a

b

b

a a,b

@0 @1 @2

Δ a b

𝑞0 𝑞1 𝑞0
𝑞1 𝑞1 𝑞2

+ 𝑞2 𝑞3 𝑞2

IV.1.32 To accept strings containing the substring abc the machine must have a state whose intuitive meaning
is “have just seen a, next looking for bc.” That state is 𝑞1. The state 𝑞2 means that the machine has just
processed a substring ab and is looking for c. And 𝑞3 means the machine has seen the substring abc. Finally,
𝑞0 is the state the machine is in if it has so far not seen even the first character in a potential substring abc.
Here is the machine.

a

b,c

b

c

a

c

a

b

any

@0 @1 @2 @3

Note that if the machine processes ab followed by b then it returns to 𝑞0, but if it processes ab followed by a
then it does not return to 𝑞0, it passes to 𝑞1. This follows from the intuitive meaning of 𝑞1.

IV.1.33
(a) Five that are in the language are aa, aaa, baa, aaaa, and abaa. Five that are not are 𝜀, a, b, ab ba, and aba.

Here is the machine.
a

b

a

b

a

b

@0 @1 @2

(b) The only string in the language is 𝜀. That is, L = {𝜀 }. Five not in the language are a, b, aa, ab, and ba. The
machine is this.
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any
any@0 @1

(c) There are only two strings in the language: L = {aaab, baaa}. Five strings not in the language are 𝜀, a, b,
aa, and ab. The machine is this.

a

b

a

b

a

b

b

a
any

a

b

a

b

a

b any

any

@0 @1 @2 @3 @4

4

@5 @6 @7 @8

(d) Five strings in the language are 𝜀, a, b, aa, and bb. Five not in the language are ab, ba, aab, aba, and baa.
This is the machine.

a

b

b

a

a

b

any@0

@1

@2

4

Note that 𝑞0 is an accepting state.
IV.1.34 The first machine accepts only 911 while the second accepts anything but 911. Note that in the two

machines the sets of accepting states are complementary.
9 1 1

other other other

any

@0 @1 @2 @3

4

9 1 1

other other other

any

@0 @1 @2 @3

4

IV.1.35 Here are the length three strings.

Input 𝜎 aaa aab aba abb baa bab bba bbb

Δ̂(𝜎) 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞0

And here are the length four strings.

Input 𝜎 aaaa aaab aaba aabb abaa abab abba abbb

Δ̂(𝜎) 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2

baaa baab baba babb bbaa bbab bbba bbbb
𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞0

IV.1.36 It outputs the start state, Δ̂(𝜀) = 𝑞0.
IV.1.37

/

other

#

other

#

other

/, #

/

other any

any

@0 @1 @2 @3 @4

4
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IV.1.38
(a) 0,2

1,3,4,5,6,7,8,9 any@0 4

(b)
0,5

1,2,3,4,6,7,8,9

1,2,3,4,6,7,8,9

0,5@0 @1

IV.1.39 Note that although the string 𝜎 = AEAIAOAUA has an A that occurs after an E, nonetheless the machine
should accept it because there exists a subsequence of string elements consisting of the ordered vowels.

A

other

E

other

I

other

O

other

U

other any

@0 @1 @2 @3 @4 @5

IV.1.40
(a) Five that are: +1, 123, -123.45, -0.0, and 0. Five that are not: +, +-, .., 12.3.4, and 2+3
(b) No, before the period must come at least one digit.
(c) It is the set of representations of real numbers with integer part, a decimal point, and a decimal part.

(d)
+,-

0,. . . 9

0,. . . 9

0,. . . 9

other

.

other

0,. . . 9

any

@0

@1

@2 @3

4

IV.1.41
(a) Five that are in the language are 010, 0010, 0, 0101000, and 𝜀. Five that are not are 10, 0110, 0101, 01001,

and 1.

0

1

0

1

0

1

any

@0 @1 @2

4

(b) A string is a binary representation of a multiple of 4 if and only if it ends in two zero’s, 00, or it is 0. Five in
the language are 100, 0100, 1000, 10100, and 0. Five not in the language are 10, 1, 1001, 001, and 𝜀.

0
1

0

1

0

1

0

1

1
0

0

1

@0 @1

@2

@3 @4 @5

(c) Five strings in the language are 0, 20, 12, 88, and 08. Five that are not are 1, 01, 2221, 17, and 𝜀.
0, 2, 4, 6, 8

1, 3, 5, 7, 9

1, 3, 5, 7, 9

0, 2, 4, 6, 8@0 @1

(d) This is basically the same as the second item. A string is a decimal representation of a multiple of 100 if and
only if it ends in two zero’s, 00, or it is 0. Five in the language are 100, 0100, 2000, 60300, and 0. Five not
in the language are 10, 8, 1009, 001, and 𝜀.

0
1,. . .9

0

1,. . . 9

0

1,. . . 9

0

1,. . . 9

1,. . . 9
0

0

1,. . . 9

@0 @1

@2

@3 @4 @5
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IV.1.42 A number is divisible by four if and only if its representation ends in 00, 04, . . . 96, or the single-digit
cases where the representation is 0, 4, or 8. That’s 28 cases. A picture would be cluttered but this is a finite
language and for any finite language there is a Finite State machines that recognizes that language. (We shall
see an alternative approach that makes a clearer picture in the section on nondeterminism.)

IV.1.43 Recall the transition function for that example.

Δ 0 1

𝑞0 𝑞1 𝑞3
𝑞1 𝑞2 𝑞4

+ 𝑞2 𝑞2 𝑞5
𝑞3 𝑞4 𝑞0
𝑞4 𝑞5 𝑞1
𝑞5 𝑞5 𝑞2

(a) If the input string is 𝜎 = 0 then peel off the final character with 𝜎 = 𝜎0⌢0 = 𝜀⌢0 and the definition gives
this.

Δ̂(0) = Δ(Δ̂(𝜀), 0) = Δ(𝑞0, 0) = 𝑞1
(Note that in the left-most expression 0 is a length one string, while in the rest of the above equation 0 is a
character, and we are ignoring this uninteresting point.) Similarly, Δ̂(1) = 𝑞3.

(b) For 𝜎 = 00 use the prior item’s computation of Δ̂(0).
Δ̂(00) = Δ(Δ̂(0), 0) = Δ(𝑞1, 0) = 𝑞2

The other three are similar.

Δ̂(01) = 𝑞4 Δ̂(10) = 𝑞4 Δ̂(11) = 𝑞0
(c) For each of these use the prior item’s computation. Here is the first.

Δ̂(000) = Δ(Δ̂(00), 0) = Δ(𝑞2, 0) = 𝑞2
The others are computed in the same way.

Δ̂(000) Δ̂(001) Δ̂(010) Δ̂(011) Δ̂(100) Δ̂(101) Δ̂(110) Δ̂(111)
𝑞2 𝑞5 𝑞5 𝑞1 𝑞5 𝑞1 𝑞1 𝑞3

IV.1.44

a

b

b

a

a

b a

b

a

b

any

@0 @1 @2 @3 @4

4

IV.1.45
(a) There is one such machine.

Δ 0 1

𝑞0 𝑞0 𝑞0
(b) This list has 16 machines.

Δ0 0 1

𝑞0 𝑞0 𝑞0
𝑞1 𝑞0 𝑞0

Δ1 0 1

𝑞0 𝑞0 𝑞0
𝑞1 𝑞0 𝑞1

Δ2 0 1

𝑞0 𝑞0 𝑞0
𝑞1 𝑞1 𝑞0

. . .
Δ15 0 1

𝑞0 𝑞1 𝑞1
𝑞1 𝑞1 𝑞1

(c) Fix 𝑛 states, 𝑄 = {𝑞0, ... 𝑞𝑛−1 }. Each line of the transition table has two columns so the number of distinct
lines is 𝑛 · 𝑛 = 𝑛2. An overall table chooses 𝑛 such lines. There are 𝑛2 · 𝑛2 · · ·𝑛2 = 𝑛2𝑛 many ways to do that.
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state meaning with wolf with goat with cabbage with nothing
𝑠0 n: mwgc, f: – 𝑠12 𝑠10 𝑠9 𝑠8
𝑠1 n: mwg, f: c 𝑠13 𝑠11 𝑒 𝑠9
𝑠2 n: mwc, f: g 𝑠14 𝑒 𝑠11 𝑠10
𝑠3 n: mw, f: gc 𝑒 𝑒 𝑒 𝑒
𝑠4 n: mgc, f: w 𝑒 𝑠14 𝑠13 𝑠12
𝑠5 n: mg, f: wc 𝑒 𝑠15 𝑒 𝑠13
𝑠6 n: mc, f: wg 𝑒 𝑒 𝑒 𝑒
𝑠7 n: m, f: wgc 𝑒 𝑒 𝑒 𝑒
𝑠8 n: wgc, f: m– 𝑒 𝑒 𝑒 𝑒
𝑠9 n: wg, f: mc 𝑒 𝑒 𝑒 𝑒
𝑠10 n: wc, f: mg 𝑒 𝑠0 𝑒 𝑠2
𝑠11 n: w, f: mgc 𝑒 𝑠1 𝑠10 𝑠3
𝑠12 n: gc, f: mw 𝑒 𝑒 𝑒 𝑒
𝑠13 n: g, f: mwc 𝑠1 𝑒 𝑠4 𝑠5
𝑠14 n: c, f: mwg 𝑠2 𝑠4 𝑒 𝑠6
𝑠15 n: –, f: mwgc 𝑠15 𝑠15 𝑠15 𝑠15
𝑒 error 𝑒 𝑒 𝑒 𝑒

Figure 74, for question IV.1.46: Finite state machine for Wolf-Goat-Cabbage.

(d) For each of the 𝑛 states, either it is final or it is not. The additional factor of 2𝑛 makes the total number of
distinct tables equal to 2𝑛𝑛2𝑛.

IV.1.46 We can have the man, the wolf, the goat, and the cabbage, on the near or far side. The allowed
transitions are: man crosses with wolf, man crosses with goat, man crosses with cabbage, and man crosses
by himself. Here are the states; some of them lead to an error state, as readers of the 700’s would have
understood.

In the Finite State machine shown in Figure 74 on page 115 the start state is 𝑠0 and the only accepting
state is 𝑠15. In words: The man first brings the goat to the far side and leaves it there. He goes back and
brings the wolf with him, leaving it on the far side, and brings back the goat. He leaves the goat on the initial
side, takes the cabbage and brings it to the far side. Finally, he goes back to the original shore, and takes the
goat to bring it to the far side.

IV.1.47 This is based on Example 1.9.
We will prove this by induction on the number of strings in the language. If the language is empty then we

use any Finite State machine with the right alphabet and no accepting states. If the language has one string 𝜎
then we write a Finite State machine whose state transitions track the characters of 𝜎 as does the top line in
the example. That is, we have this.

f [0]

other

f [1]

other

f [1] f [9 − 2] f [9 − 1]

other

other
other@0 @1 @2 . . . @ 9−1 @ 9 4

As the diagram shows, the last state in that sequence is an accepting state. Also as shown, all transitions
for characters not in the sequence go to 𝑒. (If 𝜎 = 𝜀 then there are two states, with the initial state 𝑞0 an
accepting state and all transitions going to the error state 𝑒 that is not an accepting state.)

For the inductive case, assume that there is a machine for any language of size 𝑛 = 1, . . .𝑛 = 𝑘 and
consider a language L with 𝑘 + 1-many strings. Order the alphabet Σ; in the example we use the grade school
alphabetical ordering. This character ordering gives rise to an ordering of the strings, called lexicographic
ordering. List L’s strings lexicographically: 𝜎0, . . . 𝜎𝑘 , 𝜎𝑘+1.

The induction assumption gives a machine for the language consisting of the strings 𝜎0, . . . 𝜎𝑘 . The
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example shows what to do next; it has the two final strings png and pdf and the machine splits where the two
strings split, after the p. Following that model, find the longest common substring for 𝜎𝑘 and 𝜎𝑘+1, so that
𝜎𝑘 = 𝛼⌢𝛽, and 𝜎𝑘+1 = 𝛼⌢𝛾 , and the initial character of 𝛽 is not equal to the initial character of 𝛾 . (It could
be that 𝛽 = 𝜀. It could also be that 𝛼 = 𝜀.) As in the example, split the machine after it has traversed the
common string.

U [0] U [−1] f: [8 ] f: [−1]

f:+1 [8 ]

f:+1 [−1]

@0 . . . @8 @8+1 . . . @ 9

@ 9+1 . . . @=

4

(To be more readable this figure omits all the transitions involving 𝑒.)
IV.1.48 Recall that an alphabet is finite, by definition.
(a) We will show that there are infinitely many different Finite State machines. Fix any Σ and suppose s ∈ Σ.

The machines below differ in the number of states, and in that they recognize different languages. (If Σ
contains characters other than s then use the second column.)

Δ s other
+ 𝑞0 𝑞0 𝑞0

Δ s other
+ 𝑞0 𝑞1 𝑞0
𝑞1 𝑞0 𝑞0

Δ s other
+ 𝑞0 𝑞1 𝑞0
𝑞1 𝑞2 𝑞0
𝑞2 𝑞0 𝑞0

. . .

That shows, under a reasonable interpretation of what it means for machines to differ, that there are at least
countably many Finite State machines. (The technical wording is that these machines are not isomorphic.)

(b) The argument that there are no more than countably many machines also requires an interpretation. Assume
that the set of possible states is countable, 𝑄 = {𝑞0, 𝑞1, ... }, so as to not get uncountably many machines by
virtue of there being uncountably many possible states. With that, the argument that we can count the
Finite State machines is straightforward since for any collection of finitely many states 𝑞0, ... 𝑞𝑘 there are
finitely many transition tables. Thus the number of Finite State machines using those states is countable.
And then the union of countably many countable sets is countable, so the number of machines over all
collections of finitely many states is countable.

(c) Because Σ has at least two members, the usual diagonalization construction shows that the power set of Σ is
not countable.

IV.2.24 The main point is that entries in the table are sets of states. This is the machine in Example 2.7.

Δ a b

𝑞0 {𝑞0, 𝑞1 } {𝑞0, 𝑞2 }
𝑞1 {𝑞3 } { }
𝑞2 { } {𝑞3 }

+ 𝑞3 {𝑞3 } {𝑞3 }
This is Example 2.8’s machine.

Δ a b c

+ 𝑞0 {𝑞1 } { } { }
𝑞1 { } { } {𝑞0 }

IV.2.25
(a) Yes. From 𝑞0 a 𝜀 transition goes to 𝑞2, which is an accepting state.
(b) No. From 𝑞0 the machine can either read the 0 and go to 𝑞1, or take the 𝜀 transition to 𝑞2 and then read

the 0, which sends the machine to no-state. Neither 𝑞2 nor no-state is an accepting state.
Said more formally, the 𝜀 closure of 𝑞0 is {𝑞0, 𝑞2 }. Neither state, on reading the character 0, transitions

to a state whose 𝜀 closure includes an accepting state.
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(c) Yes. With that input the machine can go from 𝑞0 to 𝑞1, then to 𝑞2, and then around the loop to 𝑞2 again.
More formally, this is a sequence of allowed transitions that ends in an accepting state.

⟨𝑞0, 011⟩ ⊢ ⟨𝑞1, 11⟩ ⊢ ⟨𝑞2, 1⟩ ⊢ ⟨𝑞2, 𝜀⟩
(d) No. Starting at 𝑞0 with the character 0 first on the tape the machine can do two things. If it takes the

𝜀 transition then when it reads the 0 it goes to no-state, which is not an accepting state.
Otherwise, the 0 moves the machine to 𝑞1. Next, on the following tape character 1, the machine moves

to {𝑞2 }. Finally, on the third character 0, the machine moves to no-state.
(e) There are two: 01111 and 11111.
IV.2.26 Someone in this class saying that a topic is “just mathematical abstraction” is like someone objecting in

an aerodynamics class that this is all “just air.” Yes, that’s what we are doing.
Said another way, if someone compares what we are thinking about here with a course on data structures,

and holds the latter up as a model of “real” then that is a stretch. “Real” is changing diapers, or grafting
fruit trees, or helping the helpless. All of what we are doing in the entire programs of computer science and
mathematics is abstraction of one kind of another.

If that person responds, “OK but abstraction can go too far and get away from what brought us into the
program” then that is more measured. One answer is that people in a program need to take as the default
assumption that the people who put together this program, and such programs across the world, have put in
steps that lead somewhere. Nondeterminism is here because it is necessary to understand the material of the
fifth chapter, which describes the most important problem in the field today, which will directly impact all
practitioners, the P versus NP question.

Besides, it is interesting and fun. Surely those are respectable criteria to merit at least some consideration.
IV.2.27 The machine accepts the input string if there is a sequence of legal transitions that allows the machine

to process the string and that ends in an accepting state. It does not say there must not be any wrong ways to
go, only that there must be a right way.

For instance, the given machine can accept aab by starting in 𝑞0, transitioning to 𝑞1 on the first a, taking
the 𝜀 transition to 𝑞0, then going to 𝑞1 on the second a, then going to 𝑞2, which is accepting, with the b.

⟨𝑞0, aab⟩ ⊢ ⟨𝑞1, ab⟩ ⊢ ⟨𝑞0, ab⟩ ⊢ ⟨𝑞1, b⟩ ⊢ ⟨𝑞2, 𝜀⟩
This machine recognizes the language L = {a𝑛b

�� 𝑛 ∈ N}.
IV.2.28 To show that a nondeterminstic machine accepts the input we need only exhibit an accepting branch of

the computation tree. But here we will walk through unproductive branches just for the exercise. (In any case,
to show that a nondeterministc machine does not accept we need to check all the branches.)

(a) After processing the empty string as input, that is, at the moment we press the Start button, the nondeter-
ministic machine is in states 𝑞0 and 𝑞3. The deterministic machine is in state 𝑠7. Both result in the input
being rejected.

(b) For the nondterministic machine, processing the input awill leave the machine in {𝑞2, 𝑞3 }. The deterministic
machine ends in 𝑠10. In both cases the machine rejects the input.

(c) Here is what happens for the nondeterministic machine with input string b. If the machine follows the
𝜀 transition before processing the b then it results in a dead end branch because when in state 𝑞3 and
reading b, the machine has no next state. However a branch that does not start by following the 𝜀 transition
will then pass to 𝑞1 on processing the b character. The 𝜀 closure of 𝑞1 is {𝑞0, 𝑞1, 𝑞3 }, so that’s where the
nondeterministic machine ends. It accepts the input because 𝑞1 is an accepting state. The deterministic
machine passes from 𝑠7 to 𝑠12, which is an accepting state.

(d) As given in an earlier item, on processing the first a the nondeterministic machine is in {𝑞2, 𝑞3 }. In
processing the second a, the branch in 𝑞2 dead ends, while the branch in 𝑞3 returns to 𝑞3. Thus this machine
ends in {𝑞3 }. The deterministic machine processes aa by passing from 𝑠7 to 𝑠10 and then to 𝑠4. Both
machines reject the input.

(e) Again, processing the first a character takes the nondeterministic machine to {𝑞2, 𝑞3 }. Then the b takes it to
{𝑞0, 𝑞3 }. The deterministic machine passes from the start state of 𝑠7 to 𝑠10 and then back to 𝑠7 = {𝑞0, 𝑞3 }.
Both nondeterministic and deterministic machines reject the input.
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(f) An earlier item says that in consuming the initial b character the nondeterministic machine ends in states 𝑞0,
𝑞1, and 𝑞3. In processing the a character there is a branch from 𝑞0 that passes to 𝑞2. There is another branch
from 𝑞0 that first takes the 𝜀 move to 𝑞3, and then the a character has the machine loop back to 𝑞3. Finally
there is a branch that starts in 𝑞3 and loops around to 𝑞3 again. Thus, taken together, this nondeterministic
machine ends in {𝑞2, 𝑞3 }. Neither is an accepting state so this machine rejects the input.

The deterministic machine passes from 𝑠7 to 𝑠12 and then to 𝑠10, which is not an accepting state.
(g) Again, an earlier item says that after processing the b character the nondeterministic machine ends in

{𝑞0, 𝑞1, 𝑞3 }. Then a branch follows the 𝜀 transition to 𝑞3 but dead-ends there because in 𝑞3 there is no
outward arrow labeled b. From 𝑞1 no outward arrow is labeled b either. So the only branch that does not
die is the one passing from 𝑞0 to 𝑞1, and thus this machine ends the processing of this input in {𝑞1 }. That
means it accepts the input.

The deterministic machine goes from 𝑠7 to 𝑠12, and then loops around to 𝑠12 again, which is an accepting
state.

IV.2.29 This is the sequence of allowed transitions.

⟨𝑞0, 010101110⟩ ⊢ ⟨𝑞0, 10101110⟩ ⊢ ⟨𝑞0, 0101110⟩ ⊢ ⟨𝑞1, 101110⟩
⊢ ⟨𝑞2, 01110⟩ ⊢ ⟨𝑞3, 1110⟩ ⊢ ⟨𝑞4, 110⟩ ⊢ ⟨𝑞5, 10⟩ ⊢ ⟨𝑞6, 0⟩ ⊢ ⟨𝑞7, 𝜀⟩

IV.2.30
(a) Here are the 𝜀 closures.

state 𝑞0 𝑞1 𝑞2
𝜀 closure {𝑞0 } {𝑞1, 𝑞2 } {𝑞2 }

(b) It does not accept the empty string because the 𝜀 closure of 𝑞0 does not contain any final states.
(c) It accepts both of the one-character strings a and b. For instance, on the string a the machine can transition

from 𝑞0 to 𝑞1, and then it can make an 𝜀 transition to 𝑞2, which is an accepting state.
(d) The given machine can accept aab by starting in 𝑞0, transitioning to 𝑞0 on the first a, then going to 𝑞1 on

the second a, taking the 𝜀 transition to 𝑞2, then going to 𝑞2 with the b, thereby ending in an accepting state.

⟨𝑞0, aab⟩ ⊢ ⟨𝑞0, ab⟩ ⊢ ⟨𝑞1, b⟩ ⊢ ⟨𝑞2, b⟩ ⊢ ⟨𝑞2, 𝜀⟩
(e) Five of the shortest strings are: a, b, aa, ab, and aab.
(f) Five that it does not accept are: the empty string 𝜀, ba, baa, bab, and baaa.
IV.2.31

Δ 𝜀 a b

𝑞0 {𝑞1 } {𝑞1 } { }
𝑞1 {𝑞0 } { } {𝑞2 }

+ 𝑞2 { } { } { }
IV.2.32
(a) ⟨𝑞0, 011⟩ ⊢ ⟨𝑞2, 11⟩ ⊢ ⟨𝑞2, 1⟩ ⊢ ⟨𝑞2, 𝜀⟩
(b) ⟨𝑞0, 00011⟩ ⊢ ⟨𝑞1, 0011⟩ ⊢ ⟨𝑞1, 011⟩ ⊢ ⟨𝑞1, 11⟩ ⊢ ⟨𝑞2, 1⟩ ⊢ ⟨𝑞2, 𝜀⟩
(c) Yes, because the state 𝑞0 is accepting.
(d) It accepts 0 because it can go through these steps that end in an accepting state.

⟨𝑞0, 0⟩ ⊢ ⟨𝑞2, 𝜀⟩
It does not accept 1 because there is no such sequence of steps.

(e) Five are 𝜀, 0, 01, 011, and 0111.
(f) Here are five: 1, 10, 11, 010, and 110.
(g) One description is L = {𝜎 ∈ B∗ �� 𝜎 = 𝜀 or 𝜎 = 0𝑖1𝑗 for 𝑖 ≥ 1 and 𝑗 ≥ 0}.
IV.2.33 Every state reaches its limit after two moves.
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𝑚 = 0 1 2 3 𝐸 (𝑞)
𝑞0 {𝑞0 } {𝑞0, 𝑞1 } {𝑞0, 𝑞1 } {𝑞0, 𝑞1 } {𝑞0, 𝑞1 }
𝑞1 {𝑞1 } {𝑞1 } {𝑞1 } {𝑞1 } {𝑞1 }
𝑞2 {𝑞2 } {𝑞2, 𝑞3 } {𝑞1, 𝑞2, 𝑞3 } {𝑞1, 𝑞2, 𝑞3 } {𝑞1, 𝑞2, 𝑞3 }
𝑞3 {𝑞3 } {𝑞1, 𝑞3 } {𝑞1, 𝑞3 } {𝑞1, 𝑞3 } {𝑞1, 𝑞3 }

IV.2.34

0 1

0

0

@0 @1 @2 @3

IV.2.35
(a)

0,1
0 0

@0 @1 @2

(b)

0
any

1 1 0
any@0 @1 @2 @3 @4

(c)

Y 0

1

0

1

Y

0

1

0

1

0

@0

@1 @2

@3 @4 @5

(d)
00@0

IV.2.36

0, 1
1 1 1 0 0 0 1 1 1

@0 @1 @2 @3 @4 @5 @6 @7 @8 @9

IV.2.37 There are a number of ways to go. This is one

c a

t

p

r

u m b a

@0 @1 @2

@3

@4

@5 @6 @7 @8 @9

and this is another.

c

a t

c a p

c

a r u m b a

@0

@1 @2 @3

@4 @5 @6

@7 @8 @9 @10 @11 @12 @13

IV.2.38
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Y

a,b

Y

a,c

Y
b,c

@0

@1

@2

@3

IV.2.39
(a)

b

a, b

a

a

a, b

b a, b

@0

@1 @2

@3 @4 @5 @6

(b)

a

a

a, b a a, b

a, b

a

a, b

a a, b

@0

@1 @2

@3 @4 @5

@6 @7 @8 @9

IV.2.40 It is L = {𝜎 ∈ {a, b}∗
�� 𝜎 has no substring bba}.

IV.2.41 Here is the nondeterministic machine

0,1
1 1

0,1@0 @1 @2

and this is a deterministic version.

0

1

0

1
0,1@0 @1 @2

IV.2.42
(a)

a
b

b a, ba

b
a, b

@0 @1

@2 @3

(b) A string is in the language if it consists of, first, some number of repetitions of: either a number of repetitions
of a or ba. Then it has either bb, or a b followed by an a or b. Finally, the suffix consists of some number of
characters, either a or b.

(c) This is the transition function for the associated deterministic machine.
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Δ𝐷 a b

𝑠0 = { } 𝑠0 𝑠0
𝑠1 = {𝑞0 } 𝑠1 𝑠8
𝑠2 = {𝑞1 } 𝑠4 𝑠4

+ 𝑠3 = {𝑞2 } 𝑠2 𝑠4
𝑠4 = {𝑞3 } 𝑠4 𝑠4

𝑠5 = {𝑞0, 𝑞1 } 𝑠7 𝑠14
+ 𝑠6 = {𝑞0, 𝑞2 } 𝑠5 𝑠14
𝑠7 = {𝑞0, 𝑞3 } 𝑠7 𝑠14

+ 𝑠8 = {𝑞1, 𝑞2 } 𝑠9 𝑠4
𝑠9 = {𝑞1, 𝑞3 } 𝑠4 𝑠4

+ 𝑠10 = {𝑞2, 𝑞3 } 𝑠9 𝑠4
+ 𝑠11 = {𝑞0, 𝑞1, 𝑞2 } 𝑠12 𝑠14
𝑠12 = {𝑞0, 𝑞1, 𝑞3 } 𝑠7 𝑠14

+ 𝑠13 = {𝑞0, 𝑞2, 𝑞3 } 𝑠12 𝑠14
+ 𝑠14 = {𝑞1, 𝑞2, 𝑞3 } 𝑠9 𝑠4

+ 𝑠15 = {𝑞0, 𝑞1, 𝑞2, 𝑞3 } 𝑠12 𝑠14

IV.2.43

1 0
0,1@0 @1 @2

The associated deterministic machine has eight states. Its accepting states are the ones containing 𝑞2.

Δ𝐷 0 1

𝑠0 = { } 𝑠0 𝑠0
𝑠1 = {𝑞0 } 𝑠0 𝑠2
𝑠2 = {𝑞1 } 𝑠3 𝑠0

+ 𝑠3 = {𝑞2 } 𝑠3 𝑠3
𝑠4 = {𝑞0, 𝑞1 } 𝑠3 𝑠2

+ 𝑠5 = {𝑞0, 𝑞2 } 𝑠3 𝑠6
+ 𝑠6 = {𝑞1, 𝑞2 } 𝑠3 𝑠3

+ 𝑠7 = {𝑞0, 𝑞1, 𝑞2 } 𝑠3 𝑠6

IV.2.44 This is for the machine on the left.

Δ𝐷 0 1

𝑠0 = { } 𝑠0 𝑠0
𝑠1 = {𝑞0 } 𝑠4 𝑠0
𝑠2 = {𝑞1 } 𝑠3 𝑠3

+ 𝑠3 = {𝑞2 } 𝑠0 𝑠1
𝑠4 = {𝑞0, 𝑞1 } 𝑠7 𝑠3

+ 𝑠5 = {𝑞0, 𝑞2 } 𝑠4 𝑠1
+ 𝑠6 = {𝑞1, 𝑞2 } 𝑠3 𝑠5

+ 𝑠7 = {𝑞0, 𝑞1, 𝑞2 } 𝑠7 𝑠5

And, this is for the machine on the right.



Page 122

Δ𝐷 0 1

𝑠0 = { } 𝑠0 𝑠0
𝑠1 = {𝑞0 } 𝑠4 𝑠1
𝑠2 = {𝑞1 } 𝑠3 𝑠3

+ 𝑠3 = {𝑞2 } 𝑠0 𝑠5
𝑠4 = {𝑞0, 𝑞1 } 𝑠7 𝑠1

+ 𝑠5 = {𝑞0, 𝑞2 } 𝑠4 𝑠1
+ 𝑠6 = {𝑞1, 𝑞2 } 𝑠3 𝑠5

+ 𝑠7 = {𝑞0, 𝑞1, 𝑞2 } 𝑠7 𝑠5

IV.2.45

(a)
Y

1,2

0

1,2

0

Y

0,2

1

0,2

1

Y
0,1

2

0,1

2

@0

@1 @2 @3

@4 @5 @6

@7 @8 @9

(b)
Y

1,2

0 0

Y

0,2

1

0

1

Y
0,1

2

0,1

2

@0

@1 @2 @3

@4 @5 @6

@7 @8 @9

IV.2.46

(a) 1

0 1

Y

@0 @1 @2

(b)

1

0

Y

0 0

0,1

0 0 1

Y

@0 @1 @2 @3 @4 @5 @6

(c)

0

0 0

0

1

0,1

0 1

1

0

0,1

1 0

1

1

0,1

1 1

@0

@1 @2 @3

@4 @5 @6 @7

@8 @9 @10 @11

@12 @13 @14 @15
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(d) Y

1

0

0

1

1

0

1

1
0

@0

@1 @2

@3 @4

IV.2.47 Here are the graphs.

@0
a,b,c

a,b,c@0 @1

The machine on the left, the one that accepts only the empty string, has this table.

Δ a b c

+ 𝑞0 { } { } { }
The machine on the right has this.

Δ a b c

𝑞0 {𝑞1 } {𝑞1 } {𝑞1 }
+ 𝑞1 {𝑞1 } {𝑞1 } {𝑞1 }

IV.2.48 A nondeterministic machine with 𝜀 transitions accepts a string 𝜏0 ∈ Σ∗ if any of the members of
Δ̂(𝑞0, 𝜏0) is a final state.

IV.2.49
(a) This is a derivation of abb.

S ⇒ aA ⇒ abB ⇒ abb

This is a derivation of aabb.
S ⇒ aA ⇒ aaA ⇒ aabB ⇒ aabb

And, this is a derivation of abbb.
S ⇒ aA ⇒ abB ⇒ abbB ⇒ abbb

Verifying that they are accepted by the machine is routine.
(b) The language of the machine and the grammar is L = {a𝑖b𝑗

�� 𝑖 > 0, 𝑗 > 1}.
IV.2.50 Each of these is solvable. For each we will sketch an algorithm.
(a) Clearly we can write a simulator for deterministic Finite State machines. By Church’s Thesis since we can

write it on a modern computer, we can write one for a Turing machine. When given an input 𝜎 , the machine
will consume it in no more than |𝜎 | steps, and so the simulation is sure to halt. Then just check whether the
ending state is an accepting state.

(b) The section body discusses how to simulate a nondeterministic computation, by dovetailing (that is,
time-slicing). With that we can answer questions about whether this machine accepts a given input 𝜎 just as
in the prior item.

IV.2.51
(a) Here is the list.

step 𝑖 𝐸 (𝑞0, 𝑖) 𝐸 (𝑞1, 𝑖) 𝐸 (𝑞2, 𝑖) 𝐸 (𝑞3, 𝑖)
0 {𝑞0 } {𝑞1 } {𝑞2 } {𝑞3 }
1 {𝑞0, 𝑞3 } {𝑞0, 𝑞1 } {𝑞2 } {𝑞3 }
2 {𝑞0, 𝑞3 } {𝑞0, 𝑞1 } {𝑞2 } {𝑞3 }
3 {𝑞0, 𝑞3 } {𝑞0, 𝑞1 } {𝑞2 } {𝑞3 }

So, 𝐸 (𝑞0) = {𝑞0, 𝑞3 }, 𝐸 (𝑞1) = {𝑞0, 𝑞1 }, 𝐸 (𝑞2) = {𝑞2 }, and 𝐸 (𝑞3) = {𝑞3 }.
(b) This is similar.
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a*b a* ∅ 𝜀 b(a|b)a (a|b)(𝜀|a)a
𝜀 F T F T F F
a F T F F F F
b T F F F F F
aa F T F F F T
ab T F F F F F
ba F F F F F T
bb F F F F F F

aaa F T F F F T
aab T F F F F F
aba F F F F F F
abb F F F F F F
baa F F F F T T
bab F F F F F F
bba F F F F T F
bbb F F F F F F

Figure 75, for question IV.3.19: String matching test.

step 𝑖 𝐸 (𝑞0, 𝑖) 𝐸 (𝑞1, 𝑖) 𝐸 (𝑞2, 𝑖)
0 {𝑞0 } {𝑞1 } {𝑞2 }
1 {𝑞0 } {𝑞1, 𝑞2 } {𝑞2 }
2 {𝑞0 } {𝑞1, 𝑞2 } {𝑞2 }
3 {𝑞0 } {𝑞1, 𝑞2 } {𝑞2 }

So, 𝐸 (𝑞0) = {𝑞0 }, 𝐸 (𝑞1) = {𝑞1, 𝑞2 }, and 𝐸 (𝑞2) = {𝑞2 }.
IV.3.16
(a) Yes. One match is 00

0*

1
1

0
0

.

(b) Yes This works: 1
1*

0
0

1
1

.

(c) No. To match, the 0 must be a final character.
(d) Yes. A match is 1

1*

01
(0|1)*

.

(e) Yes. Here is a match: 𝜀
1*

0
0

1
1*

.

IV.3.17
(a) Five that match are 0, 01, 011, 0111, and 014 = 01111. Five that do not are 𝜀, 1, 10, 11, and 100.
(b) Five matching strings are 𝜀, 01, 0101, 010101, and (01)4. Five that don’t match are 0, 1, 00, 10, and 11.
(c) Matches are 101 and 111. Five that do not match are 𝜀, 0, 1, 00, 01, and 10.
(d) Five matches are 0, 01, 00, 1, and 10. Five that don’t match are 𝜀, 001, 0001, 101, and 1101.
(e) Matches: none. Non-matches: 𝜀, 0, 1, 00, 01, and 10.
IV.3.18
(a) The language consists of strings with some number of a’s (that number may be zero), followed by a single c,

followed by some number of b’s.
(b) The language consists of strings of at least one a.
(c) Strings in this language start with an a, followed by any number of characters, and end with two b’s.
IV.3.19 Figure 75 on page 124 shows the table. Observe that the regular expression ∅ never matches.
IV.3.20 Figure 76 on page 125 shows the table. Note that the regular expression ∅ never matches.
IV.3.21 The definition is L(𝑅)∗ = {𝜎0⌢ · · ·⌢𝜎𝑘−1

�� 𝑘 ∈ N and 𝜎0, ... , 𝜎𝑘−1 ∈ L(𝑅) }. That is, the language of
the star is the star of the language: L(𝑅∗) = (L(𝑅))∗.
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0*1 1*0 ∅ 𝜀 0(0|1)* (100)(𝜀|1)0*
𝜀 F F F T F F
0 F T F F T F
1 T F F F F F

00 F F F F T F
01 T F F F T F
10 F T F F F F
11 F F F F F F
000 F F F F T F
001 T F F F T F
010 F F F F T F
011 F F F F T F
100 F F F F F T
101 F F F F F F
110 F T F F F F
111 F F F F F F

Figure 76, for question IV.3.20: String matching test.

As an example, (0*1)* matches 01001 because 01001 = 01⌢001, and both of 01 and 001 matches (0*1).
Thus, Kleene star means something more like “repeatedly match the inside.”

IV.3.22 One is (0|1)*111(0|1)*.
IV.3.23 Regular expressions are not unique. For instance, here are two regular expressions for the
language of strings over Σ = {a, b} that have a substring with at least three a’s: (a|b)*aaa(a|b)* and
(a|b)*aaaa*(a|b)*.

IV.3.24
(a) Of course, many sets of strings are possible answers. Here are five members of L0: abb, aabb, ab4, aab4,

ab6. Here are five that are not: 𝜀, a, b, ab, abba, ba. A regular expression is aa*bb(bb)*. Here is a
(nondeterministic) Finite State machine that accepts this language.

a

a

b b

b

b

@0 @1 @2 @3 @4

(b) Five members of L1 are: abbb, aabbb, ab6, aab6, ab9. Five that are not are: 𝜀, a, b, abbb, abbba, ba. A
regular expression is aa*bbb(bbb)*. This is a nondeterministic Finite State machine that accepts L1.

a

a

b b b b b

b

@0 @1 @2 @3 @4 @5 @6

IV.3.25 ((a|b)*)|((a|c)*)|((b|c)*)

IV.3.26
(a) b(a|b)*
(b) (a|b)*a(a|b)
(c) The two characters could come in the order ... a ... b ... or the order ... a ... b ... . So this works: (a|b)*((a(a|b)*b)|(b(a|b)*a))(a|b)*.
(d) The a’s must come in triplets: (b*ab*ab*ab*)*b*.
IV.3.27
(a) aba(a|b)*
(b) (a|b)*aba
(c) (a|b)*aba(a|b)*
IV.3.28
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a

b a
@0 @1 @2

a

b a

b
a,b

a,b

@0 @1 @2

4

Figure 77, for question IV.3.33: Finite State machine for a*ba.

a

a,b

a
@0 @1 @2

Figure 78, for question IV.3.33: Finite State machine for ab*(a|b)*a.

(a) There must be at least one 1, and more 1’s must come in pairs: (0*10*1)*0*10*.
(b) The regular expression (𝜀|1)(01)*(𝜀|0) will do. Note that it matches the empty string, as well as the

string 0 and the string 1.
(c) A multiple of eight in binary ends in three 0’s: (0|1)*000. That expression matches binary numbers with

leading 0’s and won’t match 0. If you don’t like that then instead use (1(0|1)*000)|0.
IV.3.29
(a) This is an answer: ((ba)*bb*)*. Notice that it matches the empty string, and that it matches babab.
(b) (a|b)*((bba*bb)|(bbb))(a|b)*
IV.3.30
(a) Here the 0’s come in pairs: (1*01*01*)*1*.
(b) Here two of the 1’s have no Kleene star’s: 0*10*10*1*(0|1)*.
(c) One that will do is to start with the expression from the prior item and replace all the 0’s with the expression

from the first item.
((1*01*01*)*1*)*1((1*01*01*)*1*)*1((1*01*01*)*1*)*1*(((1*01*01*)*1*)|1)*

IV.3.31
(a) (a(a|b)*a)|(b(a|b)*b)
(b) ((aaa)*b(aaa)*)|(a(aaa)*ba(aaa)*)|(aa(aaa)*baa(aaa)*)
IV.3.32
(a) 1(0|1)*000
(b) 1(01)*0|0(10)*1
(c) 𝜀|0|1|0(10*)(1|𝜀)|1(01)*(0|𝜀)
IV.3.33
(a) A nondeterministic Finite State machine is on the left in Figure 77 on page 126. If you prefer a deterministic

machine, use the one on the right.
(b) A nondeterministic machine is in Figure 78 on page 126. Note that b*(a|b)* collapses to (a|b)*, so that is

what the machine handles. We have given a way to convert a nondeterministic Finite State machine to a
deterministic one, so if you prefer a deterministic one then take the above nondeterministic machine as an
abbreviation.

IV.3.34
(a) Transform the machine M to a new machine M̂ by making the set of final states of M̂ be 𝑆 .
(b) Transform the machine 𝑀 to M̂ by making the start state be the given first single state, and also make the

set 𝑆 of the prior item contain only the ending state. Then apply the argument given for the prior item.
IV.3.35 We will construct the reachable states, and then the unreachable ones are the others.
(a) The set of reachable states is 𝑆2 = 𝑆3 = · · · = {𝑞0, 𝑞1, 𝑞2 }. So the set of unreachable states is {𝑞3 }.
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〈regex〉

〈concat〉

〈concat〉 〈simple〉

〈concat〉 〈simple〉 ( 〈regex〉 )

〈simple〉 〈simple〉 * 〈regex〉 | 〈concat〉

〈char〉 〈char〉 〈concat〉 〈simple〉

a b 〈simple〉 〈char〉

〈char〉 c

a

〈regex〉

〈concat〉

〈concat〉 〈simple〉

〈simple〉 ( 〈regex〉 )

〈char〉 〈regex〉 | 〈concat〉

a 〈concat〉 〈simple〉

〈simple〉 〈char〉

〈char〉 c

b

Figure 79, for question IV.3.37: Parse trees for a(b|c) and ab*(a|c).

𝑖 𝑆𝑖
0 {𝑞0 }
1 {𝑞0, 𝑞1 }
2 {𝑞0, 𝑞1, 𝑞2 }
3 {𝑞0, 𝑞1, 𝑞2 }

(b) The set of reachable states is 𝑆2 = 𝑆3 = · · · = {𝑞0, 𝑞1, 𝑞3 }. Thus the set of unreachable states is
{𝑞2, 𝑞4 }.

𝑖 𝑆𝑖
0 {𝑞0 }
1 {𝑞0, 𝑞1 }
2 {𝑞0, 𝑞1, 𝑞3 }
3 {𝑞0, 𝑞1, 𝑞3 }

IV.3.36 Alphabets are finite, as defined in Appendix A. So the set of length 𝑛 strings over Σ is finite, and
therefore countable. Chapter II’s Corollary 2.13 shows that the countable union of countable sets is countable,
and so the union over all 𝑛 of length 𝑛 strings is countable.

IV.3.37 Figure 79 on page 127 shows the two trees.
IV.3.38 Figure 80 on page 128 shows the two trees.
IV.3.39
(a) This is M̂.

Y a

a|b

Y

b

4 @0 @1 5

(b) This is the before half of the diagram from Lemma 3.14’s proof, with M̂ repeated for convenience.
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a

b

c

|

*

( )

〈regex〉

〈concat〉

〈concat〉 〈simple〉

〈simple〉 〈simple〉

〈char〉 〈regex〉

〈regex〉 〈concat〉

〈concat〉 〈simple〉

〈simple〉

〈regex〉

〈concat〉

〈concat〉 〈simple〉

〈simple〉 ( 〈regex〉 )

〈char〉 〈regex〉 | 〈concat〉

a 〈concat〉 〈simple〉

〈simple〉 〈simple〉 *

〈simple〉 * 〈char〉

〈char〉 c

b

Figure 80, for question IV.3.38: Parse trees for a(b|c)* and a(b*|c*).

...
...

'80

'89

'>0

'>:

'ℓ

'80 ,>0

'80 ,>:

'89 ,>:

'89 ,>0

@

@80

@8 9

@>0

@>:

Y a

a|b

Y

b

4 @0 @1 5

The state 𝑞0 has two states that originate arrows into it, and two that receive arrows from it. So we get this
translation of the diagram’s notation.

𝑞 𝑞𝑖0 𝑞𝑖1 𝑞𝑜0 𝑞𝑜1
𝑞0 𝑒 𝑞1 𝑞1 𝑓

𝑅𝑖0 𝑅𝑖1 𝑅𝑖0,𝑜0 𝑅𝑖0,𝑜1 𝑅𝑖1,𝑜0 𝑅𝑖1,𝑜1 𝑅ℓ 𝑅𝑜0 𝑅𝑜1
𝜀 b – – – – a|b a 𝜀

(c) This is the after half diagram of Lemma 3.14’s proof, along with the machine M̂ after 𝑞0 is eliminated.

...
...

'80 ,>0 |('80'ℓ *'>0 )

'80 ,>: |('80'ℓ *'>: )

'89 ,>0 |('89 'ℓ *'>0 )

'89 ,>:
|('89

'ℓ *'>: )

@80

@8 9

@>0

@>:

Y(a|b)*a

Y(a|b)*Y

b(a|b)*a

b(a|b)*Y
4 @1 5

IV.3.40
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(a) This is M̂ along with the before half of the diagram from Lemma 3.14’s proof.

Y 1

0|1

1 Y4 @0 @1 @2 5

...
...

'80

'89

'>0

'>:

'ℓ

'80 ,>0

'80 ,>:

'89 ,>:

'89 ,>0

@

@80

@8 9

@>0

@>:

The state 𝑞0 has one state that originates arrows into it, and one that receives arrows from it. So we get this
translation of the diagram’s notation.

𝑞 𝑞𝑖0 𝑞𝑜0
𝑞0 𝑒 𝑞1

𝑅𝑖0 𝑅𝑖0,𝑜0 𝑅ℓ 𝑅𝑜0
𝜀 – 0|1 1

This is the after half diagram of Lemma 3.14’s proof, along with the machine M̂ after 𝑞0 is eliminated.

...
...

'80 ,>0 |('80'ℓ *'>0 )

'80 ,>: |('80'ℓ *'>: )

'89 ,>0 |('89 'ℓ *'>0 )

'89 ,>:
|('89

'ℓ *'>: )

@80

@8 9

@>0

@>:

Y(0|1)*1 1 Y4 @1 @2 5

(b) This is the machine from the prior answer, along with the before half of the diagram from Lemma 3.14’s
proof.

Y(0|1)*1 1 Y4 @1 @2 5
...

...

'80

'89

'>0

'>:

'ℓ

'80 ,>0

'80 ,>:

'89 ,>:

'89 ,>0

@

@80

@8 9

@>0

@>:

The state 𝑞1 has one state that originates arrows into it, and one that receives arrows from it. So we get this
translation of the diagram’s notation.

𝑞 𝑞𝑖0 𝑞𝑜0
𝑞1 𝑒 𝑞2

𝑅𝑖0 𝑅𝑖0,𝑜0 𝑅ℓ 𝑅𝑜0
𝜀(0|1)*1 – – 1

This is the after half diagram of Lemma 3.14’s proof, along with the machine M̂ after 𝑞1 is eliminated.



Page 130

...
...

'80 ,>0 |('80'ℓ *'>0 )

'80 ,>: |('80'ℓ *'>: )

'89 ,>0 |('89 'ℓ *'>0 )

'89 ,>:
|('89

'ℓ *'>: )

@80

@8 9

@>0

@>:

Y(0|1)*11 Y4 @2 5

(c) This is the machine from the prior answer, along with the before half diagram.

Y(0|1)*11 Y4 @2 5
...

...

'80

'89

'>0

'>:

'ℓ

'80 ,>0

'80 ,>:

'89 ,>:

'89 ,>0

@

@80

@8 9

@>0

@>:

The state 𝑞2 has one state that originates arrows into it, and one that receives arrows from it. So we get this
translation of the diagram’s notation.

𝑞 𝑞𝑖0 𝑞𝑜0
𝑞2 𝑒 𝑓

𝑅𝑖0 𝑅𝑖0,𝑜0 𝑅ℓ 𝑅𝑜0
𝜀(0|1)*11 – – 𝜀

This is the after half diagram along with the machine after 𝑞2 is gone.

...
...

'80 ,>0 |('80'ℓ *'>0 )

'80 ,>: |('80'ℓ *'>: )

'89 ,>0 |('89 'ℓ *'>0 )

'89 ,>:
|('89

'ℓ *'>: )

@80

@8 9

@>0

@>:

Y(0|1)*11YY(0|1)*11Y
4 5

(d) The regular expression is 𝜀(0|1)*11𝜀.
IV.3.41 This is M̂ along with the before half of the diagram from Lemma 3.14’s proof.

Y

A

B

C

DE
Y4 @0 @1 @2 5

...
...

'80

'89

'>0

'>:

'ℓ

'80 ,>0

'80 ,>:

'89 ,>:

'89 ,>0

@

@80

@8 9

@>0

@>:
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The state 𝑞1 has two states that originate arrows into it, and two that receive arrows from it. So we get this
translation of the diagram’s notation.

𝑞 𝑞𝑖0 𝑞𝑖1 𝑞𝑜0 𝑞𝑜1
𝑞1 𝑞0 𝑞2 𝑞0 𝑞2

𝑅𝑖0 𝑅𝑖1 𝑅𝑖0,𝑜0 𝑅𝑖0,𝑜1 𝑅𝑖1,𝑜0 𝑅𝑖1,𝑜1 𝑅ℓ 𝑅𝑜0 𝑅𝑜1
A D – – – – B E C

Here is the after diagram, along with the machine M̂ after the elimination of 𝑞1.

...
...

'80 ,>0 |('80'ℓ *'>0 )

'80 ,>: |('80'ℓ *'>: )

'89 ,>0 |('89 'ℓ *'>0 )

'89 ,>:
|('89

'ℓ *'>: )

@80

@8 9

@>0

@>:

Y

AB*C

AB*E

DB*E

DB*C

Y4 @0 @2 5

IV.3.42 Each of these gives the progression of steps.
(a) a|ba|b

4 5

a

b4 5

(b) First concatenation and then Kleene star.
ca*ca*

4 5

c a*
4 @0 5

c Y

a

Y4 @0 @1 5

(c) (a|b)c*(a|b)c*
4 5

(a|b) c*
4 @0 5

a

b
Y

c

Y4 @0 @1 5

(d) (a|b)(b*|a*)(a|b)(b*|a*)
4 5

(a|b) (b*|a*)
4 @0 5

a

b

b*

a*4 @0 5

a

b Y

b

Y

Y

a

Y

4 @0

@1

@2

5

IV.4.7
(a) False. For example, the language {a𝑛

�� 𝑛 ∈ N} = {𝜀, a, aa, ... } is regular and infinite.
(b) False, the empty language is recognized by any Finite State machine that has no accepting states. It is also

the language described by the regular expression ∅.
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(c) False. Rather, the intersection of two regular languages is regular. For example, where L is not regular, the
intersection L ∩ B∗ = L is not regular.

(d) False. The language B∗ is the set of all strings is recognized by any Finite State machine whose states are all
accepting states. It is also the language described by the regular expression (0|1)*.

(e) False, a Finite State machine with no accepting states does not accept any strings.
(f) False, a minimal machine cannot be further reduced. For instance, a machine with only one state, and that

state accepting, is the smallest machine that recognizes L = B∗.
IV.4.8 Yes. To show this we need to show that this is the language of some Finite State machine. In binary,

powers of 2 are represented by strings of bits starting with 1 and ending in 0’s. So the regular expression 10*
describes the language. (If you want to allow leading 0’s then the regular expression is 0*10*.)

IV.4.9 This is not really a sensible question. If we assert that no English sentence has more than a million
words (see (wiki:LongestSentence)) then we might claim that English is a regular language because we can
list the sentences that we declare allowed, and there are finitely many of them.

Otherwise we must choose a grammar. But which one? Is “Colorless green ideas sleep furiously” a legal
sentence even though it is not sensible? Is “My god, it is her.” allowed even though some would say it should
be “My god, it is she.”?

Really, it is not a sensible question. (See https://cs.stackexchange.com/a/116178/67754.)
IV.4.10 The first is true and the second is false.
(a) If the language consists of the strings 𝜎0, . . . 𝜎𝑛−1 then a regular expression is 𝜎0|· · · |𝜎𝑛−1.
(b) The language over Σ = {a, b} described by the regular expression a* is {𝜀, a, aa, ... }, and is infinite.
IV.4.11 One way to show this is to give a regular expression for each.
(a) a(a|b)*a
(b) b*(ab*a)*b*
IV.4.12 Because the language is regular it is described by a regular expression, 𝑅. Then the regular expression
1𝑅 describes L̂.

IV.4.13 The size of the set 𝑄0 ×𝑄1 is 𝑛0 · 𝑛1.
IV.4.14 These are the tables for the machines.

Δ0 a b
+ 𝑞0 𝑞0 𝑞1
+ 𝑞1 𝑞2 𝑞1
𝑞2 𝑞2 𝑞0

Δ1 a b
𝑠0 𝑠1 𝑠0

+ 𝑠1 𝑠0 𝑠0

Here is the cross product machine, without specifying any accepting states.

Δ a b
(𝑞0, 𝑠0) (𝑞0, 𝑠1) (𝑞1, 𝑠0)
(𝑞0, 𝑠1) (𝑞0, 𝑠0) (𝑞1, 𝑠0)
(𝑞1, 𝑠0) (𝑞2, 𝑠1) (𝑞1, 𝑠0)
(𝑞1, 𝑠1) (𝑞2, 𝑠0) (𝑞1, 𝑠0)
(𝑞2, 𝑠0) (𝑞2, 𝑠1) (𝑞0, 𝑠0)
(𝑞2, 𝑠1) (𝑞2, 𝑠0) (𝑞0, 𝑠0)

(a) To have this machine accept the intersection of the two languages, take the accepting states to be those in
𝐹 = { (𝑞0, 𝑠1), (𝑞1, 𝑠1) }.

(b) 𝐹 = { (𝑞0, 𝑠0), (𝑞0, 𝑠1), (𝑞1, 𝑠0), (𝑞1, 𝑠1) }
IV.4.15 Here is the transistion table for M1.

Δ1 a b
𝑠0 𝑠0 𝑠1

+ 𝑠1 𝑠1 𝑠0

The product of this machine with itself has four states.

https://cs.stackexchange.com/a/116178/67754
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Δ1 a b
(𝑠0, 𝑠0) (𝑠0, 𝑠0) (𝑠1, 𝑠1)
(𝑠0, 𝑠1) (𝑠0, 𝑠1) (𝑠1, 𝑠0)
(𝑠1, 𝑠0) (𝑠1, 𝑠0) (𝑠0, 𝑠1)

+ (𝑠1, 𝑠1) (𝑠1, 𝑠1) (𝑠0, 𝑠0)
Here the accepting state is set for the intersection, to only (𝑠1, 𝑠1). We could include the states (𝑠0, 𝑠1) and
(𝑠1.𝑠0) for the union construction, but it wouldn’t matter because those are unreachable states.

IV.4.16 The machine on the left below accepts a string 𝜎 ∈ B∗ if it contains at least two 0’s. The one on the
right accepts a string if it contains an even number of 1’s.

Δ0 0 1
𝑞0 𝑞1 𝑞0
𝑞1 𝑞2 𝑞1

+ 𝑞2 𝑞2 𝑞2

Δ1 0 1
+ 𝑠0 𝑠0 𝑠1
𝑠1 𝑠1 𝑠0

The product construction gives this. We want the intersection of the two languages.
Δ 0 1

(𝑞0, 𝑠0) (𝑞1, 𝑠0) (𝑞0, 𝑠1)
(𝑞0, 𝑠1) (𝑞1, 𝑠1) (𝑞0, 𝑠0)
(𝑞1, 𝑠0) (𝑞2, 𝑠0) (𝑞1, 𝑠1)
(𝑞1, 𝑠1) (𝑞2, 𝑠1) (𝑞1, 𝑠0)

+ (𝑞2, 𝑠0) (𝑞2, 𝑠0) (𝑞2, 𝑠1)
(𝑞2, 𝑠1) (𝑞2, 𝑠1) (𝑞2, 𝑠0)

IV.4.17
(a) True. Every language is a subset of the language Σ∗.
(b) False. Take L0 to be not regular, and take L1 to be the empty language, which is regular. Their union is L0.
(c) False. A language with one element is regular, and its only subset is the empty language, which is also

regular.
(d) True. This is part of Lemma 4.3.
IV.4.18 It might be regular, or might be not regular. First note that the language of all strings L = Σ∗ is regular.
Now assume that L1 is not regular. The concatenation Σ∗⌢L1 = Σ∗ gives a language that is regular. Also,
where the alphabet is Σ and 𝑠 ∈ Σ then the concatenation {𝑠 }⌢L1 gives a language that is not regular.

IV.4.19 Each is false. The same example suffices for all three. For L0 use the set of all bitstrings, B∗. For L1
use any non-regular subset of it, the existence of which is guaranteed by Lemma 4.2.

IV.4.20 By Lemma 4.3, regular languages are closed under Kleene star and concatenation.
IV.4.21 Let Σ be the alphabet of the language L. The collection of even length strings over Σ is regular since

there is clearly a Finite State machine that accepts only those strings. The intersection of L with this collection
is an intersection of two regular languages, so it is regular.

IV.4.22 Let {a𝑛b𝑛 ∈ {a, b}∗
�� 𝑛 ∈ N} be L0. Let the language described by the regular expression a*b* be L1,

and let the language {𝜎 ∈ {a, b}∗
�� 𝜎 contains the same number of a’s as b’s} be L2. If L2 were regular then

because the intersection of regular languages is a regular language, L2 ∩ L1 would be regular. But that set is
L0, which was given as not regular.

IV.4.23 The graphical representation of a Finite State machine is a directed graph. So we can naturally extend
the definition of one vertex being reachable from another to one state 𝑞 being reachable from another state 𝑞,
if there is a sequence of directed edges that go from the first node to the second.

(a) Fix a Finite State machine M that recognizes L. From it derive a new Finite State machine by making
an accepting state every state 𝑞 from which an accepting state of M is reachable. Clearly that machine
recognizes pref (L).

(b) Again, fix a Finite State machine M that recognizes L. Let 𝑆 be the set of states reachable from 𝑞0. Get �̂�
by introducing a new state 𝑟 and defining an 𝜀 transition to each state in 𝑆 . Here also, clearly this machine
recognizes suff (L).
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(c) We have allprefs(L) = (Lc⌢Σ∗)c, so it is regular.
IV.4.24 If there was a Finite State machine M that accepted this language then to solve the Halting problem,
write M as a subroutine. Then, given 𝑒 ∈ N, feed 1𝑒 to the subroutine. If it accepts, then 𝑒 ∈ 𝐾 and otherwise
𝑒 ∉ 𝐾 .

IV.4.25
(a) For every word 𝜎 ∈ Σ∗, the one-word language L = {𝜎 } is regular. But any non-regular language is the

union of a collection of such languages.
(b) Similarly, for every word 𝜎 ∈ Σ∗, the language L = Σ∗ − {𝜎 } is regular. Any non-regular language L is the

intersection of a collection of such languages, namely the collection over all 𝜎 ∉ L.
IV.4.26 Over B the language of all strings L = B∗ is regular, and is uncountable.
IV.4.27 The result is a nondeterministic Finite State machine.
(a) @( @� @�

(b) @( @� @�

(c)
a,b

a a
@( @� @�

(d)
a,b

a a b
@( @� @� @̂

IV.4.28
(a) Lemma 4.3 shows that the collection of regular languages is closed under union.
(b) This identity shows that closure under complement will also demonstrate closure under set difference.
(c) Fix a regular language L over some alphabet Σ. It is recognized by some deterministic Finite State

machine M with input alphabet Σ.
Define a new machine M̂ with the same states and transition function as M but whose accepting states

are the complement, 𝐹M̂ = 𝑄M − 𝐹M. We will show that the language of this machine is Σ∗ − L.
Because M is deterministic, each input string 𝜏 is associated with a unique last state, the state that the

machine is in after it consumes 𝜏 ’s last character, namely Δ̂(𝜏). Observe that Δ̂(𝜏) ∈ 𝐹M̂ if and only if
Δ̂(𝜏) ∉ 𝐹M. Thus the language of M̂ is the complement of the language of M and since this language is
recognized by a Finite State machine, it too is regular.

IV.4.29 For one direction suppose that the machine accepts at least one string, 𝜎 , of length 𝑘 where 𝑛 ≤ 𝑘 < 2𝑛.
In processing 𝜎 the machine must go through at least 𝑛-many transitions. But the machine has 𝑛 states and
starting at 𝑞0 and visiting all the other states exactly once would require only 𝑛 − 1 many transitions. Thus,
by the Pigeonhole principle, in processing the string 𝜎 the machine visits some state 𝑞 twice. That is, in
processing 𝜎 the machine makes a loop.

Said another way, the accepted string 𝜎 decomposes as 𝜎 = 𝛼⌢𝛽⌢𝛾 where processing the 𝛼 portion
takes the machine from the start to the loop (from state 𝑞0 to 𝑞), the 𝛽 portion takes the machine around the
nontrivial loop (so that 𝛽 ≠ 𝜀 brings the machine from 𝑞 to 𝑞 again) and the 𝛾 portion brings the machine
to some final state. But then the recognized language is infinite, since clearly the machine also accepts
𝛼⌢𝛽⌢𝛽⌢𝛾 , etc. (Note that we can take 𝛽 to be of length less than 𝑛 because otherwise the size of the machine
would imply it has a subloop.)

Conversely, suppose the language of accepted strings is infinite. At least one of them is longer than 𝑛; fix
one that is longer but of minimal length. As in the prior paragraph, because the machine only has 𝑛 states, by
the Pigeonhole principle the accepted string 𝜎 decomposes as 𝜎 = 𝛼⌢𝛽⌢𝛾 where the 𝛽 portion is a nontrivial
loop so processing 𝛼 brings the machine from 𝑞0 to some 𝑞, then processing 𝛽 ≠ 𝜀 brings the machine from 𝑞
to 𝑞 again, and then processing the 𝛾 portion brings the machine to some final state. Because the string is of
minimal length, |𝛽 | < 𝑛. In total then, |𝜎 | < 2𝑛.

IV.4.30
(a) ℎ̂(01) = aba, ℎ̂(10) = baa, ℎ̂(101) = baaba
(b) A regular expression to describe L̂ = {𝜎⌢1

�� 𝜎 ∈ B∗ } is (0|1)*1 A regular expression to describe ℎ̂(L̂) is
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(a|ba)*ba.
(c) Let L be described by the regular expression 𝑅. Apply the function ℎ to each non-meta symbol in 𝑅. The

result is a regular expression that describes ℎ(L).
IV.4.31 For this machine the language of accepted strings contains 1.

1

1

@0 @1

@2

If we complement the set of accepting states then the language of the resulting machine also contains 1.
IV.4.32
(a) We prove this by induction on the length of 𝜎1. For the base case consider both 𝜎1 = 𝜀 and 𝜎1 = 𝑎 for some

𝑎 ∈ Σ. With both, the statement obviously holds.
For the inductive case assume that the statement is true when |𝜎1 | = 0, |𝜎1 | = 1, . . . |𝜎1 | = 𝑘 and

consider the |𝜎1 | = 𝑘 + 1 case. In this case 𝜎1 = 𝛼⌢𝑎 for some character 𝑎 ∈ Σ and string 𝛼 ∈ Σ∗ of length 𝑘 .
Then (𝜎0⌢𝜎1)R = (𝜎0⌢𝛼⌢𝑎)R. Apply the base case to get = 𝑎R⌢ (𝜎0⌢𝛼)R. The inductive hypothesis gives
= 𝑎⌢𝛼 R⌢𝜎0R, and finish by recognizing that as 𝜎1R⌢𝜎0R.

(b) We prove this by induction on the length of the regular expression. The base case is that |𝑅 | = 1. If 𝑅 = ∅
then by condition (i) 𝑅R is the regular expression ∅, and L(𝑅) = L(𝑅R) because both equal the empty set,
as required. If 𝑅 = 𝜀 then by condition (ii) 𝑅R = 𝜀, and L(𝑅) = {𝜀 } = L(𝑅R), again as required. And,
similarly, if 𝑅 = 𝑥 for some 𝑥 ∈ Σ then by condition (iii) 𝑅R = 𝑥 and L(𝑅) = {𝑥 } = L(𝑅R).

Now for the inductive step. Assume that the statement is true for regular expressions 𝑅 of length 𝑛 = 1,
𝑛 = 2, . . . 𝑛 = 𝑘, and consider an expression of length 𝑛 = 𝑘 + 1. We handled the case that it is a
concatenation, 𝑅 = 𝑅0⌢𝑅1, in this question’s first item.

If 𝑅 = 𝑅0|𝑅1 then L(𝑅R) = L((𝑅0 |𝑅1)R) = L(𝑅0R |𝑅1R) by condition (v). By the definition of the language
associated with a pipe regular expression following Definition 3.4 that gives = L(𝑅0R) ∪ L(𝑅1R). The
inductive hypothesis gives = L(𝑅0)R ∪L(𝑅1)R, which equals {𝜎0R

�� 𝜎0 ∈ L(𝑅0) } ∪ {𝜎1R
�� 𝜎1 ∈ L(𝑅1) } and

again applying the material following Definition 3.4 that equals L(𝑅)R.
The final form is similar. If 𝑅 = 𝑅0* then L(𝑅R) = L((𝑅0R)*). By the definition following Definition 3.4

that equals {𝜎0⌢ · · ·⌢𝜎𝑚
�� 𝜎𝑖 ∈ L(𝑅0R) }. Rewriting gives {𝜏0R⌢ · · ·⌢𝜏𝑚R �� 𝜏 𝑗 ∈ L(𝑅0) }. By this exercise’s

first item that equals { (𝜏𝑚⌢ · · ·⌢𝜏0)R
�� 𝜏 𝑗 ∈ L(𝑅0) }, which is the set (L(𝑅0)∗)R.

IV.5.8 There is no such regular expression. Definition 3.4 just does not have the capacity for that construct.
IV.5.9 Compared with 𝜎 = 𝛼𝛽𝛾 , the string 𝛼𝛾 has had 𝛽 omitted. By definition 𝜎 has balanced parentheses.

Because 𝛽 consists of at least one open parentheses, (, its omission of 𝛽 means that in 𝛼𝛾 the number of open
parentheses is at least one fewer than the number of closed parentheses.

IV.5.10 If a language is finite, L = {𝜎0, ... 𝜎𝑛 }, then the conclusion of the Pumping Lemma holds by taking the
pumping length to be 𝑝 > max( |𝜎0 |, ... |𝜎𝑛 |).

IV.5.11 It is not correct.
The first problem is that it is not sensible. There may be many Finite State machines that recognize the

language, so there is no well-defined number of states for the language.
Even if you figure that they meant to fix a particular machine, saying something like, “where M accepts

the language, if that language has a string of length greater than the number of states in M then it cannot be
a regular language” then it still isn’t sensible because if there is a Finite State machine then the language for
sure is regular.

And, even if we stretch figuring out what they meant all the way to taking that they meant something like
this, “If in an argument we assume that the language is recognized by a Finite State machine and we go on to
show that the language has a string that is longer than the number of states in that machine, then we have the
desired contradiction” then this statement, while now technically sensible, is wrong. For example, there is a
Finite State machine that accepts strings described by a*,and there certainly are strings of that form whose
length is greater than the number of states in the machine.
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IV.5.12 The Pumping Lemma only allows us to conclude that 𝛼𝛽 consists of (’s, not that this substring got all
the (’s. The substring 𝛾 indeed got all of the close parentheses, the )’s, but that we know, it may have gotten
some of the open parentheses as well.

IV.5.13 Yes, that is right.
IV.5.14
(a) Five elements of L0 are bb, abbb, aabbbb, a3b5, and a4b6. Five strings that are not elements are 𝜀, a, ab,

aabbb, and baabbbb.
Assume for contradiction that L0 is regular. By the Pumping Lemma it has a pumping length, 𝑝. Consider

𝜎 = a𝑝b𝑝+2. This string is a member of the language that is of length greater than or equal to 𝑝 so the
Pumping Lemma gives a decomposition 𝜎 = 𝛼⌢𝛽⌢𝛾 subject to the three conditions. Condition (1) is that
|𝛼𝛽 | ≤ 𝑝, so these two substrings contain only a’s. Condition (2) is that 𝛽 is nonempty, so it consists of at
least one a.
Consider the list 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . Its second element 𝛼𝛽2𝛾 has more a’s, but no more b’s, than does

𝜎 = 𝛼𝛽𝛾 . That means 𝛼𝛽2𝛾 is not an element of the language L0, a contradiction to the Pumping Lemma’s
condition (3).

(b) In prose, this language consists of a’s followed by b’s and then followed by c’s, with only the restriction that
the number of a’s equals the number of c’s. Thus five elements of L1 are: 𝜀, ac, b, aabcc, and bb. Five that
are not are: aac, acc, ab, bbc, and ca.

Assume for contradiction that L1 is regular. Then it has a pumping length 𝑝. Consider 𝜎 = a𝑝c𝑝 Because
𝜎 ∈ L1 and |𝜎 | ≥ 𝑝, the Pumping Lemma says that it decomposes, 𝜎 = 𝛼⌢𝛽⌢𝛾 , in a way that satisfies the
three conditions. By condition (1) the first two substrings together are short, |𝛼𝛽 | ≤ 𝑝. Thus these two
consist entirely of a’s. By condition (2) the second substring 𝛽 is nonempty, so it consists of at least one a.
Finally, condition (3) gives that the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . are all members of the language L1. But the
string 𝛼𝛾 , when compared with 𝜎 = 𝛼𝛽𝛾 , has at least one fewer a but the same number of c’s. That means
it does not have the same number of the two characters, so it is not a member of the language, which is a
contradiction.

(c) A prose description is that in L2 the strings have a’s followed by b’s, with the number of a’s less than the
number of b’s. So five strings that are members of L2 are abb, abbb, abbbb, ab5, and a4b5. Five strings that
are not elements are 𝜀, a, ab, aab, and baabbb.

For contradiction suppose that L2 is regular and fix a pumping length, 𝑝. The string 𝜎 = a𝑝b𝑝+1 is an
element of the language whose length is greater than or equal to the pumping length. So the Pumping
Lemma gives a decomposition, 𝜎 = 𝛼⌢𝛽⌢𝛾 , subject to the three conditions. Condition (1), that |𝛼𝛽 | ≤ 𝑝,
says that these two substrings contain only a’s. Condition (2), that 𝛽 is nonempty, says that it consists of at
least one a.

Consider the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . Compared with 𝜎 = 𝛼𝛽𝛾 , the string 𝛼𝛽2𝛾 has more a’s, but no more b’s.
Thus the number of a’s is at least 𝑝 + 1 while the number of b’s is fixed at 𝑝 + 1. That means that 𝛼𝛽2𝛾 is
not a member of the language L2, which contradicts the Pumping Lemma’s condition (3).

IV.5.15
(a) Five strings that are members are aaa, aaab, aaabb, aaabbb, and aaabbbb. This languages is regular, and a

regular expression that describes it is aaab*.
(b) Five strings in this language are bbb, abbbb, aabbbbb, a3b6, and a4b7. This language is not regular.

To get a contradiction assume that it is regular. The Pumping Lemma says that the language has a
pumping length, 𝑝. The string 𝜎 = a𝑝b𝑝+3 is a member of the language and has length greater than or equal
to the pumping length. So it decomposes, 𝜎 = 𝛼𝛽𝛾 , in a way that is subject to the three conditions. The
first condition is that |𝛼𝛽 | ≤ 𝑝 and so the two substrings 𝛼 and 𝛽 consist only of a’s. The second condition
is that |𝛽 | > 0 and so the substring 𝛽 consists of at least one a.

Finally, consider the list 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . Condition (3) says that any element of that list is a member of the
language. However, the list’s first element has fewer a’s than 𝜎 but the same number of b’s, and therefore
the number of a’s is not three less than the number of b’s. This is a contradiction.

(c) Five members of this language are 𝜀, abab, babbab, aaaa, and aaabaaab. It is not regular.
Suppose otherwise, that it is regular. By the Pumping Lemma the language has a pumping length, 𝑝.

Consider 𝜎 = a𝑝b⌢a𝑝b. It is a member of the language whose length is greater than or equal to 𝑝 and so it
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has a decomposition 𝜎 = 𝛼𝛽𝛾 that satisfies the three conditions. The first condition, |𝛼𝛽 | ≤ 𝑝, gives that the
two substrings contain only a’s. The second condition, |𝛽 | > 0, gives that the second substring consists of at
least one a.

Now consider the list from the third condition, 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . Compare 𝛼𝛾 to 𝜎 = 𝛼𝛽𝛾 . Because the 𝛽 is
omitted in 𝛼𝛾 , before its first b it has fewer a’s than 𝜎 has before its first b. But before the second b the two
strings have the same number of a’s. So 𝛼𝛾 is not a member of the language, which contradicts the third
condition.

(d) Five strings in this language are 𝜀, aab, b, aaaabbbb, and abbbb. This language is regular. A regular
expression that describes it is a*b*.

(e) Five strings in this language are b13, ab14, b14, a2b15, and ab15. This language is not regular.
Assume that it is regular, for contradiction. Then the language has a pumping length, 𝑝. Let 𝜎 = a𝑝b𝑝+13.

By the Pumping Lemma it has a decomposition into 𝜎 = 𝛼𝛽𝛾 that satisfies the three conditions. As a
consequence of the first condition the first two substrings consist only of a’s. A consequence of the second
condition is that 𝛽 consists of at least one a.

Consider 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . . Its second element, 𝛼𝛽2𝛾 , has at least one more a than does 𝜎 . Thus its number
of a’s is not more than 12 less than its number of b’s, which means that it is not a member of the language.
That contradicts the Pumping Lemma’s third condition.

IV.5.16 Five strings from the language are cb, acbb, aacbbb, aaacbbbb, and aaaacbbbbb.
To show that this language is not regular, assume for contradiction that it is. Then the language has a

pumping length, 𝑝. Consider 𝜎 = a𝑝cb𝑝+1. Because this string is a member of the language and has length at
least 𝑝, the Pumping Lemma gives that it decomposes into 𝜎 = 𝛼𝛽𝛾 , subject to the three conditions.

The first condition, |𝛼𝛽 | ≤ 𝑝, implies that the two substrings 𝛼 and 𝛽 contain only a’s. The second
condition, |𝛽 | > 0, implies that 𝛽 consists of at least one a.

Now, in the list 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . consider the first one, 𝛼𝛾 . By the prior paragraph, compared with 𝜎 = 𝛼𝛽𝛾
this string has at least one fewer a but the same number of b’s. So the number of a’s is not one less than the
number of b’s, and this string is not in the language, which is a contradiction to the third condition.

IV.5.17 Let L = {𝜎 ∈ {a, b}∗
�� the number of a’s is greater than the number of b’s}. Assume for contradiction

that it is regular. Then the Pumping Lemma applies and this language has a pumping length, 𝑝. The
string 𝜎 = a𝑝+1b𝑝 is an element of the language whose length is greater than or equal to 𝑝. So there is a
decomposition 𝜎 = 𝛼𝛽𝛾 that satisfies the three conditions. Condition (1) gives that |𝛼𝛽 | ≤ 𝑝 and so these two
substrings contain only a’s. Condition (2) gives that 𝛽 is nonempty and thus it consists of at least one a.

The contradiction comes on considering condition (3)’s list 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . . The first entry in that list, 𝛼𝛾 ,
when compared with 𝜎 = 𝛼𝛽𝛾 will have at least one a fewer, and the same number of b’s. It is therefore not a
member of the language L, contradicting condition (3). This contradiction shows that L is not regular.

IV.5.18 The first is not regular while the second is regular.
(a) For contradiction, suppose that this language is regular. Then it has a pumping length, 𝑝. Consider the

string 𝜎 = a𝑝
2
b𝑝 . It is a member of the language whose length is greater than or equal to 𝑝 so it decomposes

into 𝜎 = 𝛼𝛽𝛾 in a way that satisfies the three conditions. Condition (1) implies that both 𝛼 and 𝛽 consist
only of a’s. Condition (2) implies that 𝛽 consists of at least one a.

Now consider condition (3)’s list, 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . Compared to 𝜎 = 𝛼𝛽𝛾 , the entry 𝛼𝛾 has at least one
fewer a but the same number of b’s. Therefore the number of a’s is not the square of the number of b’s, and
so 𝛼𝛾 is not in the language. That contradicts condition (3).

(b) A regular expression that describes this language is aaaa*bbbb*.
IV.5.19 The language is regular. It is a trick question: take 𝛼 = 𝜀 to get that the set equals B∗.
IV.5.20 Assume that it is regular and let the pumping length be 𝑝. Take 𝜎 = 1𝑝!. This string is a member
of L and has length at least 𝑝, so the Pumping Lemma says it decomposes as 𝜎 = 𝛼𝛽𝛾 subject to the three
conditions. The second condition implies that |𝛽 | > 0. Consider the list 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , . . . After the first, the
difference between the lengths of successive list elements is always |𝛽 |. But, as the hint notes, the difference
between successive factorials is not fixed, instead it grows without bound. So there is a list element that is not
in the language, which contradicts the third condition. So the language is not regular.

IV.5.21 The first is regular, and is described by the regular expression 0*10*. The second is not regular. To
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prove that assume for contradiction that it is regular. Then it has a pumping length, 𝑝. Consider 𝜎 = 0𝑝10𝑝 ,
which is a member of the language of length at least 𝑝, so the Pumping Lemma says it decomposes into
𝜎 = 𝛼𝛽𝛾 in a way that satisfies the three conditions. The first condition implies that the 𝛼 and 𝛽 substrings
consist only of 0’s. The second condition says that 𝛽 consists of at least one 0.

Consider the strings on the third conditions’s list 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . By the prior paragraph the first, 𝛼𝛾 , has
fewer 0’s before the 1 than does 𝜎 , but the same number of 0’s after the 1. Hence it is not a member of the
language, contradicting the Pumping Lemma’s third condition.

IV.5.22 The language L4 = {a𝑖b𝑗c𝑘
�� 𝑖, 𝑗, 𝑘 ∈ N and 𝑖 + 𝑗 = 𝑘 and 𝑘 < 4.} is finite, and any finite language is

regular.
As to the language if all sums, L = {a𝑖b𝑗c𝑘

�� 𝑖, 𝑗, 𝑘 ∈ N and 𝑖 + 𝑗 = 𝑘.}, suppose that it is regular and fix a
pumping length 𝑝. Consider 𝜎 = 𝑎𝑝𝑏0𝑐𝑝 . Because |𝜎 | ≥ 𝑝 it has a decomposition 𝜎 = 𝛼⌢𝛽⌢𝛾 subject to the
three conditions of the Pumping Lemma. By the first condition the length |𝛼𝛽 | is less than or equal to 𝑝, and
so consists entirely of a’s. By the second condition the string 𝛽 is nonempty and so consists of at least one a.
The third condition says that 𝛼𝛾 is also a member of the language, but that is a contradiction since this string
has fewer a’s than c’s, and no b’s, and thus is not a member of the language.

IV.5.23
(a) It is regular because it is finite, {00000, 00001, 00010, ... 11111}.
(b) The language L = {𝜎 ∈ B∗ �� the number of 0’s minus the number of 1’s is five} is not regular. For, suppose

otherwise. Fix a pumping length 𝑝 and consider 𝜎 = 0𝑝+51𝑝 . It is a member of L with length that is
at least 𝑝, so the Pumping Lemma applies. Decompose it into 𝜎 = 𝛼𝛽𝛾 subject to the three conditions.
Condition (1), that |𝛼𝛽 | ≤ 𝑝, implies that these two substrings contain only 0’s. Condition (2) says that 𝛽 is
not empty so it consists of at least one 0.

Condition (3) says that every string on the list 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . is a member of L but that is not true. By the
prior paragraph the string 𝛼𝛾 has at least one 0 less than the string 𝜎 = 𝛼𝛽𝛾 but the same number of 1’s,
and is therefore not an element of L.

IV.5.24 Call this language L. Where L̂ = {0𝑚1𝑛 ∈ B∗ ��𝑚 = 𝑛 }, we have L̂ = B∗ − L. By Theorem 4.5 regular
languages are closed under set difference. Clearly B∗ is regular— it is described by the regular expression
(0|1)*—so if L were regular then it would imply that L̂ is regular also. But L̂ is not regular, since it is the
language of balanced parentheses, Example 5.2 with 0’s substituted for open parentheses and 1’s for closed
parentheses.

IV.5.25 Following the hint, the language L is the set of strings that start and end with the same symbol. For
instance, starting with a, each ab marks a transition to a block of b’s (possibly only one), and each ba marks a
transition back to a block of a’s. Thus the regular expression is (a(a|b)*a)|(b(a|b)*b).

IV.5.26 The proof of the Pumping Lemma uses the Pigeonhole Principle to show that there is at least one loop
and it then reasons with that loop. It is unaffected by there being a later loop.

More explicitly, the Pumping Lemma says that we can take the pumping length to be the number of states
in any machine that recognizes the language. So set 𝑝 = 9. If 𝜎 = aabbabbaba then because |𝜎 | ≥ 𝑝 and
𝜎 ∈ L, we know there is a decomposition satisfying the three conditions. One such is 𝛼 = a, 𝛽 = abbabb,
and 𝛾 = aba. Checking that (1) |𝛼𝛽 | ≤ 𝑝, that (2) 𝛽 ≠ 𝜀, and (3) the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , . . . are all members
of L.

If 𝜎 = a(abb)200aba then again because |𝜎 | ≥ 𝑝 and 𝜎 ∈ L, we know there is a decomposition satisfying
the three conditions. One such is 𝛼 = a, 𝛽 = abb, and 𝛾 = (abb)199aba. Checking the three conditions is
routine.

Finally, if 𝜎 = aabbbabbaa then we can take 𝛼 = aab, 𝛽 = bbabba, and 𝛾 = a. Or, we could instead take
𝛼 = aab, 𝛽 = bba, and 𝛾 = bbaa. Again, checking the three conditions is routine.

IV.5.27 Let L = {𝜎 ∈ B∗ �� 𝜎 = 1𝑛 where 𝑛 is prime}. Assume for contradiction that it is regular and fix a
pumping length 𝑝. Consider condition (3)’s list.

𝛼𝛾, 𝛼𝛽2𝛾, 𝛼𝛽3𝛾, ... , 𝛼𝛽𝑛𝛾, ...

Except for the first one, all of the gaps between list items have the same width, |𝛽 |. So the length of the
general item 𝛼𝛽𝑛𝛾 is |𝛼𝛽2𝛾 | + (𝑛 − 2) · |𝛽 |, for 𝑛 ≥ 2. Take 𝑛 to be |𝛼𝛽2𝛾 | + 2 and that length is not prime. So
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not every string in condition (3)’s list is a member of L, which is the desired contradiction.
IV.5.28
(a) The number of c’s is the product of the number of a’s and the number of b’s. Five such strings are abc,

abbcc, abbbccc, aabcc, and aabbcccc.
(b) For contradiction assume that this language, L, is regular. The Pumping Lemma says that L has a pumping

length, 𝑝. Consider 𝜎 = a𝑝b𝑝c(𝑝
2 ) . That string has more than 𝑝 characters so it decomposes as 𝜎 = 𝛼𝛽𝛾 ,

subject to the three conditions. Condition (1) is that |𝛼𝛽 | ≤ 𝑝 and so both substrings 𝛼 and 𝛽 are composed
entirely of a’s. Condition (2) is that 𝛽 is not the empty string and so 𝛽 consists of at least one a.

Condition (3) is that the strings in the list 𝛼𝛾, 𝛼𝛽2𝛾, 𝛼𝛽3𝛾, ... are also members of the language. We will
get the contradiction from the first one, 𝛼𝛾 . Compared to 𝜎 = 𝛼𝛽𝛾 , in the first one the 𝛽 is gone. So the
number of a’s in 𝛼𝛾 is less than the number in 𝜎 = 𝛼𝛽𝛾 , But the number of b’s and the number of c’s is the
same. Thus in 𝛼𝛾 the number of a’s times the number of b’s does not equal the number of c’s.

IV.5.29 We need that |𝛼𝛽 | ≤ 4, that |𝛽 | > 0, and that the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , . . . are members of L.
(a) 𝛼 = 𝜀, 𝛽 = a, and 𝛾 = bbb
(b) 𝛼 = 𝜀, 𝛽 = b, and 𝛾 = b14

IV.5.30
(a) This works.

0

1

1

0

any

@0 @1

@2

(b) The prior item shows that there is a Finite State machine recognizing this language that has three states.
So, any non-empty word of the language must cause it to repeat a state, and therefore can be pumped. The
minimum length of a non-empty word of the language is 2 so the minimum pumping length is at most 2.
However the language contains no word of length 1 so if 𝜎 ∈ L and |𝜎 | ≥ 1 then automatically |𝜎 ≥ 2|, and
so 𝜎 can be pumped. Therefore the minimum pumping length for the language is 1.

IV.5.31
(a) Because it accepts the input 𝜀 the initial state 𝑞0 must be an accepting state. If 𝑞0 were the only accepting

state then this machine accepts a by virtue of a loop from 𝑞0 to itself, which would make the machine
accept aa. That is not in the language L1, so there must be at least one other accepting state.

(b) Because it accepts the input 𝜀 the initial state 𝑞0 must be an accepting state. If 𝑞0 were the only accepting
state then this machine accepts a by virtue of a loop from 𝑞0 to itself, which would make the machine
accept aaa. That string is not a member of the language L2 so there must be at least one accepting state
other than 𝑞0.

If the machine accepts aa by being in state 𝑞0 then that involves a loop, so the string aaaa would also be
accepted by this machine. But that string is not in the language L2, so the extended transition function on
this input, 𝐸 (aa), is not equal to the state 𝑞0. Similarly, if 𝐸 (aa) were equal to 𝐸 (a) then there would be a
loop from this state to itself on input a, and so the machine would also accept aaa. But the machine does
not accept aaa because that string is not in the language L2, so there must be a third accepting state.

(c) This is the natural extension of the prior two items. Consider L𝑛 = {𝜀, a, ... , a𝑛 }. If 𝐸 (a𝑛) were equal to
𝐸 (a𝑖) for any 𝑖 < 𝑛 then there would be a loop and so the machine would accept additional strings.

IV.6.9 Pairs that are not 1-distinguishable are: 𝑞0, 𝑞1, and 𝑞2, 𝑞2, and 𝑞1, 𝑞2, so one class is E𝑖,0 = {𝑞0, 𝑞1, 𝑞2 }.
Besides that, another pair of states that are not 1-distinguishable is 𝑞3, 𝑞5 so another class is E𝑖,1 = {𝑞3, 𝑞5 }.
The last class is E𝑖,2 = {𝑞4 }.

IV.6.10
(a) The given classes say that we can 𝑖-distinguish 𝑞0 from 𝑞2, 𝑞3, and 𝑞4. So looking down the column headed

by 0 we see checkmarks in rows labeled 2, 3, and 4. The other columns work the same way.
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0
1

✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ 4

(b)
0
✓ 1
✓ 2
✓ ✓ ✓ 3
✓ ✓ 4

(c)

0
1

✓ ✓ 2
✓ ✓ 3
✓ ✓ ✓ ✓ 4

✓ ✓ ✓ 5
IV.6.11
(a) These are the checkmarks.

a b a b
𝑞0, 𝑞1 𝑞1, 𝑞1 𝑞2, 𝑞3 E0,0, E0,0 E0,0, E0,1
𝑞0, 𝑞2 𝑞1, 𝑞2 𝑞2, 𝑞4 E0,0, E0,0 E0,0, E0,1
𝑞0, 𝑞5 𝑞1, 𝑞5 𝑞2, 𝑞5 E0,0, E0,0 E0,0, E0,0
𝑞1, 𝑞2 𝑞1, 𝑞2 𝑞3, 𝑞4 E0,0, E0,0 E0,1, E0,1
𝑞1, 𝑞5 𝑞1, 𝑞5 𝑞3, 𝑞5 E0,0, E0,0 E0,1, E0,0
𝑞2, 𝑞5 𝑞2, 𝑞5 𝑞4, 𝑞5 E0,0, E0,0 E0,1, E0,0
𝑞3, 𝑞4 𝑞3, 𝑞4 𝑞5, 𝑞5 E0,1, E0,1 E0,0, E0,0

For example, the first row is checkmarked because on the right side the second entry, the b entry, has two
classes that differ, E0.0 ≠ E0,1.

(b) The checkmarks show that we can 1-distinguish 𝑞0 from 𝑞1 and 𝑞2 but not from 𝑞5. And, we can tell 𝑞1
and 𝑞2 from 𝑞5 but not from each other. The matching ∼1 classes are E1,0 = {𝑞0, 𝑞5 }, E1,1 = {𝑞1, 𝑞2 }, and
E1,2 = {𝑞3, 𝑞4 }

IV.6.12 First, all the states are reachable, by inspection.
Start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖 and 𝑞 𝑗 is accepting while the other is not.

0
1

✓ 2

The checkmark denote a pair of states that are 0-distinguishable and the blanks denote pairs of states that are
0-indistinguishable. Here are the two ∼0-equivalence classes.

E0,0 = {𝑞0, 𝑞2 } E0,1 = {𝑞1 }
Next we see if any of these classes split.

0 1 0 1
𝑞0, 𝑞2 𝑞0, 𝑞2 𝑞1, 𝑞1 E0,0, E0,0 E0,1, E0,1

The answer is that they don’t split. The process stops and here are the two ∼-equivalence classes.

E1,0 = {𝑞0, 𝑞2 } = E0 = 𝑟0 E1,1 = {𝑞1 } = E1 = 𝑟1

Incorporating the arrow information from the original machine gives this minimized one.
0

1

0

1

A0 A1

IV.6.13
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(a) These are the sets.
Step 𝑛 𝑅𝑛

0 {𝑞0 }
1 {𝑞0, 𝑞1 }
2 {𝑞0, 𝑞1, 𝑞2 }
3 {𝑞0, 𝑞1, 𝑞2 }

Thus the set of reachable states is 𝑅 = {𝑞0, 𝑞1, 𝑞2 }. The set of unreachable states is 𝑄 − 𝑅 = {𝑞3 }. Here is
the machine with only the reachable states.

a,b

a

b

a,b

@0 @1 @2

(b) These are the sets.
Step 𝑛 𝑅𝑛

0 {𝑞0 }
1 {𝑞0, 𝑞1, 𝑞3 }
2 {𝑞0, 𝑞1, 𝑞3, 𝑞4 }
3 {𝑞0, 𝑞1, 𝑞3, 𝑞4 }

The set of reachable states is 𝑅 = 𝑅2 = {𝑞0, 𝑞1, 𝑞3, 𝑞4 }. The set of unreachable states is 𝑄 − 𝑅 = {𝑞2, 𝑞5 }.
IV.6.14 For convenience, here is that machine.

0

1

0

1

1

0

0

1

1

0

0,1

@0

@1

@2

@3

@4

@5

Every state is reachable, by inspection.
Start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖 and 𝑞 𝑗 is accepting while the other is not.
0

1
2

✓ ✓ ✓ 3
✓ 4

✓ ✓ ✓ ✓ 5
There is a checkmark in box 𝑖, 𝑗 if the states 𝑞𝑖 and 𝑞 𝑗 are 0-distinguishable. The blanks denote pairs that are
0-indistinguishable. There are two ∼0 equivalence classes.

E0,0 = {𝑞0, 𝑞1, 𝑞2, 𝑞4 } E0,1 = {𝑞3, 𝑞5 }
The next step is to see if any of these classes split.

0 1 0 1
𝑞0, 𝑞1 𝑞1, 𝑞1 𝑞2, 𝑞3 E0,0, E0,0 E0,0, E0,1
𝑞0, 𝑞2 𝑞1, 𝑞3 𝑞2, 𝑞4 E0,0, E0,1 E0,0, E0,0
𝑞0, 𝑞4 𝑞1, 𝑞5 𝑞2, 𝑞4 E0,0, E0,1 E0,0, E0,0
𝑞1, 𝑞2 𝑞1, 𝑞3 𝑞3, 𝑞4 E0,0, E0,1 E0,1, E0,0
𝑞1, 𝑞4 𝑞1, 𝑞5 𝑞3, 𝑞4 E0,0, E0,1 E0,1, E0,0
𝑞2, 𝑞4 𝑞3, 𝑞5 𝑞4, 𝑞4 E0,1, E0,1 E0,0, E0,0
𝑞3, 𝑞5 𝑞3, 𝑞5 𝑞5, 𝑞5 E0,1, E0,1 E0,1, E0,1

0
✓ 1
✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ 4
✓ ✓ ✓ ✓ 5

The only pairs of states that are 1-distinguishable are 𝑞2, 𝑞4 and 𝑞3, 𝑞5. These are the ∼1 classes.
E1,0 = {𝑞0, 𝑞2 } E1,1 = {𝑞1 } E1,2 = {𝑞2, 𝑞4 } E1,3 = {𝑞3, 𝑞5 }
Now try it again to see if any of these classes split.
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0 1 0 1
𝑞2, 𝑞4 𝑞3, 𝑞5 𝑞4, 𝑞4 E1,3, E1,3 E1,2, E1,2
𝑞3, 𝑞5 𝑞3, 𝑞5 𝑞5, 𝑞5 E1,3, E1,3 E1,3, E1,3

0
✓ 1
✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ 4
✓ ✓ ✓ ✓ 5

The only pairs of states that are 1-distinguishable are 𝑞2, 𝑞4 and 𝑞3, 𝑞5. These are the ∼1 classes.
E1,0 = {𝑞0, 𝑞2 } E1,1 = {𝑞1 } E1,2 = {𝑞2, 𝑞4 } E1,3 = {𝑞3, 𝑞5 }

There is no splitting; these are the ∼ classes.
𝑟0 = E0 = E2,0 = {𝑞0, 𝑞2 } 𝑟1 = E1 = E2,1 = {𝑞1 } 𝑟2 = E2 = E2,2 = {𝑞2, 𝑞4 } 𝑟3 = E + 3 = E2,3 = {𝑞3, 𝑞5 }

Bringing in the transition information from the original machine gives this minimized version.

0

1

0
1

1

0

0,1

A0

A1

A2

A3

IV.6.15 Not a lot. You get back the original machine in that you get 𝑟0 = E𝑛,0 = {𝑞0 }, 𝑟1 = E𝑛,1 = {𝑞1 }, etc.
IV.6.16 By inspection the states 𝑞6 and 𝑞7 are unreachable, so drop them.

With that, start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖 and 𝑞 𝑗 is accepting while the other is
not.

0
✓ 1

✓ 2
✓ ✓ 3
✓ ✓ 4
✓ ✓ 5

The checkmarks are for pairs of states that are 0-distinguishable, and the blanks denote pairs that are
0-indistinguishable. There are two ∼0-equivalence classes.

E0,0 = {𝑞0, 𝑞2 } E0,1 = {𝑞1, 𝑞3, 𝑞4, 𝑞5 }
Next we see if any of these classes split.

a b a b
𝑞1, 𝑞3 𝑞4, 𝑞0 𝑞2, 𝑞4 E0,1, E0,0 E0,0, E0,1
𝑞1, 𝑞4 𝑞4, 𝑞4 𝑞2, 𝑞4 E0,1, E0,1 E0,0, E0,1
𝑞1, 𝑞5 𝑞4, 𝑞2 𝑞2, 𝑞4 E0,1, E0,0 E0,0, E0,1
𝑞3, 𝑞4 𝑞0, 𝑞4 𝑞4, 𝑞4 E0,0, E0,1 E0,1, E0,1
𝑞3, 𝑞5 𝑞0, 𝑞2 𝑞4, 𝑞4 E0,0, E0,0 E0,1, E0,1
𝑞4, 𝑞5 𝑞4, 𝑞2 𝑞4, 𝑞4 E0,1, E0,0 E0,1, E0,1
𝑞0, 𝑞2 𝑞1, 𝑞1 𝑞3, 𝑞5 E0,1, E0,1 E0,1, E0,1

0
✓ 1

✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4
✓ ✓ ✓ ✓ 5

So, 𝑞0 and 𝑞2 are not 1-distinguishable. On the other hand, as shown in the triangular table, 𝑞1 is 1-
distinguishable from 𝑞3, 𝑞4, and 𝑞5. And, 𝑞3 is 1-distinguishable from 𝑞4 but not from 𝑞5. Finally, 𝑞4 is
1-distinguishable from 𝑞5. These are the ∼1 classes.

E1,0 = {𝑞0, 𝑞2 } E1,1 = {𝑞1 } E1,2 = {𝑞3, 𝑞5 } E1,3 = {𝑞4 }
Determine which states are 2-distinguishable by computing whether any of those classes split.

a b a b
𝑞3, 𝑞5 𝑞0, 𝑞2 𝑞4, 𝑞4 E1,0, E1,0 E1,3, E1,3
𝑞0, 𝑞2 𝑞1, 𝑞1 𝑞3, 𝑞5 E1,1, E1,1 E1,2, E1,2

0
✓ 1

✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4
✓ ✓ ✓ ✓ 5
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There is no splitting so the minimal machine has four states.

𝑟0 = E2,0 = {𝑞0, 𝑞2 } 𝑟1 = E2,1 = {𝑞1 } 𝑟2 = E2,2 = {𝑞3, 𝑞5 } 𝑟3 = E2,3 = {𝑞4 }
The transitions from the input machine give this minimized one.

a

b a

b

a

b
a,b

A0 A1

A2 A3

IV.6.17 The answer is “yes.” The initial state of the minimal machine, 𝑟0, is the one that contains 𝑞0. In the
minimized machine a state is accepting if and only if it contains any final states in the original machine. So if
𝑞0 is accepting then 𝑟0 is also accepting.

IV.6.18 By inspection all of the states are reachable. So start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖
and 𝑞 𝑗 is accepting while the other is not.

0
1

✓ ✓ 2
✓ 3

✓ ✓ ✓ 4

There are two ∼0-equivalence classes.

E0,0 = {𝑞0, 𝑞1, 𝑞3 } E0,1 = {𝑞2, 𝑞4 }
Next we see if any of these classes split.

0 1 0 1
𝑞0, 𝑞1 𝑞1, 𝑞2 𝑞3, 𝑞4 E0,0, E0,1 E0,0, E0,1
𝑞0, 𝑞3 𝑞1, 𝑞2 𝑞3, 𝑞4 E0,0, E0,1 E0,0, E0,1
𝑞1, 𝑞3 𝑞2, 𝑞2 𝑞4, 𝑞4 E0,1, E0,1 E0,1, E0,1
𝑞2, 𝑞4 𝑞1, 𝑞4 𝑞4, 𝑞4 E0,0, E0,1 E0,1, E0,1

0
✓ 1
✓ ✓ 2

✓ ✓ 3
✓ ✓ ✓ ✓ 4

So, 𝑞1 and 𝑞3 are not 1-distinguishable but all the others are 1-distinguishable. These are the ∼1 classes.

E1,0 = {𝑞0 } E1,1 = {𝑞1, 𝑞3 } E1,2 = {𝑞2 } E1,3 = {𝑞4 }
Step 2 is to decide of any of the ∼1 classes split.

0 1 0 1
𝑞1, 𝑞3 𝑞1, 𝑞2 𝑞3, 𝑞4 E1,1, E1,2 E1,1, E1,3

0
✓ 1
✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4

So, 𝑞1 and 𝑞3 are 2-distinguishable. These are the ∼2 classes.

E1,0 = {𝑞0 } E1,1 = {𝑞1 } E1,2 = {𝑞2 } E1,3 = {𝑞3 } E1,4 = {𝑞4 }
The starting machine is minimal.

IV.6.19 By eye, all of the states are reachable. So start with the triangular table, checkmarking the 𝑖, 𝑗 entries
where one of 𝑞𝑖 and 𝑞 𝑗 is accepting while the other is not.

0
1

2
✓ ✓ ✓ 3
✓ ✓ ✓ 4

✓ ✓ 5
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There are two ∼0-equivalence classes.

E0,0 = {𝑞0, 𝑞1, 𝑞2, 𝑞5 } E0,1 = {𝑞3, 𝑞4 }

Next we see if we can 1-distinguish any of these states that cannot be 0-distinguished.
a b a b

𝑞0, 𝑞1 𝑞1, 𝑞1 𝑞2, 𝑞3 E0,0, E0,0 E0,0, E0,1
𝑞0, 𝑞2 𝑞1, 𝑞2 𝑞2, 𝑞4 E0,0, E0,0 E0,0, E0,1
𝑞0, 𝑞5 𝑞1, 𝑞5 𝑞2, 𝑞5 E0,0, E0,0 E0,0, E0,0
𝑞1, 𝑞2 𝑞1, 𝑞2 𝑞3, 𝑞4 E0,0, E0,0 E0,1, E0,1
𝑞1, 𝑞5 𝑞1, 𝑞5 𝑞3, 𝑞5 E0,0, E0,0 E0,1, E0,0
𝑞2, 𝑞5 𝑞2, 𝑞5 𝑞4, 𝑞5 E0,0, E0,0 E0,1, E0,0
𝑞3, 𝑞4 𝑞3, 𝑞4 𝑞5, 𝑞5 E0,1, E0,1 E0,0, E0,0

0
✓ 1
✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ 4

✓ ✓ ✓ ✓ 5

These are the ∼1 classes.

E1,0 = {𝑞0, 𝑞5 } E1,1 = {𝑞1, 𝑞2 } E1,2 = {𝑞3, 𝑞4 }

Iterate. See if any of these classes split.

a b a b
𝑞0, 𝑞5 𝑞1, 𝑞5 𝑞2, 𝑞5 E1,1, E1,0 E1,1, E1,0
𝑞1, 𝑞2 𝑞1, 𝑞2 𝑞3, 𝑞4 E1,1, E1,1 E1,2, E1,2
𝑞3, 𝑞4 𝑞3, 𝑞4 𝑞5, 𝑞5 E1,2, E1,2 E1,0, E1,0

0
✓ 1
✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ 4
✓ ✓ ✓ ✓ ✓ 5

The class E1,0 splits in two. The pairs that are not 2-distinguishable are: 𝑞1, 𝑞2, and 𝑞3, 𝑞4. These are the ∼2
classes.

E2,0 = {𝑞0 } E2,1 = {𝑞1, 𝑞2 } E2,2 = {𝑞3, 𝑞4 } E2,3 = {𝑞5 }

Again.

a b a b
𝑞1, 𝑞2 𝑞1, 𝑞2 𝑞3, 𝑞4 E2,1, E2,1 E2,2, E2,2
𝑞3, 𝑞4 𝑞3, 𝑞4 𝑞5, 𝑞5 E2,2, E2,2 E2,3, E2,3

0
✓ 1
✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ 4
✓ ✓ ✓ ✓ ✓ 5

There is no splitting. These are the ∼ classes.

𝑟0 = E3,0 = {𝑞0 } 𝑟1 = E3,1 = {𝑞1, 𝑞2 } 𝑟2 = E3,2 = {𝑞3, 𝑞4 } 𝑟3 = E3,3 = {𝑞5 }
Here is the minimized machine.

a,b

a

b

a

b

a,b

A0 A1 A2 A3

IV.6.20 We will go through the algorithm but before we do, observe that the answer must be that a machine
with a minimal number of states and that accepts no string has one state, namely the initial state, and all
arrows are loops.

By inspection all of the states are reachable. So start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖 and
𝑞 𝑗 is accepting while the other is not.

0
1

2
3
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There is one ∼0-equivalence class.

E0,0 = {𝑞0, 𝑞1, 𝑞2, 𝑞3 }

Next we see if any of these classes split.
0 1 0 1

𝑞0, 𝑞1 𝑞1, 𝑞1 𝑞2, 𝑞3 E0,0, E0,0 E0,0, E0,0
𝑞0, 𝑞2 𝑞1, 𝑞0 𝑞2, 𝑞2 E0,0, E0,0 E0,0, E0,0
𝑞0, 𝑞3 𝑞1, 𝑞0 𝑞2, 𝑞2 E0,0, E0,0 E0,0, E0,0
𝑞1, 𝑞2 𝑞1, 𝑞0 𝑞3, 𝑞2 E0,0, E0,0 E0,0, E0,0
𝑞1, 𝑞3 𝑞1, 𝑞0 𝑞3, 𝑞2 E0,0, E0,0 E0,0, E0,0
𝑞2, 𝑞3 𝑞0, 𝑞0 𝑞2, 𝑞2 E0,0, E0,0 E0,0, E0,0

0
1

2
3

Of course, if there is only one class then it cannot split, so there is only one ∼1 class.

E0,0 = {𝑞0, 𝑞1, 𝑞2, 𝑞3 }
This is the resulting minimized machine, as predicted.

0,10,1@0

If a machine has that all states are accepting then a similar thing happens. It recognizes the language Σ∗

and the minimal such machine has one state, which is both initial and accepting.
IV.6.21 By inspection all of the states are reachable. So start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖

and 𝑞 𝑗 is accepting while the other is not.
0
✓ 1

✓ 2
✓ 3

✓ ✓ ✓ 4
✓ ✓ 5

There are two ∼0-equivalence classes.

E0,0 = {𝑞0, 𝑞2, 𝑞3, 𝑞5 } E0,1 = {𝑞1, 𝑞4 }

Next we see if any of these classes split.
a b a b

𝑞0, 𝑞2 𝑞1, 𝑞1 𝑞0, 𝑞4 E0,1, E0,1 E0,0, E0,1
𝑞0, 𝑞3 𝑞1, 𝑞5 𝑞0, 𝑞2 E0,1, E0,0 E0,0, E0,0
𝑞0, 𝑞5 𝑞1, 𝑞4 𝑞0, 𝑞1 E0,1, E0,1 E0,0, E0,1
𝑞2, 𝑞3 𝑞1, 𝑞5 𝑞4, 𝑞2 E0,1, E0,0 E0,1, E0,0
𝑞2, 𝑞5 𝑞1, 𝑞4 𝑞4, 𝑞1 E0,1, E0,1 E0,1, E0,1
𝑞3, 𝑞5 𝑞5, 𝑞4 𝑞2, 𝑞1 E0,0, E0,1 E0,0, E0,1
𝑞1, 𝑞4 𝑞3, 𝑞3 𝑞0, 𝑞4 E0,0, E0,0 E0,0, E0,1

0
✓ 1
✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4
✓ ✓ ✓ ✓ 5

So, 𝑞2 and 𝑞5 are not 1-distinguishable but all the other pairs are 1-distinguishable. These are the ∼1 classes.

E1,0 = {𝑞0 } E1,1 = {𝑞1 } E1,2 = {𝑞2, 𝑞5 } E1,3 = {𝑞3 } E1,4 = {𝑞4 }

Finally we see if the one remaining multi-state classes splits.

a b a b
𝑞2, 𝑞5 𝑞1, 𝑞4 𝑞4, 𝑞1 E1,1, E1,4 E1,4, E1,1

0
✓ 1
✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4
✓ ✓ ✓ ✓ ✓ 5



Page 146

Thus all of the states are not 2-distinguishable. These are the ∼2 classes.

E2,0 = {𝑞0 } E2,1 = {𝑞1 } E2,2 = {𝑞2 } E2,3 = {𝑞3 } E2,4 = {𝑞4 } E2,5 = {𝑞5 }
The original machine is minimal.

IV.6.22 You will get a machine that recognizes the same language. The reachable states of this machine will
form a minimal set. But there will still be unreachable states (although perhaps fewer of them.)

IV.6.23 By inspection all of the states are reachable. So start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖
and 𝑞 𝑗 is accepting while the other is not.

0
1

2
3

✓ ✓ ✓ ✓ 4

There are two ∼0-equivalence classes.

E0,0 = {0, 1, 2, 3} E0,1 = {4}
Next we see if any of these classes split.

a b a b
𝑞0, 𝑞1 𝑞1, 𝑞2 𝑞0, 𝑞1 E0,0, E0,0 E0,0, E0,0
𝑞0, 𝑞2 𝑞1, 𝑞3 𝑞0, 𝑞2 E0,0, E0,0 E0,0, E0,0
𝑞0, 𝑞3 𝑞1, 𝑞4 𝑞0, 𝑞3 E0,0, E0,1 E0,0, E0,0
𝑞1, 𝑞2 𝑞2, 𝑞3 𝑞1, 𝑞2 E0,0, E0,0 E0,0, E0,0
𝑞1, 𝑞3 𝑞2, 𝑞4 𝑞1, 𝑞3 E0,0, E0,1 E0,0, E0,0
𝑞2, 𝑞3 𝑞3, 𝑞4 𝑞2, 𝑞3 E0,0, E0,1 E0,0, E0,0

0
1

2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4

So, 𝑞3 is 1-distinguishable from all the other states, but no other pairs are 1-distinguishable. These are the ∼1
classes.

E1,0 = {𝑞0, 𝑞1, 𝑞2 } E1,1 = {𝑞3 } E1,2 = {𝑞4 }
Next time through.

a b a b
𝑞0, 𝑞1 𝑞1, 𝑞2 𝑞0, 𝑞1 E1,0, E0,0 E1,0, E0,0
𝑞0, 𝑞2 𝑞1, 𝑞3 𝑞0, 𝑞2 E1,0, E0,1 E1,0, E0,0
𝑞1, 𝑞2 𝑞2, 𝑞3 𝑞1, 𝑞2 E1,0, E0,1 E1,0, E0,0

0
1

✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4

So, 𝑞2 is 2-distinguishable from 𝑞0 and 𝑞1, giving these ∼2 classes.

E2,0 = {𝑞0, 𝑞1 } E2,1 = {𝑞2 } E2,2 = {𝑞3 } E2,3 = {𝑞4 }
Once more through.

a b a b
𝑞0, 𝑞1 𝑞1, 𝑞2 𝑞0, 𝑞1 E2,0, E2,1 E2,0, E2,0

0
✓ 1
✓ ✓ 2
✓ ✓ ✓ 3
✓ ✓ ✓ ✓ 4

So, 𝑞1 is 3-distinguishable from 𝑞0 and these are the giving these ∼3 classes.

E3,0 = {𝑞0 } E3,1 = {𝑞1 } E3,2 = {𝑞2 } E3,3 = {𝑞3 } E3,4 = {𝑞4 }
No additional splitting happens on the next iteration; indeed, there is nothing left to split. The process stops.
The minimized machine has five states; it is the machine we started with.

IV.6.24
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(a) We must show that it is reflexive, symmetric, and transitive. Fix some 𝑛. Obviously any state is 𝑛-
indistinguishable from itself, for any 𝑛. Symmetry is also clear. So suppose 𝑞0 ∼𝑛 𝑞1 and 𝑞1 ∼𝑛 𝑞2. Let 𝜎 be
a string of length less than or equal to 𝑛. If 𝜎 takes the machine from 𝑞0 to an accepting state then because
of 𝑞0 ∼𝑛 𝑞1 it also takes the machine from 𝑞1 to an accepting state. Because of 𝑞1 ∼𝑛 𝑞2 it also takes the
machine from 𝑞2 to an accepting state. The same holds for non-accepting states.

(b) It is an equivalence because it is ∼𝑘 for some 𝑘.
IV.6.25
(a) By inspection all of the states are reachable. So start by checkmarking the 𝑖, 𝑗 entries where one of 𝑞𝑖 and 𝑞 𝑗

is accepting while the other is not.
0
✓ 1

✓ 2

There are two ∼0-equivalence classes.

E0,0 = {𝑞0, 𝑞2 } E0,1 = {𝑞1 }

Next we see if any of these classes split.

a b a b
𝑞0, 𝑞2 𝑞1, 𝑞1 𝑞2, 𝑞2 E0,1, E0,1 E0,0, E0,0

0
✓ 1

✓ 2

So the class E0,0 does not split. These are the ∼1 classes.

𝑟0 = E0,0 = {𝑞0, 𝑞2 } 𝑟1 = E0,1 = {𝑞1 }

Here is the minimized machine.

ab a,bA0 A1

(b) Here is the machine with the arrows reversed, the nodes renamed, and the start node made final, and the
final one made a start.

a

b

a,b

a

b

C0

C1

C2

start

It is nondeterministic; for instance, two edges labeled a leave node 𝑡1.
(c) This is the table to convert that nondeterministic Finite State machine to a deterministic one.

Node name Set of nodes a b
𝑢0 ∅ 𝑢0 𝑢0

+ 𝑢1 {𝑡0 } 𝑢0 𝑢0
𝑢2 {𝑡1 } 𝑢7 𝑢2
𝑢3 {𝑡2 } 𝑢0 𝑢1

+ 𝑢4 {𝑡0, 𝑡1 } 𝑢7 𝑢2
+ 𝑢5 {𝑡0, 𝑡2 } 𝑢0 𝑢3
𝑢6 {𝑡1, 𝑡2 } 𝑢7 𝑢7

+ 𝑢7 {𝑡0, 𝑡1, 𝑡2 } 𝑢7 𝑢7

Here is the arrow diagram.
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a,b
a,b

a

b

a

b

a

b

a
b

a,b

a,b

D0 D1

D2

D3

D4

D5

D6D7

start

The only reachable states are 𝑢2 and 𝑢7.
(d) Here is the picture.

b
a

a,bE2 E7

start

(e) Convert that nondeterministic Finite State machine to a deterministic one.
Node name Set of nodes a b

𝑤0 ∅ 𝑤0 𝑤0
+ 𝑤1 {𝑣2 } 𝑤0 𝑤1
𝑤2 {𝑣7 } 𝑤3 𝑤2

+ 𝑤3 {𝑣2, 𝑣7 } 𝑤3 𝑤3
Here is the arrow diagram.

a
b

b a
a,b

F0 F1

F2 F3

start

Once we omit unreachable states, this machine is the same (except for state renaming) as the one in the
first item.

IV.6.26 The machine of Exercise 6.23

a

b

a

b

a

b

a

b a,b

@0 @1 @2 @3 @4

has five states and is minimal for the language described by b*ab*ab*ab*a(a|b)*. Using induction to
generalize this observation is straightforward.

IV.7.8 The machine with these two instructions just keeps popping ⊥ off the stack and then pushing it back on
again.

Inst Input Output
0 𝑞0, 𝜀,⊥ 𝑞1, ‘⊥’
1 𝑞1, 𝜀,⊥ 𝑞0, ‘⊥’

This machine has the stack grow without bound.

Inst Input Output
0 𝑞0, 𝜀,⊥ 𝑞1, ‘g0⊥’
1 𝑞1, 𝜀, g0 𝑞0, ‘g0 g0’
2 𝑞0, 𝜀, g0 𝑞1, ‘g0 g0’

IV.7.9 Each configuration is a triple of present state, remaining tape tokens, and stack.
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(a) We have this.

⟨𝑞0, [][]B,⊥⟩ ⊢ ⟨𝑞0, ][]B, g0⊥⟩ ⊢ ⟨𝑞0, []B,⊥⟩ ⊢ ⟨𝑞0, ]B, g0⊥⟩ ⊢ ⟨𝑞0, B,⊥⟩ ⊢ ⟨𝑞1, ‘ ’,⊥⟩
The last configuration has an empty tape and the state 𝑞1, so the machine accepts the initial string.

(b) This computation is quite different than the prior one.

⟨𝑞0, ][][B,⊥⟩ ⊢ ⟨𝑞0, [][B, ‘ ’⟩
At this point the machine has an empty stack. It can’t start the next step because each step starts by popping
the top character off the stack, but there is no such character. The computation stops, with the input
rejected.

IV.7.10
(a) When this machine consumes a it pushes two g0’s onto the stack. When it sees the middle marker c it

switches to popping. The only accepting state is 𝑞2.
Inst Input Output
0 𝑞0, a,⊥ 𝑞0, ‘g0 g0⊥’
1 𝑞0, c,⊥ 𝑞1, ‘⊥’
2 𝑞0, a, g0 𝑞0, ‘g0 g0 g0’
3 𝑞0, c, g0 𝑞1, ‘g0’
4 𝑞1, b, g0 𝑞1, ‘ ’
5 𝑞1, B,⊥ 𝑞2,⊥

(b) This adaptation of the prior item’s machine just throws away the first a. The only accepting state is 𝑞3.
Inst Input Output
0 𝑞0, a,⊥ 𝑞1, ‘⊥’
1 𝑞1, a,⊥ 𝑞1, ‘g0 g0⊥’
2 𝑞1, c,⊥ 𝑞2, ‘⊥’
3 𝑞1, a, g0 𝑞1, ‘g0 g0 g0’
4 𝑞1, c, g0 𝑞2, ‘g0’
5 𝑞2, b, g0 𝑞2, ‘ ’
6 𝑞2, B,⊥ 𝑞3,⊥

IV.7.11 This is a regular language so we don’t need the stack. This Pushdown machine implements the shown
nondeterministic Finite State machine; its accepting state is 𝑞2.

Inst Input Output
0 𝑞0, 0,⊥ 𝑞1, ‘⊥’
1 𝑞1, 0,⊥ 𝑞1, ‘⊥’
2 𝑞1, 1,⊥ 𝑞1, ‘⊥’
3 𝑞1, 1,⊥ 𝑞2, ‘⊥’

0

0,1

1
@0 @1 @2

IV.7.12 First this machine reads a’s and pushes g0’s. When it guesses that the time is right, it transitions to
reading a’s and popping g0’s. The only accepting state is 𝑞2.

Inst Input Output
0 𝑞0, B,⊥ 𝑞2, ‘⊥’
1 𝑞0, a,⊥ 𝑞0, ‘g0⊥’
2 𝑞0, a, g0 𝑞0, ‘g0 g0’
3 𝑞0, 𝜀, g0 𝑞1, ‘g0⊥’
2 𝑞1, a, g0 𝑞1, ‘ ’
3 𝑞1, B,⊥ 𝑞2, ‘⊥’

IV.7.13 This machine pushes a g0 onto the stack for every inital a on the tape. Then when it sees a b it switches
to popping two g0’s off for every input. Its accepting state is 𝑞4.
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Inst Input Output
2 𝑞0, B,⊥ 𝑞4, ‘⊥’
0 𝑞0, a,⊥ 𝑞1, ‘g0⊥’
1 𝑞1, a, g0 𝑞1, ‘g0 g0’
3 𝑞1, b, g0 𝑞3, ‘ ’
4 𝑞2, b, g0 𝑞3, ‘ ’
5 𝑞3, b, g0 𝑞2, ‘ ’
6 𝑞2, B,⊥ 𝑞4, ‘⊥’

IV.7.14
(a)

@0,⊥

⊢

@1,⊥

⊢

@2,⊥

⊢ @0, g0⊥

⊢

@1, g0⊥

⊢ @0, g1g0⊥
⊢

@1, g1g0⊥

⊢ @0, g1g1g0⊥

⊢

@1, g1g1g0⊥

⊢ @1, g0⊥

⊢ @0, g0g1g1g0⊥

⊢

@1, g0g1g1g0⊥

⊢ @1,⊥

⊢

@2,⊥
Input: 0 1 1 0

0 1 2 3 4Step:

(b)

@0,⊥

⊢

@1,⊥

⊢

@2,⊥

⊢ @0, g0⊥

⊢

@1, g0⊥

⊢ @0, g1g0⊥

⊢

@1, g1g0⊥

⊢ @0, g0g1g0⊥
⊢

@1, g0g1g0⊥

Input: 0 1 0

0 1 2 3Step:

IV.7.15 S → 0S0 | 1S1 | 𝜀
IV.7.16 The language is LELP = {𝜎𝜎R �� 𝜎 ∈ B∗ }.

For contradiction, assume that LELP is regular. Then the Pumping Lemma says that it has a pumping length,
which we can denote as 𝑝. Consider the string 𝜎 = 0𝑝110𝑝.

It is an element of L of length greater than or equal to 𝑝. Therefore it decomposes into three substrings
𝜎 = 𝛼⌢𝛽⌢𝛾 that satisfy the conditions. Condition (1) is that the length of the prefix 𝛼⌢𝛽 is less than or
equal to 𝑝. Because the first 𝑝-many characters of 𝜎 are all 0’s, this imples that both 𝛼 and 𝛽 contain only 0’s.
Condition (2) is that 𝛽 is not empty so it consists of at least one 0.

Consider 𝛼𝛾 . Compared with 𝜎 = 𝛼𝛽𝛾 , this string is missing the 𝛽, which means that before 𝛼𝛾 ’s substring
11 it has fewer 0’s than does 𝜎 . But it has the same number of 0’s after the 11 substring, and so it is not a
member of LELP. Thas contradicts condition (3) of the lemma.

IV.7.17
(a) A Pushdown machine is a finite set of five tuples. Each of the five components comes from a countable set.

So in total the number of Pushdown machines is countable.
(b) Every machine accepts a language. So the number of languages is at most as large as the number of

machines.
(c) There are uncountably many languages.
IV.7.18 We can simulate a Pushdown machine with a Turing machine.
IV.A.20
(a) .*abc*.*
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(b) .*abc+.*
(c) .*abc2.*
(d) .*abc2,5.*
(e) .*abc2,.*
(f) .*a(b|c).* or .*a[bc].*
IV.A.21
(a) .*abe.* Note that in practice you often can just write abe; see your language’s documentation.
(b) [a-zA-Z0-9]*
(c) [^]
IV.A.22
(a) (a|e|i|o|u).*bc.*
(b) (a|e|i|o|u)(bc|.*bc).*
(c) .*a.*e.*i.*o.*u.*
(d) (.*a.*e.*i.*o.*u.*)|(.*a.*e.*i.*u.*o.*)|. . . |(.*u.*o.*i.*e.*a.*) There are 5! = 120 clauses.

You might use a program to write this regex.
IV.A.23 .*([.*{|{.*[).*

IV.A.24 \d{10}

IV.A.25
(a) (\d{3}|\(\d{3}\)) \d{3}-\d{4}
(b) We must factor out the space as well as the area code: (\d{3} |\(\d{3}\) )?\d{3}-\d{4}.
IV.A.27 \d{2}:\d{2}:\d{2}(.\d +)|\d{2}(:\d{2})?

IV.A.28 One is [-\+]?(\d)+\.?|\d)*\.\d+)
IV.A.29
(a) 4(\d15|\d12)
(b) (5[1-5]\d2|222[1-9]|22[3-9]\d|2[3-6]\d2|27[01]\d|2720)\d12
(c) 3[47][0-9]13
IV.A.30
(a) We can do the six as alternatives.

[A-Z]\d2 \d[A-Z]2|[A-Z]\d \d[A-Z]2|[A-Z]\d[A-Z] \d[A-Z]2|[A-Z]2\d2 \d[A-Z]2|[A-Z]2\d
\d[A-Z]2|[A-Z]2\d[A-Z] \d[A-Z]2

(b) We can factor out the ending of [.A-Z]2.

[A-Z]\d2|[A-Z]\d|[A-Z]\d[A-Z]|[A-Z]2\d2|[A-Z]2\d|[A-Z]2\d[A-Z]) \d[A-Z]2

IV.A.31 A suitable regex is textasciicircum g.n.{3}i.$ and a match is ‘gynaecia’, meaning the aggregate
of carpels or pistils in a flower.

IV.A.32 Factoring out the whitespace would mean that times without am or pmmust have a trailing whitespace.
IV.A.34 This tries to match a character after the end of the string: $. (In practice, in a regular expression
multiline mode the dollar sign matches a newline character and so this can match. But that lies outside our
scope.)

IV.A.35 ^M0,4(CM|CD|D?C0,3)(XC|XL|L?X0,3)(IX|IV|V?I0,3)$

IV.A.36 Assume it is a regular language and let its pumping length be 𝑝. Consider 𝜎 = a𝑝ba𝑝b It is an element
of L whose length is greater than 𝑝 so By the Pumping Lemma it decomposes as 𝜎 = 𝛼⌢𝛽⌢𝛾 subject to the
three conditions. By the first condition the length of 𝛼⌢𝛽 is less than 𝑝, and so these two substrings consist
solely of a’s. The second condition is that 𝛽 is not the empty string. The third condition says that the strings
𝛼𝛾 , 𝛼𝛽2𝛾 , . . . are all members of L. Note that the first is not a square because in omitting 𝛽 it omits at least
one a from the prefix but not from the suffix. That’s a contradiction.

IV.A.37
(a) We take the alphabet to be Σ = B. Assume that it is regular and let its pumping length be 𝑝. Consider

𝜎 = 0𝑝10𝑝 , which is a member of the language. By the Pumping Lemma it therefore decomposes into
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𝜎 = 𝛼𝛽𝛾 subject to the three conditions. By the first and second conditions 𝛼𝛽 consists solely of 0’s, and is
therefore part of the prefix before the 1, and 𝛽 is nonempty. By the third condition the string 𝛼𝛾 is also a
member of L. But this is a contradiction because the omission of 𝛽 means that 𝛼𝛾 has fewer 0’s before the 1
than after.

(b) (a*)b\1
IV.A.38
(a) .*r
(b) .*i.*t.*
(c) .*foo.*
IV.A
(a) HELP

(b)

(A
|B

|C
)\

1

(A
B|

OE
|S

K)

.*M?O.* B O
(AN|FE|BE) B E

IV.B.15 If 𝑘 ≠ 𝑛 then a𝑘b𝑘 ∈ L but a𝑚b𝑘 ∉ L, so there are infinitely many classes.



Chapter V: Computational Complexity

V.1.29 True. Remember that Big O means something like “grows at a rate less than or equal to.” Growing at a
rate less than or equal to 𝑛2 implies growing at a rate less than or equal to 𝑛3.

V.1.30 First, the assertion, “I have an algorithm with running time O(𝑥2)” does not mean the time is quadratic,
since if 𝑓 (𝑥) = 𝑥 then 𝑓 is O(𝑛2).

Also, even if the running time is quadratic, it may involve constants and lower order terms. Thus, 1000 · 𝑥2
is O(𝑛2), as is 𝑥2 + 3𝑥 + 42. All of the things that impact performance on a particular platform are not part of
the algorithm analysis, which only applies to a computing model.

(Another issue is that the the runtime behavior is quadratic only for sufficiently large inputs. So unless you
know that 5 is greater than the 𝑁 of the definition, there is no reason to think quadratic at all.)

V.1.31 No doubt they mean that for their problem they have an algorithm that is O(𝑛3).
V.1.32
(a) Because 5 in binary is 101, it takes three bits.
(b) The number 50 in binary is 11 0010, so it takes six bits.
(c) In binary the number 500 is 1 1111 0100, so it take nine bits.
(d) The binary equivalent of 5 000 is 1 0011 1000 1000, which is thirteen bits.
This table verifies these using the formula bits(𝑛) = 1 + ⌊lg(𝑛)⌋.

integer 𝑛 5 50 500 5 000
binary 101 110 010 1 1111 0100 1 0011 1000 1000
lg(𝑛) 2.322 5.644 8.966 12.288

1 + lg(𝑛) 3 6 9 13

V.1.33 The second is true, the first is not.
Recall the intuition that ‘𝑓 is O(𝑔)’ means something like “𝑓 ’s growth rate is less than or equal to 𝑔’s,”

while ‘𝑓 is Θ(𝑔)’ means something like “𝑓 ’s growth rate is roughly the same as 𝑔’s.” With this in mind, the
second one makes sense since if 𝑓 and 𝑔 grow at roughly the same rate then that certainly implies 𝑓 ’s that rate
is less than or equal to 𝑔’s. More precisely, by definition, if 𝑓 is Θ(𝑔) then both 𝑓 is O(𝑔) and 𝑔 is O(𝑓 ).

Again with the intuition in mind, assuming that 𝑓 ’s growth is less than or equal to 𝑔’s does not give that
the two rates are equal. That is, there are functions 𝑓 , 𝑔 so that 𝑓 is O(𝑔) but 𝑓 is not Θ(𝑔). One such pair is
𝑓 (𝑛) = 𝑛 and 𝑔(𝑛) = 𝑛2.

V.1.34 We use the principles for simplifying Big O expressions from page 262.
(a) O(𝑛2)
(b) O(2𝑛)
(c) O(𝑛4)
(d) O(lg𝑛)
V.1.35
(a) For sufficiently large input arguments 𝑛, this function is 𝑓 (𝑛) = 0. So it is O(1).
(b) For sufficiently large arguments 𝑛, this function is 𝑓 (𝑛) = 𝑛2. So it is O(𝑛2).
(c) For sufficiently large 𝑛, this function is 𝑓 (𝑛) = lg(𝑛). So it is O(lg(𝑛)).
V.1.36 Because we will apply L’Hôpital’s Rule, to signal that these are functions on R we convert from 𝑛’s to 𝑥 ’s.
(a) The limit of the ratios is this.

lim
𝑥→∞

3𝑥3 + 2𝑥 + 4
ln(𝑥) + 6
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This is an “∞/∞” limit. Apply L’Hôpital’s Rule.

lim
𝑥→∞

3𝑥3 + 2𝑥 + 4
ln(𝑥) + 6 = lim

𝑥→∞
9𝑥2 + 2
1/𝑥 = lim

𝑥→∞
𝑥 · (9𝑥2 + 2)

1 = ∞

So 𝑔 is O(𝑓 ) but 𝑓 is not O(𝑔). In short, 𝑓 ’s growth rate is strictly bigger than 𝑔’s.
(b) To apply the theorem, consider the limit of the ratio. Use L’Hôpital’s Rule.

lim
𝑥→∞

3𝑥2 + 2𝑥 + 4
𝑥 + 5𝑥3 = lim

𝑥→∞
6𝑥 + 2

1 + 15𝑥2 = lim
𝑥→∞

6
30𝑥 = 0

Conclude that 𝑓 is O(𝑔) but it is not the case that 𝑔 is O(𝑓 ). Briefly, 𝑓 ’s growth rate is strictly less than 𝑔’s.
(c) This is the limit of the ratios.

lim
𝑥→∞

(1/2)𝑥3 + 12𝑥2
𝑥2 ln(𝑥)

We could start by simplifying the fraction by cancelling 𝑥2 from the numerator and the denominator.
However, we instead choose to apply L’Hôpital’s Rule. Note that we need to use the Product rule on the
denominator.

lim
𝑥→∞

(1/2)𝑥3 + 12𝑥2
𝑥2 ln(𝑥) = lim

𝑥→∞
(3/2)𝑥2 + 24𝑥
2𝑥 ln(𝑥) + 𝑥 = lim

𝑥→∞
3𝑥 + 24

2 ln(𝑥) + 3 = lim
𝑥→∞

3
2(1/𝑥) = lim

𝑥→∞
3𝑥
2 = ∞

So 𝑔 is O(𝑓 ) but 𝑓 is not O(𝑔).
(d) L’Hôpital’s Rule gives this.

lim
𝑥→∞

lg(𝑥)
ln(𝑥) = lim

𝑥→∞
(1/𝑥) · (1/ln(2))

(1/𝑥) = lim
𝑥→∞

1
ln(2) ·

(1/𝑥)
(1/𝑥) = lim

𝑥→∞
1

ln(2)
So both 𝑔 is O(𝑓 ) and 𝑓 is O(𝑔), that is, 𝑔 is Θ(𝑓 ). In short, they grow at equivalent rates.

(e) We have this.

lim
𝑥→∞

𝑥2 + lg(𝑥)
𝑥4 − 𝑥3 = lim

𝑥→∞
2𝑥 + (1/𝑥)
4𝑥3 − 3𝑥2 = lim

𝑥→∞
2𝑥2 + 1

4𝑥4 − 3𝑥3 = lim
𝑥→∞

4𝑥
16𝑥3 − 9𝑥2 = lim

𝑥→∞
4

48𝑥2 − 18𝑥 = 0

So 𝑓 is O(𝑔) but 𝑔 is not O(𝑓 ).
(f) We consider the ratio of the functions.

lim
𝑥→∞

55
𝑥2 + 𝑥

This is not an “∞/∞” limit, so L’Hôpital’s Rule doesn’t apply. But it doesn’t matter because it is easier than
that. The denominator grows at a faster rate than the numerator because the numerator doesn’t grow at all.
That is, 𝑓 is O(𝑔) but 𝑔 is not O(𝑓 ).

V.1.37 We follow the principles for simplifying Big O expressions.
(a) Both of these are O(𝑛2). So both 𝑓 is O(𝑔) and also 𝑔 is O(𝑓 ), that is, 𝑓 is Θ(𝑔).
(b) Here, 𝑔 is a logarithmic function and 𝑓 is a cubic, so 𝑔 is O(𝑓 ) but it is not the case that 𝑓 is O(𝑔).
(c) The function 𝑓 is quadratic, while 𝑔 is a square root, so 𝑔 is O(𝑓 ) but 𝑓 is not O(𝑔).
(d) The function 𝑓 is O(𝑛1.2) while the function 𝑔 is O(𝑛

√
2), which is approximately O(𝑛1.414). Consequently,

𝑓 is O(𝑔) but 𝑔 is not O(𝑓 ).
(e) The exponential function 2(1/6)𝑛 grows faster than the polynomial function 𝑛6. So 𝑓 is O(𝑔) but it is not the

case the 𝑔 is O(𝑓 ).
(f) As is shown in ?? 1.26, the function 2𝑛 is O(3𝑛), while 3𝑛 is not O(2𝑛). Thus, 𝑔 is O(𝑓 ) but 𝑓 is not O(𝑔).
(g) Recall the logarithm rule that lg(3𝑛) = lg(3) + lg(𝑛). From this it follows that the two have equivalent

growth rates, so 𝑓 is Θ(𝑔).
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V.1.38 Observe that cos(𝑡) varies between−1 and 1. Observe also that by the rules of logarithms lg(5𝑛) = 𝑛·lg(5).
Thus, the ones with a growth rate that is less than or equal to 𝑛2’s are the first, second, fourth, and fifth. The
third one has a growth rate that is Θ(𝑛3).

V.1.39
(a) True. By the simplifying principles from page 262, its growth rate is dominated by the quadratic term, so

5𝑛2 + 2𝑛 is O(𝑛2), which on the order of growth hierarchy lies below 𝑛3.
(b) True. As discussed in the section, all logarithmic functions grow at the same rate. So ln𝑛 is Θ(lg𝑛), and

hence ln𝑛 is O(lg𝑛).
(c) True. Where 𝑓 (𝑛) = 𝑛3 + 𝑛2 + 𝑛, by the simplifying principles from page 262, 𝑓 is O(𝑛3).
(d) True. For any polynomial function 𝑝, we have that 𝑝 is O(2𝑛), by Lemma 1.24.
V.1.40 For each we use the simplifying principles.
(a) 𝑘 = 4
(b) 𝑘 = 4
(c) 𝑘 = 3 (The cosine function is bounded between −1 and 1.)
(d) 𝑘 = 12
(e) This is O(𝑛7/2) but since the question specifies that 𝑘 ∈ N, the answer is 𝑘 = 4.
V.1.41

(a)

𝑛 = 1 𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200
lg𝑛 – 1.05 × 10−17 1.79 × 10−17 2.11 × 10−17 2.42 × 10−17
𝑛 3.17 × 10−18 3.17 × 10−17 1.58 × 10−16 6.34 × 10−16 6.34 × 10−16

𝑛 lg𝑛 – 1.05 × 10−16 8.94 × 10−16 2.11 × 10−15 4.85 × 10−15
𝑛2 3.17 × 10−18 3.17 × 10−16 7.92 × 10−15 3.17 × 10−14 1.27 × 10−13
𝑛3 3.17 × 10−18 3.17 × 10−15 3.96 × 10−13 3.17 × 10−12 2.54 × 10−11
2𝑛 6.34 × 10−18 3.24 × 10−15 3.57 × 10−3 4.02 × 1012 5.09 × 1042

(b)

𝑛 = 1 𝑛 = 10 𝑛 = 50 𝑛 = 100
lg𝑛 – 1.05 × 10−17 1.79 × 10−17 2.11 × 10−17
𝑛 3.17 × 10−18 3.17 × 10−17 1.58 × 10−16 6.34 × 10−16

𝑛 lg𝑛 – 1.05 × 10−16 8.94 × 10−16 2.11 × 10−15
𝑛2 3.17 × 10−18 3.17 × 10−16 7.92 × 10−15 3.17 × 10−14
𝑛3 3.17 × 10−18 3.17 × 10−15 3.96 × 10−13 3.17 × 10−12
2𝑛 6.34 × 10−18 3.24 × 10−15 3.57 × 10−3 4.02 × 1012
3𝑛 9.51 × 10−18 1.87 × 10−13 2.76 × 106 1.63 × 1030

V.1.42 The number of seconds in a year is 60 · 60 · 24 · 365.25 = 31 557 600. At 10 000 ticks per second, that
is about 3.16 × 1011 ticks in a year (as also described in ?? 1.27).

(a) With lg(𝑛) = 3.16 × 1011, we have 𝑛 = 23.16×1011 = 4.53 × 1094 997 841 911.
(b) (3.16 × 1011)2 = 9.96 × 1022
(c) 3.16 × 1011
(d) Because (3.16 × 1011)1/2 ≈ 561 761.52, the answer is 561 761.
(e) Because (3.16 × 1011)1/3 ≈ 6808.24, the answer is 6 808.
(f) We have lg(3.16 × 1011) ≈ 38.20 so the answer is 38.
V.1.43 Solving 100 000 · 𝑛2 = 𝑛3 gives 𝑛 = 100 000. So the first number 𝑛 where 𝑓 (𝑛) = 100 · 𝑛2 is less than
𝑔(𝑛) = 𝑛3 is 𝑛 = 100 001.

V.1.44 Linear. Finite State machines consume one character at each step. So they run in time equal to the
length of the input. In the notation of Definition 1.28, 𝑡M(𝜎) = |𝜎 |.

V.1.45 Let 𝑔 be the function 𝑔(𝑥) = 1.
(a) Directly apply the definition of Big O, Definition 1.6, by taking 𝑁 = 1 and 𝐶 = 8. If 𝑥 > 𝑁 = 1 then

𝐶 · 𝑔(𝑥) = 8 · 1 ≥ 𝑓 (𝑥) = 7.
(b) Recall that sin(𝑥) is bounded between −1 and 1. Take 𝑁 = 1 and 𝐶 = 9. If 𝑥 > 𝑁 then 𝐶 · 𝑔(𝑥) = 9 ≥

7 + sin(𝑥) = 𝑓 (𝑥).
(c) Fix 𝑁 = 1 and 𝐶 = 8. If 𝑥 ≥ 𝑁 = 1 then 𝐶 · 𝑔(𝑥) = 2 is greater than 𝑓 (𝑥) = 7 + (1/𝑥).
(d) We first show that if it is bounded then it is O(1). Suppose that 𝑓 is bounded by 𝐾 ∈ R+. Take 𝑁 = 1
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and 𝐶 = 𝐾 . If 𝑥 ≥ 𝑁 = 1 then 𝐶 · 𝑔(𝑥) = 𝐾 ≥ 𝑓 (𝑥), so 𝑓 is O(𝑔).
For the converse, suppose that 𝑓 is O(𝑔). Then there exists constants 𝑁,𝐶 ∈ R+ so that 𝑥 ≥ 𝑁 implies

that 𝐶 · 𝑔(𝑥) = 𝐶 ≥ 𝑓 (𝑥). Let 𝐾 = max(𝐶, 𝑓 (0), ... 𝑓 (𝑁 − 1)). If 𝑥 ∈ R then 𝑓 (𝑥) ≤ 𝐾 , so 𝑓 is bounded
by 𝐾 .

V.1.46 A function 𝑓 : R → R is O(1) if it is bounded by a constant. So 𝑔(𝑥) ≤ 𝑥O (1) says that the function 𝑔
has at most a polynomial growth rate.

V.1.47 The first half, that 𝑓 is O(𝑔), is straightforward. Fix 𝑁 = 1 and 𝐶 = 2. If 𝑥 ≥ 𝑁 = 1 then
𝐶 · 𝑔(𝑥) = 2𝑥2 ≥ 2𝑥 = 𝑓 (𝑥) (because 2𝑥2 − 2𝑥 = 0 gives 2 · (𝑥 (𝑥 − 1)) = 0 and so the largest 𝑥 for which
they are equal is 𝑥 = 1).

For the second half, that 𝑔 is not O(𝑓 ), we will show that for every 𝐶 there is no 𝑁 that will work. So
fix a 𝐶, aiming to prove that for any 𝑁 it is not the case that 𝑥 ≥ 𝑁 implies that 𝐶 · 𝑓 (𝑥) ≥ 𝑔(𝑥). For
any 𝑁 , consider 𝑥 = max(𝑁,𝐶 + 1), which is greater than or equal to 𝑁 . Because 𝑥 > 𝐶, we have that
𝑔(𝑥) = 𝑥2 > 𝐶 · 𝑥 = 𝐶 · 𝑓 (𝑥).

V.1.48 Let 𝑁 = 4 and 𝐶 = 1. If 𝑛 ≥ 𝑁 = 4 then 𝐶 · 𝑛! = 𝑛! = 4! · 5 · 6 · · · (𝑛 − 1) · 𝑛 ≥ 24 · 2𝑛−4 = 2𝑛 (note
that 4! = 24 > 24 = 16).

V.1.49
(a) This limit equals 0

lim
𝑥→∞

(
log𝑏 (𝑥)

)2
𝑥𝑑

= lim
𝑥→∞

2 log𝑏 (𝑥) · 1
𝑥 ln(𝑏 )

𝑑𝑥𝑑−1
=

2
𝑑 ln(𝑏) · lim

𝑥→∞
log𝑏 (𝑥)
𝑥𝑑

by the calculation in Example 1.22.
(b) This limit equals 0

lim
𝑥→∞

(
log𝑏 (𝑥)

)3
𝑥𝑑

= lim
𝑥→∞

3
(
log𝑏 (𝑥)

)2 · 1
𝑥 ln(𝑏 )

𝑑𝑥𝑑−1
=

3
𝑑 ln(𝑏) · lim

𝑥→∞

(
log𝑏 (𝑥)

)2
𝑥𝑑

by the calculation in the prior item.
(c) The prior item suggests an argument by induction. So assume that the statement holds for the powers 𝑛 = 1,

𝑛 = 2, . . .𝑛 = 𝑘 and consider the 𝑛 = 𝑘 + 1 case.

lim
𝑥→∞

(
log𝑏 (𝑥)

)𝑘+1
𝑥𝑑

= lim
𝑥→∞

(𝑘 + 1) ( log𝑏 (𝑥))𝑘 · 1
𝑥 ln(𝑏 )

𝑑𝑥𝑑−1
=

𝑘 + 1
𝑑 ln(𝑏) · lim

𝑥→∞

(
log𝑏 (𝑥)

)𝑘
𝑥𝑑

Finish by applying the 𝑛 = 𝑘 inductive hypothesis.
V.1.50 Fix 𝑁 = 1 and find 𝐶 ∈ R large enough that 𝐶 · 𝑔(1) ≥ 𝑓 (1). Because 𝑔 is increasing, if 𝑥 > 𝑁 = 1
then 𝐶 · 𝑔(𝑥) ≥ 𝐶 · 𝑔(1) ≥ 𝑓 (1) = 𝑓 (𝑥).

V.1.51
(a) The function 𝑓0(𝑥) = 0 is clearly computable and has output values that grow at a rate that isO(1). Similarly,

the output values of 𝑓1(𝑥) = 𝑥 grow at a rate that is O(), and 𝑓2(𝑥) = 𝑥2 is O(𝑥2), etc.
(b) The function

𝐾 (𝑥) =
{
0 – if 𝜙𝑥 (𝑥)↑
1 – if 𝜙𝑥 (𝑥)↓

is clearly O(1).
(c) Let 𝑀 (𝑛) be the maximum value of 𝜙𝑖 ( 𝑗) where 0 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝜙𝑖 ( 𝑗) ↓ (if there is no such maximum

because none of the 𝜙𝑖 ( 𝑗) converge then define 𝑀 (𝑛) = 0). This is not a computable function, but it is a
function. Then the function �̂� (𝑛) = 𝑀 (𝑛) + 1 has the property that for any computable function 𝜙𝑒 , for all
𝑛 > 𝑒 if 𝜙𝑒 (𝑛)↓ then �̂� (𝑛) > 𝜙𝑒 (𝑛).

V.1.52 The first equality below comes from 𝑥 = 2lg𝑥 .

𝑥 lg𝑥 = (2lg𝑥 )lg𝑥 = 2(lg𝑥 )2 ∈ O(2poly(lg𝑥 ) )
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V.1.53 First we argue that it grows faster than any polynomial. Fix a power 𝑘 ∈ N. There is an 𝑥𝑘 where if
𝑥 ≥ 𝑥𝑘 then lg(𝑥) > 𝑘 + 1, and thus O(𝑥𝑘 ) ⊊ O(𝑥𝑘+1) ⊆ O(𝑓 ).

Next we argue that it grows slower than 𝑏𝑛 for 𝑏 > 1; actually, we will show it for 𝑏 = 2 but the argument
works for any 𝑏 > 1. We use L’Hôpital’s Rule. The first equality comes from 𝑥 = 2lg𝑥 .

lim
𝑥→∞

𝑥 lg𝑥

2𝑥 = lim
𝑥→∞

(2lg𝑥 )lg𝑥
2𝑥 = lim

𝑥→∞
2(lg𝑥 )2

2𝑥 = lim
𝑥→∞ 2(lg𝑥 )2−𝑥 = 0

The final equality comes from lim𝑥→∞(lg𝑥)2 − 𝑥 = −∞.
V.1.54 Use Theorem 1.17.

lim
𝑥→∞

2𝑥
3𝑥 = lim

𝑥→∞

(2
3

)𝑥
= 0

V.1.55
(a) With an eye toward Theorem 1.17, consider the ratio.

𝑛!
𝑛𝑛

=
1
𝑛
· 2
𝑛
· · · 𝑛

𝑛
≤ 1
𝑛
· 1 · · · 1

Clearly the limit of the ratio 𝑛!/𝑛𝑛 is 0.
(b) No, don’t overlook the 𝑒−𝑛.
V.1.56
(a) Apply L’Hôpital’s Rule twice.

lim
𝑥→∞

𝑥2 + 5𝑥 + 1
𝑥2

= lim
𝑥→∞

2𝑥 + 5
2𝑥 = lim

𝑥→∞
2
2 = 1

(b) Apply L’Hôpital’s Rule, remembering to use the Chain Rule for the numerator.

lim
𝑥→∞

lg(𝑥 + 1)
lg(𝑥) = lim

𝑥→∞
(1/𝑥 ln(2)) · 1

1/𝑥 ln(2) = 1

V.1.57 No. If O(𝑓 ) is the set of polynomials then 𝑓 must be a polynomial. However, then 𝑓 has some degree,
and no polynomial of higher degree is a member of O(𝑓 ).

V.1.58 We will use the notation from the lemma statement.
(a) The assumption is that 𝑓 is O(𝑔). So there are constants 𝑁,𝐶 ∈ R+ such that 𝑥 ≥ 𝑁 implies that

𝐶 · 𝑔(𝑥) ≥ 𝑓 (𝑥). For the function 𝑎 · 𝑓 , use the constants 𝑁 = 𝑁 and 𝐶 = 𝑎 ·𝐶. Then 𝑥 ≥ 𝐶 implies that
𝐶 · 𝑔(𝑥) ≥ 𝑓 (𝑥).

(b) The function 𝑓0 is O(𝑔0) and the function 𝑓1 is O(𝑔1). So there are constants 𝑁0,𝐶0, 𝑁1,𝐶1 ∈ R+ such that
𝑥 ≥ 𝑁0 implies that 𝐶0𝑔0(𝑥) ≥ 𝑓0(𝑥), and 𝑥 ≥ 𝑁1 implies that 𝐶1𝑔1(𝑥) ≥ 𝑓1(𝑥). Take 𝑁 = max(𝑁0, 𝑁1)
and 𝐶 = max(𝐶0,𝐶1). Then 𝑥 ≥ 𝑁 implies that 𝐶 · (𝑔0(𝑥) + 𝑔1(𝑥)) = 𝐶𝑔0(𝑥) +𝐶𝑔1(𝑥) ≥ 𝑓0(𝑥) + 𝑓1(𝑥).

(c) As in the prior item, there are constants 𝑁0,𝐶0, 𝑁1,𝐶1 ∈ R+ such that 𝑥 ≥ 𝑁0 implies that 𝐶0(𝑥) ≥ 𝑓0(𝑥),
and 𝑥 ≥ 𝑁1 implies that 𝐶1(𝑥) ≥ 𝑓1(𝑥). Take 𝑁 = max(𝑁0, 𝑁1) and 𝐶 = 𝐶0 ·𝐶1. Then 𝑥 ≥ 𝑁 implies that
𝐶 · (𝑔0(𝑥) · 𝑔1(𝑥)) = 𝐶0𝑔0(𝑥) ·𝐶1𝑔1(𝑥) ≥ 𝑓0(𝑥) · 𝑓1(𝑥).

V.1.59
(a) We must show that 𝑓 is in O(𝑓 ). Take 𝑁 = 1 and 𝐶 = 1.
(b) Suppose that 𝑓0 is O(𝑓1) and that 𝑓1 is O(𝑓2). Then there exists 𝑁0, 𝑁1,𝐶0,𝐶1 ∈ R+ such that if 𝑥 ≥ 𝑁0

then 𝐶0 · 𝑓1(𝑥) ≥ 𝑓0(𝑥), and if 𝑥 ≥ 𝑁1 then 𝐶1 · 𝑓2(𝑥) ≥ 𝑓1(𝑥). Take 𝑁 = max(𝑁0, 𝑁1) and 𝐶 = 𝐶0 · 𝐶1.
Then 𝑥 ≥ 𝑁 implies that 𝐶 · 𝑓2(𝑥) ≥ 𝐶0 · 𝑓1(𝑥) ≥ 𝑓0(𝑥).

V.1.60
(a) If lim𝑥→∞ 𝑓 (𝑥)/𝑔(𝑥) exists and equals 0 then for any 𝜀 > 0 there is an 𝑁 ∈ R such that 𝑥 ≥ 𝑁 implies that

𝑓 (𝑥)/𝑔(𝑥) < 𝜀. That gives 𝑓 (𝑥) < 𝜀 · 𝑔(𝑥). Fix 𝜀 = 1/2 and 𝐶 = 2. Take inverses to get that 𝑥 ≥ 𝑁 implies
𝐶 · 𝑔(𝑥) = 2𝑔(𝑥) ≥ 𝑓 (𝑥).
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(b) To show that 𝑓 is O(𝑔), take 𝑁 = 1 and 𝐶 = 4.
On the other hand, the limit doesn’t exist, as the ratio oscillates between 1 and 2.

V.1.61 First use L’Hôpital’s Rule to get that if 𝑔(𝑥) = 𝑎𝑚𝑥𝑚 + · · · + 𝑎0 then 𝑔 is Θ(𝑥𝑚). Then Example 1.22
shows that any logarithmic function is O(𝑔).

For the other half, fix a base 𝑏 > 1 and consider the exponential function ℎ(𝑥) = 𝑏𝑥 . L’Hôpital’s Rule gives
this

lim
𝑥→∞

𝑥𝑚

𝑏𝑥
=

𝑚

ln(𝑏) · lim
𝑥→∞

𝑥𝑚−1

𝑏𝑥
=
𝑚(𝑚 − 1)
(ln(𝑏))2 · lim

𝑥→∞
𝑥𝑚−2

𝑏𝑥
= · · · = 𝑚!

(ln(𝑏))𝑚 · lim
𝑥→∞

1
𝑏𝑥

= 0

and Theorem 1.17 gives the desired conclusion.
V.2.41 There are twenty five: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83, 89, and 97.
V.2.42
(a) Yes, it is prime.
(b) No, it is not prime. Besides the trivial ones, the divisors of 6 165 are 3, 5, 9, 15, 45, 137, 411, 685, 1 233,

and 2 055.
(c) Yes.
(d) No. Besides itself and 1, this number is also divisible by 7 and 601.
(e) No. Besides the trivial divisors of itself and 1, this number also has the divisors 3, 11, 33, 233, 699,

and 2 563.
V.2.43
(a) One is 3. The entire list is 3, 9, 3469, 10407, and 31221.
(b) One is 2. The entire list is 2, 4, 8, 6553, 13106, 26212, and 52424.
(c) One is 5. The entire list is 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 25, 30, 32, 40, 48, 50, 60, 64, 75, 80, 96,

100, 120, 128, 150, 160, 192, 200, 240, 300, 320, 384, 400, 480, 600, 640, 800, 960, 1200, 1600, 1920,
2400, 3200, 4800, and 9600.

(d) One is 61. The entire list is 61, 71, 4331.
(e) The only one is 877. It is prime.
V.2.44
(a) The three-atom clause is 𝑃 ∨ ¬𝑄 ∨ 𝑅.
(b) The clause for the 𝐹 -𝑇 -𝑇 line is 𝑃 ∨ ¬𝑄 ∨ ¬𝑅. For the 𝑇 -𝐹 -𝑇 line, use ¬𝑃 ∨𝑄 ∨ ¬𝑅. For the 𝑇 -𝑇 -𝑇 line, use

¬𝑃 ∨ ¬𝑄 ∨ ¬𝑅.
(c) Here is the entire expression in conjunctive normal form.

(𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ ¬𝑅) ∧ (¬𝑃 ∨𝑄 ∨ ¬𝑅) ∧ (¬𝑃 ∨ ¬𝑄 ∨ ¬𝑅)

Verifying the truth table is routine.
V.2.45
(a) This formula is satisfiable.

𝑃 𝑄 𝑅 𝑃 ∧𝑄 ¬𝑄 ¬𝑄 ∧ 𝑅 (𝑃 ∧𝑄) ∨ (¬𝑄 ∧ 𝑅)
𝐹 𝐹 𝐹 𝐹 𝑇 𝐹 𝐹
𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇
𝐹 𝑇 𝐹 𝐹 𝐹 𝐹 𝐹
𝐹 𝑇 𝑇 𝐹 𝐹 𝐹 𝐹

𝑇 𝐹 𝐹 𝐹 𝑇 𝐹 𝐹
𝑇 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇
𝑇 𝑇 𝐹 𝑇 𝐹 𝐹 𝑇
𝑇 𝑇 𝑇 𝑇 𝐹 𝐹 𝑇

(b) This formula is not satisfiable.
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𝑃 𝑄 𝑅 𝑃 → 𝑄 𝑃 ∧𝑄 ¬𝑃 (𝑃 ∧𝑄) ∨ ¬𝑃 ¬(𝑃 ∧𝑄) ∨ ¬𝑃) (𝑃 → 𝑄) ∧ ¬((𝑃 ∧𝑄) ∨ ¬𝑃)
𝐹 𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝐹 𝑇 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝑇 𝐹 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝑇 𝑇 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹

𝑇 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝑇 𝐹
𝑇 𝐹 𝑇 𝐹 𝐹 𝐹 𝐹 𝑇 𝐹
𝑇 𝑇 𝐹 𝑇 𝑇 𝐹 𝑇 𝐹 𝐹
𝑇 𝑇 𝑇 𝑇 𝑇 𝐹 𝑇 𝐹 𝐹

V.2.46 For the octahedron, the path ⟨𝑣0, 𝑣1, 𝑣5, 𝑣4, 𝑣3, 𝑣2, 𝑣0⟩ will do. For the icosahedron, one path is
⟨𝑣0, 𝑣10, 𝑣11, 𝑣8, 𝑣9, 𝑣6, 𝑣7, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣1, 𝑣0⟩.

V.2.47 This is the natural one.

�

�

�

�

V.2.48
(a) This map shows five countries. They are not contiguous; for instance, country𝐴 has five separate components.

�

� � � �

�

� � � �

�

� � � �

�

� � � �

�

� � � �

Because of the portion in the upper left, country 𝐴 must be a different color than any of the others. The
other portions similarly give that all the other countries are different colors than each other. In total there
are five countries, each a different color than all the others.

(b) Make a circle and split it into five wedges.
V.2.49 The one on the right does not partition the vertices into disjoint sets.
V.2.50 This is a cut set with eight elements.

E0

E1

E2

E3

E4

E5

That is as large as possible because it is all of the edges.
V.2.51
(a) AT&T connects to Citigroup, which connects to Ford Motor.
(b) Haliburton connects to Citigroup, which connects to Ford Motor.
(c) There is no connection between Caterpillar and Ford Motor.
(d) Also no connection.
V.2.52 If a graph has 𝑛 vertices 𝑣0, ... 𝑣𝑛−1 then a Hamiltonian path has 𝑛 edges. Traversing the path has an one

and only one edge leaving each vertex.
V.2.53
(a) This graph has a Hamiltonian circuit, around the outside.

E0 E1

E2 E3
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a b c d e Weight Value
N N N N N 0 0
N N N N Y 19 40
N N N Y N 42 44
N N N Y Y 61 84
N N Y N N 49 34
N N Y N Y 68 74
N N Y Y N 91 78
N N Y Y Y 110 118
N Y N N N 33 48
N Y N N Y 52 88
N Y N Y N 75 92
N Y N Y Y 94 132
N Y Y N N 82 82
N Y Y N Y 101 122
N Y Y Y N 124 126
N Y Y Y Y 143 166

a b c d e Weight Value
Y N N N N 21 50
Y N N N Y 40 90
Y N N Y N 63 94
Y N N Y Y 82 134
Y N Y N N 70 84
Y N Y N Y 89 124
Y N Y Y N 112 128
Y N Y Y Y 131 168
Y Y N N N 54 98
Y Y N N Y 73 138
Y Y N Y N 96 142
Y Y N Y Y 115 182
Y Y Y N N 103 132
Y Y Y N Y 122 172
Y Y Y Y N 145 176
Y Y Y Y Y 164 216

Figure 81, for question V.2.55: Output of a brute force script to show that there is no solution of an instance of theKnapsack problem.

To include the vertices 𝑣0 and 𝑣3, any circuit must include those four outside edges. In every Hamiltonian
circuit the number of edges equals the number of vertices and hence no Hamiltonian circuit can contain the
edge 𝑣1𝑣2, because that would make five edges.

(b) Assume that all the edgeweights are positive, and then to the edge 𝑒 assign theweight−(number of vertices) (max weight)−
1, (Or, we could assign the weight 1 and raise the other edge weights). Every Hamiltonian path has the
same number of edges, specifically the number of edges equals the number of vertices, So a path through 𝑒
has a negative total weight. This is clearly the only way to get a negative total weight.

V.2.54 (a) 2 (b) 2 (c) 0 (d) 4 (I was only in the deleted scenes. But it is all just fun.)
V.2.55 Figure 81 on page 160 shows the result of writing a small script.
V.2.56 A 269-269 tie is easy to concoct. For example, the electoral votes of CA, TX, FL, NY, IL, PA, OH, GA, MI,

NC, and VA add to 269.
V.2.57 We can do these by eye.
(a) The shortest is 𝑞2 to 𝑞1 to 𝑞7, which has length 14.
(b) The shortest is 𝑞0 to 𝑞3 to 𝑞4 to 𝑞8, of length 23.
(c) There is no path between these two vertices.
V.2.58 Figure 82 on page 161 is a check of every possibility.
V.2.59 A 3-clique is a triangle. A 2-clique is an edge.
V.2.60 A 𝑘-clique has 𝑘 (𝑘 − 1)/2 edges, one for each combination of two vertices.
V.2.61
(a) Suppose that a three-coloring suffices. Then the three vertices 𝐴, 𝐶, and 𝐷 form a triangle, so they must be

different colors. Since 𝐶𝐷𝐹 is also a triangle, we conclude that 𝐴 and 𝐹 are the same colors. So far we
have: C0 = {𝐴, 𝐹 }, C1 = {𝐶 }, C2 = {𝐷 }.

Next, consider triangle 𝐷𝐹𝐼 . It’s presence gives that𝐶 and 𝐼 are the same colors. So we have C0 = {𝐴, 𝐹 },
C1 = {𝐶, 𝐼 }, C2 = {𝐷 }. Then triangle 𝐸𝐹𝐼 leads to C0 = {𝐴, 𝐹 }, C1 = {𝐶, 𝐼 }, C2 = {𝐷, 𝐸 }.

Finally, triangle 𝐶𝐹𝐺 gives that 𝐷 and 𝐺 are the same color, giving C0 = {𝐴, 𝐹 }, C1 = {𝐶, 𝐼 }, C2 =
{𝐷, 𝐸,𝐺 }. But the contradicts the presence of triangle 𝐺𝐸𝐹 .

(b) This is a four-coloring.
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21 33 49 42 19 Total
N N N N N 0
N N N N Y 19
N N N Y N 42
N N N Y Y 61
N N Y N N 49
N N Y N Y 68
N N Y Y N 91
N N Y Y Y 110
N Y N N N 33
N Y N N Y 52
N Y N Y N 75
N Y N Y Y 94
N Y Y N N 82
N Y Y N Y 101
N Y Y Y N 124
N Y Y Y Y 143

21 33 49 42 19 Total
Y N N N N 21
Y N N N Y 40
Y N N Y N 63
Y N N Y Y 82
Y N Y N N 70
Y N Y N Y 89
Y N Y Y N 112
Y N Y Y Y 131
Y Y N N N 54
Y Y N N Y 73
Y Y N Y N 96
Y Y N Y Y 115
Y Y Y N N 103
Y Y Y N Y 122
Y Y Y Y N 145
Y Y Y Y Y 164

Figure 82, for question V.2.58: All possibilities in the Subset Sum instance.

� �

�

�

�

�

� �

�

V.2.62 It does not imply that. For an example, let the Boolean expression be 𝑃 ∨𝑄 .

𝑃 𝑄 𝑃 ∨𝑄 ¬(𝑃 ∨𝑄)
𝐹 𝐹 𝐹 𝑇
𝐹 𝑇 𝑇 𝐹
𝑇 𝐹 𝑇 𝐹
𝑇 𝑇 𝑇 𝐹

It is satisfiable by taking both variables to be𝑇 . Its negation is also satisfiable, by taking both variables to be 𝐹
V.2.63 A finite set of propositional logic statements {𝑆0, ... 𝑆𝑘−1 } is satisfiable if and only if the single statement
𝑆0 ∧ 𝑆1 ... ∧ 𝑆𝑘−1 is satisfiable.

V.2.65 It has a 4-clique, and thus it necessarily has a 3-clique.
E0 E1

E2

E3 E4

E5 E6

But it has no 5-clique, as checked by exhaustion in Figure 83 on page 162.
V.2.66
(a) A vertex cover with 𝑘 = 2 elements is 𝑆 = {𝑞1, 𝑞3 }. An independent set with 𝑘 = 4 elements is

𝑆 = {𝑞0, 𝑞2, 𝑞4, 𝑞5 }.
(b) A vertex cover with 𝑘 = 3 elements is 𝑆 = {𝑞1, 𝑞2, 𝑞4𝑑 }. An independent set with 𝑘 = 3 elements is

𝑆 = {𝑞0, 𝑞3, 𝑞5 }.
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Combination of five vertices A missing edge
𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣1𝑣3
𝑣0 𝑣1 𝑣2 𝑣3 𝑣5 𝑣2𝑣5
𝑣0 𝑣1 𝑣2 𝑣3 𝑣6 𝑣2𝑣6
𝑣0 𝑣1 𝑣2 𝑣4 𝑣5 𝑣0𝑣4
𝑣0 𝑣1 𝑣2 𝑣4 𝑣6 𝑣0𝑣6
𝑣0 𝑣1 𝑣2 𝑣5 𝑣6 𝑣0𝑣6
𝑣0 𝑣1 𝑣3 𝑣4 𝑣5 𝑣0𝑣4
𝑣0 𝑣1 𝑣3 𝑣4 𝑣6 𝑣0𝑣6
𝑣0 𝑣1 𝑣3 𝑣5 𝑣6 𝑣0𝑣6
𝑣0 𝑣1 𝑣4 𝑣5 𝑣6 𝑣0𝑣6
𝑣0 𝑣2 𝑣3 𝑣4 𝑣5 𝑣0𝑣4

Combination of five vertices A missing edge
𝑣0 𝑣2 𝑣3 𝑣4 𝑣6 𝑣0𝑣4
𝑣0 𝑣2 𝑣3 𝑣5 𝑣6 𝑣0𝑣6
𝑣0 𝑣2 𝑣4 𝑣5 𝑣6 𝑣0𝑣4
𝑣0 𝑣3 𝑣4 𝑣5 𝑣6 𝑣0𝑣4
𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣1𝑣3
𝑣1 𝑣2 𝑣3 𝑣4 𝑣6 𝑣1𝑣3
𝑣1 𝑣2 𝑣3 𝑣5 𝑣6 𝑣1𝑣3
𝑣1 𝑣2 𝑣4 𝑣5 𝑣6 𝑣1𝑣5
𝑣1 𝑣3 𝑣4 𝑣5 𝑣6 𝑣1𝑣3
𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣2𝑣5

Figure 83, for question V.2.65: A check of all possible 5-cliques.

(c) A vertex cover with 𝑘 = 4 elements is 𝑆 = {𝑞2, 𝑞5, 𝑞8, 𝑞9 }. An independent set with 𝑘 = 6 elements is
𝑆 = {𝑞0, 𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7 }.

(d) For any edge, if it has at least one endpoint in 𝑆 then it has at most one endpoint in the complement
𝑆 = N − 𝑆 . Conversely, If an edge has at most one endpoint in 𝑆 then it has at least one endpoint in the
complement 𝑆 = N − 𝑆 .

V.2.67 The Three-dimensional Matching problem requires that the three sets, the instructors, the courses, and
the time slots, all have the same size. In this instance, all three have five elements.

A suitable matching is �̂� = { ⟨𝐴, 2, 𝜀⟩, ⟨𝐵, 0, 𝛼⟩, ⟨𝐶, 3, 𝛾⟩, ⟨𝐷, 1, 𝛽⟩, ⟨𝐸, 4, 𝛿⟩ }.
V.2.68
(a) The set 𝑀 = 𝑋 × 𝑌 × 𝑍 contains these twenty seven triples ⟨𝑥,𝑦, 𝑧⟩.

𝑧 = a 𝑧 = d 𝑧 = e
⟨a, b, a⟩ ⟨a, c, a⟩ ⟨a, d, a⟩
⟨b, b, a⟩ ⟨b, c, a⟩ ⟨b, d, a⟩
⟨c, b, a⟩ ⟨c, c, a⟩ ⟨c, d, a⟩

⟨a, b, d⟩ ⟨a, c, d⟩ ⟨a, d, d⟩
⟨b, b, d⟩ ⟨b, c, d⟩ ⟨b, d, d⟩
⟨c, b, d⟩ ⟨c, c, d⟩ ⟨c, d, d⟩

⟨a, b, e⟩ ⟨a, c, e⟩ ⟨a, d, e⟩
⟨b, b, e⟩ ⟨b, c, e⟩ ⟨b, d, e⟩
⟨c, b, e⟩ ⟨c, c, e⟩ ⟨c, d, e⟩

(b) There are lots of correct answers. One is �̂� = { ⟨a, b, a⟩, ⟨b, c, d⟩, ⟨c, d, e⟩ }.
V.3.10 Note: the meanings give here are common usage. But because these terms are not formally defined,

different authors may use them in different ways.
(a) A heuristic is a shortcut, an approach to a problem that is faster than a full solution, or at least more reliable

than simple guessing.
One example is approaching the Travelling Salesman problem by using a greedy algorithm, that is, always

going next to the nearest city. Another example is that antivirus programs use heuristics to try and determine
if an executable is malicious, such as comparing the first few bytes to a list of known-bad ones. A third
example is based on the data in Figure 84 on page 163. In the contests for US President since 1900, the
taller candidate has won 20 out of 30 times, for a sample proportion of 0.67. The chance of such a result by
happenstance is less than 0.02. You could decide to bet in the next election on the taller candidate. This
isn’t logical, but it is a method and it is used in practice.
That is, a heuristic is a method that, while it may be used in practice, is not guaranteed to be optimal,

perfect, logical, or even rational. An algorithm for a problem is guaranteed to solve the problem.
(b) Pseudocode is a description of an algorithm. It gives a sketch or or outline, usually at a quite high level. It is

often laid out as though it were compilable code but usually it does not conform to any specific language’s
syntax; for instance it typically does not include details such as declaration of variables.

This is pseudocode for the recursive depth-first traversal of a binary tree.
process_subtree(v)

process_subtree(v's left child)
process_vertex(v)
process_subtree(v's right child)
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Year Winner Other Tallest?
1900 W McKinley W J Bryan N
1904 T Roosevelt A B Parker Y
1908 W H Taft W J Bryan Y
1912 W Wilson –2 others– N
1916 W Wilson C E Hughes Y
1920 W G Harding J M Cox Y
1924 C Coolidge J W Davis N
1928 H Hoover A Smith Y
1932 F D Roosevelt H Hoover Y
1936 F D Roosevelt A Landon Y
1940 F D Roosevelt W Willkie N
1944 F D Roosevelt T Dewey Y
1948 H S Truman T Dewey Y
1952 D Eisenhower A Stevenson II Y
1956 D Eisenhower A Stevenson II Y
1960 J F Kennedy R Nixon Y

Year Winner Other Tallest?
1964 L B Johnson B Goldwater Y
1968 R Nixon H Humphrey Y
1972 R Nixon G McGovern N
1976 J Carter G Ford N
1980 R Reagan J Carter Y
1984 R Reagan W Mondale Y
1990 G H W Bush M Dukakis Y
1992 W Clinton G H W Bush –same–
1996 W Clinton R Dole Y
2000 G W Bush A Gore N
2004 G W Bush J Kerry N
2008 B Obama J McCain Y
2012 B Obama M Romney N
2016 D Trump H Clinton Y
2020 J Biden D Trump N

Figure 84, for question V.3.10: Height comparison of US Presidential winner and main opponent, since 1900.

Another example describes the most simple algorithm for checking whether a number is prime, by dividing
it by each natural smaller than it but bigger than one.

is_prime(n)
for 2 <= i < n

if i divides n
return False

return True

We have seen many other examples in this book, including the descriptions in the proof of Chapter Two’s
Lemma 7.3.

(c) Of course, in the first section of the first chapter we saw a number of Turing machines, such as one that
computes the predecessor function, another that computes the sum of two inputs, and a third that never
halts.
A Turing machine is more like a program than an algorithm, in that it is an implementation of an

algorithm. For instance, you may have the Bubble Sort algorithm in mind and then you implement it on a
Turing machine.

(d) A flowchart is graphical pseudocode. They describe an algorithm, often at a high level (perhaps even higher
than used for pseudocode). We have seen a number of flowcharts in this book, including in this chapter.
They differ from an algorithm in the same way that pseudocode does.

(e) Source code is an implementation of an algorithm (sometimes a number of algorithms are bundled together
to make one source). It is targeted at a specific compiler or interpreter, and perhaps at a specific hardware
and software platform.

For example, there is source code that compiles to make a simple “Hello World!” program in C, source
code in Racket that is interpreted to determine if an input natural number is prime, and source code that
gives this book on compilation with LATEXand related programs.

(f) An executable is a binary file that can be run on an operating system. It is usually the result of compiling
source code, and so is an implementation of an algorithm. Three examples are the executable that results
from compiling (and linking) the “Hello World!” program in C, the executable for your browser, and the
executable that performs LATEX.

(g) A process is an instance of a program that has been has been loaded into a machine’s memory for execution.
As such, it is an implementation of an algorithm (or perhaps a number of algorithms). Three examples
are the result of calling the executable of the “Hello World!” program, of calling the executable for your
browser, and the of invoking the executable for LATEX.

Some processes, such as an operating system shell or a web server, are be designed to run forever,
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while typically in computational complexity discussions the term ‘algorithm’ is used for something that is
guaranteed to halt.

V.3.11 A solution is an algorithm that acts as the characteristic function of the set.
V.3.12 A decision problem is any one that ends in a ‘yes’ or ‘no’ answer. A language decision problem is a

specialization of that, to ‘yes’ or ‘no’ answers about membership in the given language.
V.3.13
(a) The multiplication is easy: (1/0.01)2 · 21 · 30 = 6.30 × 106.
(b) The answer is ⌈lg(1 000 000)⌉. If all you have is a pocket calculator with a natural log function button, then

you can get 6 ln(10)/ln(2) ≈ 19.93, so the answer is 20.
(c) Multiply (6.30 × 106) · 20 = 1.26 × 108. That’s less than 16 megabytes, about eight books from Project

Gutenberg.
V.3.14 One is the smell of an baby’s head. They have a great smell. But we don’t compute it.
V.3.15 Yes, two programs that implement the same algorithm must compute the same function. However, the

converse does not hold; two programs computing the same function need not implement the same algorithm.
For instance, two programs may both sort input strings but one uses Bubble Sort while the other uses Quick
Sort.

V.3.17 These algorithms mark that input is accepted or not by printing 1 or 0.
(a) Because the number 4 is a square that is one greater than a prime, three members are ⟨0, 4⟩, ⟨1, 3⟩, and

⟨2, 2⟩, For an algorithm computing the characteristic function, first input the sequence and unpack it to get
𝑛,𝑚 ∈ N. Then add the two numbers. If the sum is both square and one greater than a prime then print 1,
and otherwise print 0.

(b) Three string members of L are 𝜎0 = 200, 𝜎1 = 100, and 𝜎2 = 300. The algorithm is: if the input is a single 0
or ends in two 0’s, then print 1. Otherwise print 0.

(c) The language L2 contains 11, 110, and 1. A natural algorithm is to scan the input string, keeping a running
count of the number of 0’s and 1’s. At the end, if there are more 1’s then print 1, otherwise print 0.

(d) Recall that strings equal to their reverse are called palindromes. Three palindromes over B∗ are 101, 11,
and 1. To compute the characteristic function, read and save the input string. Then, compare the characters
starting from the back with those starting from the front. If each matches (or the string is empty) then
print 1. Otherwise print 0.

V.3.18
(a) The empty language is L = ∅ = { }. Its characteristic function is 1L(𝑛) = 0. The algorithm to solve this

language decision problem is to, for all input, return 0.
(b) This language contains two strings, B = {0, 1} (technically, these are characters, but we don’t distinguish

between characters and length-1 strings). The characteristic function is this.

1B(𝜎) =
{
1 – if 𝜎 = 0 or 𝜎 = 1

0 – otherwise

The algorithm that implements that function is easy.
(c) The language B∗ contains all bitstrings. To solve the decision problem for this language, the algorithm

returns 1 on all inputs.
V.3.19
(a) For the algorithm, fix a Finite State machine M that recognizes the language described by a*ba*. Now,

read the input 𝜎 and simulate running M on that input. This will terminate in a finite number of steps. If
M ends in an accepting state then print 1 (or yes, or some other value signaling acceptance), otherwise
print 0.

(b) The grammar defines the language L = {a𝑛𝑏𝑚
�� 𝑛,𝑚 ∈ N}. The algorithm for that language is simple.

Input the string and if all of the b’s come after all of the a’s then output 1 (or ‘yes’, or whatever indicates
acceptance). Otherwise, output 0.

V.3.20 First observe that there is an easy algorithm that can, given a machine M and a state 𝑞 in that machine,
find the set of states reachable from 𝑞. The algorithm proceeds in steps. At step 1, initialize by taking 𝑅1 to be
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the set of states that are reachable from 𝑞 in one transition. Step 𝑖 + 1 begins with the set of states that are
reachable from 𝑞 with 𝑖-many transitions or fewer. In that step, for each state in 𝑅𝑖 , find if any states reachable
from it in one transition are not in 𝑅𝑖 . Make the set 𝑅𝑖+1 by adding them all to 𝑅𝑖 . If there are no such new
states then the algorithm stops. Obviously it must stop at some point because the number of states in the
machine is finite.

(a) The language is empty if and only if from the start state, no accepting state is reachable.
(b) The language is infinite if and only if there is a state 𝑞 that can be reached from the initial state such that 𝑞

can be reached from itself by a nonempty string, and some accepting state can be reached from 𝑞.
(c) Given M, obtain a new machine M̂ that recognizes the complement of L(M) by copying M, except setting

each accepting state of M to be non-accepting in M̂, and setting each non-accepting state of M to be
accepting in M̂. Now, L(M) is empty if and only if L(M̂) is empty.

V.3.21
(a) See if the input string starts with a 1 bit.
(b) See if the input string has length less than or equal to ten. If the length equals ten then there are some

cases to do but that doesn’t change that the algorithm is O(1).
V.3.22 This is a search problem, since we need only produce a single bridge.
V.3.23 As remarked in the section, a decision problem involves finding a function—a Boolean function. So in

that sense, multiple answers are possible.
(a) This is a yes-or-no question, so it is a decision problem.
(b) Decision problem
(c) Function problem.
(d) Decision problem.
(e) Search problem.
(f) Decision problem.
(g) Language decision problem, for L = {𝜎 ∈ B∗ �� 𝜎 represents a number that in decimal has only odd digits}.
V.3.24
(a) Decision problem
(b) Search problem
(c) Function problem
(d) Function problem (although it is a search problem in that any satisfying assignment at all will do for output).

The ‘F’ in F-SAT stands for ‘functional’.
(e) Decision problem
V.3.25
(a) A language suited to Turing machines is L0 = {1𝑛

�� 𝑛 ∈ N is a square}. A language suited to more everyday
machines is L1 = {𝑑 ∈ {0, ... 9}∗

�� 𝑑 represents a perfect square in base 10}.
(b) One language is the set of triples ⟨𝑥,𝑦, 𝑧⟩ ∈ {0, ... 9}∗ such that 𝑥,𝑦, 𝑧 represent integers in base 10 where

the squares of the first two add to the square of the third.
(c) A language is {𝜎 ∈ B∗ �� 𝜎 represents a graph G with an even number of edges}.
(d) The language {𝜎 ∈ B∗ �� 𝜎 represents a pair ⟨G, 𝑝⟩ where 𝑝 is a path with a repeated vertex} will do.
V.3.26
(a) {𝑛 ∈ N

�� the factors of 𝑛 sum to more than 2𝑛 }.
(b) { ⟨P, 𝑖⟩

�� machine P on input 𝑖 halts in less than ten steps}
(c) {𝐸

�� the logic expression 𝐸 can be satisfied by three distinct assignments}
(d) { ⟨G, 𝐵⟩ }

�� for all 𝑣0, 𝑣1 ∈ G there is a path of cost less than 𝐵
V.3.27
(a) The Graph Colorability problem is stated as a decision problem. Imagine that we had an algorithm to

recognize membership in this language.

L = {𝜎 ∈ B∗ �� 𝜎 represents ⟨G, 𝑘⟩, where G is 𝑘-colorable}

Then, given an graph and an integer 𝑘, we could use that algorithm to decide whether the graph is
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𝑘-colorable. Convert the graph and integer to a string representing the pair, and use the algorithm to decide
if that pair is in the language.

(b) Consider this.

L = {𝜎 ∈ B∗ �� 𝜎 represents a graph with a path that traverses each edge exactly once}

The Euler Circuit problem is given as a function problem. If we had an algorithm to recognize membership
in the language then, given an graph, we could use that algorithm to decide whether the graph has a circuit:
we just convert the graph to its representation and apply the algorithm. If we know there is no Euler circuit
then we are done. If we know there is an Euler circuit then a search will find it.

(c) The Shortest Path problem is given as a function problem. If we had an algorithm to recognize membership
in the language

L = {𝜎 ∈ B∗ �� 𝜎 represents ⟨G, 𝑣0, 𝑣1, 𝑝⟩, where 𝑝 is a minimal-length path between the vertices}

then, given an graph and two vertices, we could find the minimal path by using that algorithm to test all
possible paths from one vertex to the other for minimality by seeing if the representation of the quad is in
the language.

V.3.28 It is a matter of deciding membership in this language. { ⟨P𝑒 , 𝑒⟩
�� 𝑒 ∈ N}.

V.3.29 Take 𝐵 ∈ N as a bound and consider this family.

L𝐵 = { ⟨G, 𝑣0, 𝑣1⟩
�� There is a path from 𝑣0 to 𝑣1 of distance less than or equal to 𝐵 }

Given a graph and two vertices we can solve the Shortest Path problem for it by searching through L1, L2,
. . . until we find the smallest bound 𝐵 for which our triple is a member of the language L𝐵 .

V.3.30
(a) Take 𝐵 ∈ N to be a bound and suppose that we can solve this language decision problem, where B is a game

board.

L𝐵 = {B
�� B can be solved in fewer than 𝐵 slide moves}

Given a board, to find the minimum number of moves, iterate through 𝐵 = 0, 𝐵 = 1, etc., looking to see if
the given board is a member of L𝐵 . Stop at the first 𝐵 where it is in the language. That is the minimum.

(b) Take 𝐵 ∈ N as a bound. Suppose that we have an algorithm to solve this language decision problem, where
R is a Rubik’s cube arrangement.

L𝐵 = {R
�� R can be solved in fewer than 𝐵 cube moves}

Given a cube, to find its minimum number of moves, iterate through 𝐵 = 0, 𝐵 = 1, etc., until a 𝐵 appears so
that the given cube is in L𝐵 . That is the minimum number of moves.

(c) Take 𝐵 ∈ N. Suppose that we have an algorithm to solve this language decision problem, where S is a
specification a car’s assembly jobs.

L𝐵 = {S
�� S can be accomplished in less time than 𝐵 }

Given a specification, find the minimum time by iterating through 𝐵 = 0, 𝐵 = 1, etc., until a 𝐵 appears so
that the give specification is in L𝐵 .

V.3.31 A function version would input a graph and output a circuit (if there is no circuit then it would output
something like the string None).

An optimization version would return a circuit that is best by some criterion. For instance, in a weighted
graph it would return the circuit of least weight; this is the Traveling Salesman problem.

V.3.32
(a) Search problem
(b) Decision problem
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(c) Function problem
(d) Optimization problem
A language suitable for an associated language problem is {𝑀

�� 𝑀 has a 3 × 3 invertible submatrix}.
V.3.33
(a) Given a triple ⟨𝑛0, 𝑛1, 𝑝⟩ ∈ N3, decide if 𝑝 = 𝑛0 · 𝑛1.
(b) Given a triple ⟨G, 𝑣0, 𝑣1⟩, where G is a weighted graph and 𝑣0 ≠ 𝑣1 are vertices in that graph, decide if 𝑣1 is a

vertex that is as near as possible to 𝑣0,
V.3.34
(a) Use the language { ⟨𝑠0, ... 𝑠𝑛−1⟩ ∈ Q𝑛

�� 𝑎𝑖,0𝑠0 + · · · + 𝑎𝑖,𝑛−1𝑠𝑛−1 ≤ 𝑏𝑖 for all 𝑖 }.
(b) It is a search problem as it is stated. We need only find one feasible sequence, if there is one.
(c) The function could produce one feasible sequence, if one exists.
(d) To make it an optimization function, the natural thing is to optimize a linear function 𝑃 (𝑥0, ... 𝑥𝑛−1) =

𝑐0𝑥0 + · · · + 𝑐𝑛−1𝑥𝑛−1, for some 𝑐0, ... 𝑐𝑛−1 ∈ Q.
V.3.35 A set with one vertex is independent, as is the empty set. So every graph has a subset of its vertices that

is independent. Because of that, these answers at least state a version for some number of vertices 𝑘 ∈ N.
(a) Given a graph, decide if it has an independent set with 𝑘 vertices.
(b) Use the language {G

�� G has 𝑘 vertices that do not share an edge}.
(c) Given a graph 𝐺 , find an independent set with 𝑘-many vertices. (There may be more than one, or none, but

we only look for one.)
(d) Given a graph, return an independent set of size 𝑘 or the string None.
(e) Given a graph, return an independent set that is maximal, in that it is as large as possible for the graph.
V.3.36 Ever list of numbers has a maximum, but finding it appears to mean at least looking through the list.
V.3.38 Imagine that we have a routine shortest_path that takes in a weighted graph and two vertices, and

returns the shortest path between them. That also solves the decision problem of whether there is any path at
all.

If the graph is not weighted, convert it to a weighted graph by taking each edge to be of weight 1.
V.3.39 By taking the numbers in the set 𝑆 = {𝑠0, ... 𝑠𝑛−1 } one at a time: 𝑆0 = {𝑠0 }, then 𝑆1 = {𝑠0, 𝑠1 }, . . . ,
you can figure out from the decision problem solver what is the largest number 𝑠 𝑗 in the sum. Subtract that
from the goal and then iterate using 𝑆 − {𝑠 𝑗 }.

V.3.40 Check all pairs of vertices.
V.4.12 True. Such problems have solution algorithms that are basically a fixed number of if ... then ...

branches, so there is a maximum number of steps that any input can trigger. Thus, the solution algorithm is
O(1).

V.4.13 Algorithms are not in P; rather, problems are in P. Specifically, a problem is in P if from among all the
algorithms that solves it, at least one runs in polynomial time, is O𝑛𝑐 for some constant 𝑐. So, better is to say
something like, “I’ve got a problem whose solution algorithm takes polytime.” (It is absolutely right that we
are not too careful to distinguish between problems, meaning language decision problems, and languages.
But problems and algorithms are very different.)

V.4.14 An order of growth is a set of functions. A complexity class is a set of problems, language decision
problems.

V.4.15 Your friend is observing that the circuit representation may have length exponential in the circuit depth,
since an 𝑟 -deep circuit may have 2𝑟 many vertices. But the definition of polynomial time is that the number of
steps taken is a polynomial function of the size of the input representation. If the representation is very large
then that only means that the polynomial receives a large input. That is, we are not comparing the time taken
to the depth of the circuit, but rather to the size of the representation.

V.4.16 The student’s machine accepts all strings. The definition requires a machine that determines whether
the input string is in the language.

V.4.17 True.
V.4.18 True, although not by the same machine. Let L be computed by P, so that the machine has this
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input-output behavior.

𝜙P (𝜎) = 1L(𝜎) =
{
1 – if 𝜎 ∈ L
0 – otherwise

Modify the machine by interchanging the output 0’s and 1’s, to get a new machine P̂ with the complementary
behavior.

𝜙P̂ (𝜎) = 1Lc (𝜎) =
{
0 – if 𝜎 ∈ L
1 – otherwise

V.4.19 We must produce an algorithm that runs in polytime. Given the input 𝜎 , find its length. If the length
is not divisible by three then return 0. Otherwise, find the substring 𝜏 that is the first third of 𝜎 , and check
whether 𝜏⌢𝜏⌢𝜏 = 𝜎 . If so, return 1, and if not, return 0.

V.4.20 The algorithm is straightforward. Given 𝜎 , for 𝑖 ∈ {0, 1, ... |𝜎 | − 1}, read the characters 𝜎 [𝑖] and
compare them to the corresponding character read from the back, 𝜎 [( |𝜎 | − 1) − 𝑖]. (You can stop once you
get through the halfway point, 𝑖 = ⌊|𝜎 |/2⌋.) If each comparison gives equality then return 1, else return 0.
This algorithm is polynomial since it is basically a loop.

V.4.21 In each case we must produce an algorithm that runs in polynomial time.
(a) Given 𝜎 , decide if its length is divisible by three. If not, return 0. If it is divisible by three, set 𝜏 to be the

substring that is the first third of 𝜎 . Then just check, by moving through the string once, whether 𝜎 = 𝜏3.
(b) Stated as a language decision problem, we have {𝑖 ∈ N

�� P𝑖 halts on the empty string in 10 steps}. There
is some overhead in going from the input 𝑖 to the Turing machine P𝑖 , simulating it with a universal Turing
machine, etc. But putting aside that overhead, then no matter what is the input 𝑖, we then just run for ten
steps. So it is an element of P.

V.4.22
(a) Because the size of the clique is fixed. In the Clique problem, the size of the clique is a parameter, so that

we are give a pair ⟨G, 𝐵⟩ and asked if the graph has a 𝐵-sized clique.
(b) Given G, enumerate all triples ⟨𝑣0, 𝑣1, 𝑣2⟩ ∈ N 3 and check whether all three of 𝑣0𝑣1, 𝑣0𝑣2, 𝑎𝑛𝑑𝑣1𝑣2 are edges,

members of E . This takes polynomial time. Specifically, it is O( |N |3 · |E |). Because |E | ≤ |N |2, the algorithm
is O( |N |5).

V.4.23
(a) To determine whether the string is in alphabetical order, a single pass through it suffices. We can assume

that each comparison takes constant time. So, overall this one-pass algorithm takes polytime.
(b) The elementary school algorithm of adding in columns from the least significant digit (or bit) and then off

to the left shows that the runtime of addition is proportional to the number of digits in the larger of the two
input numbers (or the number of bits, which is lg(10) times the number of digits). We can do addition of
individual digits (or bits) with a lookup table, so that step happens in constant time. Therefore, overall,
addition takes time proportional to the length of the input representation, which is polytime.

(c) The naive algorithm for matrix multiplication gives a triply nested loop, and so is O(𝑛3) where 𝑛 is the
largest of the number of rows or columns in either of 𝐴 or 𝐵.

(d) As mentioned in Problem 2.40, determining whether a number is composite or prime is known to be possible
in polytime.

(e) We can give an algorithm that runs in time polynomial in the length of the graph description. Fix the
set 𝑆0 = {𝑣0 }. Next, follow each edge leading out of 𝑣0, to get the set of vertices that are connected to 𝑣0 in
at most one step, 𝑆1 = 𝑆0 ∪ {𝑣

�� ⟨𝑣0, 𝑣⟩ ∈ E }. After that, for all the vertices in 𝑆1, follow all the edges to get
the set 𝑆2 = 𝑆1 ∪ {𝑣

�� ⟨𝑣, 𝑣⟩ ∈ E where 𝑣 ∈ 𝑆1 } of all vertices that are connected to 𝑣 in at most two steps.
This process must stop at some point, with 𝑆𝑖−1 = 𝑆𝑖 , because the graph is finite. Then, either 𝑣1 ∈ §𝑖 or
not, which determines whether there is a path from 𝑣0 to 𝑣1. The number of steps in this algorithm, 𝑖, is
bounded by the number of vertices in the graph, so the algorithm is polynomial in the size of the graph
representation.
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V.4.24
(a) By Dijkstra’s algorithm, the Shortest Path problem can be done in polynomial time. So the problem is in P.
(b) Knapsack is believed to be quite hard. No one knows of a polynomial algorithm.
(c) Euler Path is easy; we just need to check whether each node has even degree. There are algorithms that are

linear.
(d) No one knows of a polynomial algorithm for Hamiltonian Circuit.
V.4.25 Yes. The algorithm that takes in a single input and returns 0 computes the characteristic function of the

empty language, and clearly runs in polytime.
V.4.26 To show it is in P we must product a solution algorithm for it that runs in polytime. For that, start
by picking a vertex, 𝑣 . Let the set 𝑆0 equal {𝑣 }. Follow each edge leading out of 𝑣 to get all of the vertices
that are connected to 𝑣 in at most one step, and call that set 𝑆1 ⊇ 𝑆0. Iterate: for all the vertices in 𝑆1, follow
all the edges to get the set 𝑆2 of all of the vertices that are connected to 𝑣 in at most two steps. Clearly this
process must stop at some point, with 𝑆𝑖−1 = 𝑆𝑖 , because the graph is finite.

This algorithm takes a number of steps, 𝑖, that is bounded by the number of vertices in the graph, and so
the algorithm is polynomial in the size of the graph.

V.4.27
(a) Our definition of complexity class is completely general— it is a collection of languages. So under the

definition that we gave, the collection of regular languages is a complexity class.
As to the additional condition, a language is regular if it is accepted by a Finite State machine. So the

regular languages are computed by a device. Further, a Finite State machine meets the constraint that it
runs in a number of steps that is equal to the length of its input, 𝜎 .

(b) The question notes that we can define regular languages using a type of Turing machine. What remains is
to show that each regular language is computable in polytime. As in the prior item, the fact that such a
machine consumes its input and never writes to the tape means that it runs in linear time, O( |𝜎 |).

V.4.28
(a) It is a complexity class because it is a collection of languages. In addition, each such language L satisfies

that there is a computable function 𝜙𝑒 with L = {𝑘 ∈ N
�� 𝑘 = 𝜙𝑒 (𝑖) for some input 𝑖 ∈ N}.

(b) The resource specification is that there is no finite time bound.
V.4.29 There are countably many Turing machines to use as deciders, so P is countable.
V.4.30 No. Take L0 = ∅ and L1 = P (B∗). Because P is countable, as there are only countably many Turing

machines to use as deciders, and the collection of all languages P (B∗) is uncountable, there are uncountably
many languages with L0 ⊆ L ⊆ L1 that are not in P.

V.4.31 No. Certainly we can state the Halting problem as a language decision problem, using the language
L = {𝑛 ∈ N

�� 𝜙𝑛 (𝑛)↓}. But to be a member of P, there must be a Turing machine that solves the problem
(and that runs in polytime). No Turing machine solves the Halting problem, so it is not in P.

V.4.32 A language is a member of P if there is an algorithm for it that runs in polytime. That is, there is a
Turing machine that computes the characteristic function of the language in polytime. Clearly, existence of
such a machine is equivalent to the existence of a machine with a designated acceptance state (and that runs
in polytime). So the set of languages in P is a subset of the set of all decidable languages.

V.4.33 Here is the desired input-output behavior for the circuit.
𝑏2 𝑏1 𝑏0 𝑏2 + 𝑏1 + 𝑏0 𝑏2 + 𝑏1 + 𝑏0 (mod 2)
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 2 1
1 0 0 1 0
1 0 1 2 1
1 1 0 2 1
1 1 1 3 0

This propositional logic formula gives the behavior in that table.
(¬𝑏2 ∧ ¬𝑏1 ∧ ¬𝑏0) ∨ (¬𝑏2 ∧ 𝑏1 ∧ 𝑏0) ∨ (𝑏2 ∧ ¬𝑏1 ∧ 𝑏0) ∨ (𝑏2 ∧ 𝑏1 ∧ ¬𝑏0)
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Figure 85, for question V.4.33: Initial circuit for the Circuit Evaluation problem.

Figure 85 on page 170 shows the circuit, using the standard notation of for ‘and’ gates, for ‘or’ gates,
and for ‘not’ gates. But this circuit does not perfectly match the problem since some gates do not have two
inputs and one output. Figure 86 on page 171 modifies the prior diagram to draw the circuit as an acyclic
directed graph, by folding the ‘not’ gates into the boolean binary functions. These are the Boolean functions
used there.

𝑃 𝑄 ∧
0 0 0
0 1 0
1 0 0
1 1 1

𝑃 𝑄 ∨
0 0 0
0 1 1
1 0 1
1 1 1

𝑃 𝑄 𝑓0
0 0 1
0 1 0
1 0 0
1 1 0

𝑃 𝑄 𝑓1
0 0 0
0 1 0
1 0 1
1 1 0

𝑃 𝑄 𝑓2
0 0 0
0 1 1
1 0 0
1 1 0

So, 𝑓0 is equivalent to ¬𝑃 ∧ ¬𝑄 , and 𝑓1 is equivalent to 𝑃 ∧ ¬𝑄 , and 𝑓2 is equivalent to ¬𝑃 ∧𝑄 .
V.4.34 A complexity class is just a set, a collection of languages. So the union of two is also a complexity

class. The same holds for the intersection, and for the complement (where the complement is taken inside the
universe P (B∗)).

V.4.35 Let two languages L0,L1 ∈ P (B∗) be elements of P. Then there are computable functions to determine
membership in the two with runtimes O(𝑥𝑛0) and O(𝑥𝑛1). The algorithm to compute membership in the
union gets as input a string 𝜎 ∈ B∗. It first checks whether the string is a member of the first language, and
then checks whether it is a member of the second. Together, that takes a running time of O(𝑥max(𝑛0,𝑛1 ) ),
which means that the algorithm runs in polytime.

The argument for the union of any finite number of languages proceeds by induction and is straightforward.
V.4.36 Assume that L ∈ P. Then there is a deterministic Turing machine P that runs in polynomial time, and

that accepts an input string 𝜎 ∈ B∗ if and only if 𝜎 ∈ L. Restated, there is a computable function 𝑓 : B∗ → B∗
such that

𝑓 (𝜎) =
{
0 – if 𝜎 ∉ L
1 – if 𝜎 ∈ L

and such that computing 𝑓 is O(𝑝) for some polynomial 𝑝. (Specifically, what is O(𝑝) is the function 𝑡 (𝑛),
defined as the maximum runtime of 𝑓 (𝜏) over all 𝜏 ∈ B∗ with 𝑛 = |𝜏 |.)

Then clearly this function is also computable, and also in polytime: 𝑓 (𝜎) = 1 − 𝑓 (𝜎). Consequently,
Lc ∈ P.
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Figure 86, for question V.4.33: Directed acyclic graph for the Circuit Evaluation problem.

V.4.37 Fix a language L ∈ P. Then there is a Turing machine that computes the characteristic function
𝑓 : B∗ → B∗ of L, with runtime O(𝑥𝑛) for some power 𝑛 ∈ N. To compute the characteristic function of
the reversal, LR = {𝜏 R �� 𝜏 ∈ L}, the algorithm is given an input string 𝜎 . It constructs the reversal, 𝜎R, and
decides whether 𝜎R ∈ L. The runtime is: the algorithm can construct the reversal from the input in one
pass through the input, and deciding whether that reversal string is in L is O(𝑥𝑛), to in total the runtime
is O(𝑥𝑛+1).

V.4.38 Consider two languages, L0,L1 ∈ P (B∗), that are members of P. Then there are powers 𝑛0, 𝑛1 ∈ N so
that L0 is accepted by a Turing machine with runtime O(𝑥𝑛0), and L1 is accepted by a Turing machine with
runtime O(𝑥𝑛1).

Here is the algorithm to decide if a given input string 𝜎 ∈ B∗ is a member of L0⌢L1. We will pass through
the string, first decomposing it as 𝜎 = 𝜀⌢𝜎 , then as 𝜎 = 𝜎 [0]⌢𝜎 [1 :], etc. At each stage of this pass we have
𝜎 = 𝛼⌢𝛽 and we check whether 𝛼 ∈ L0 and 𝛽 ∈ L1.

Checking whether 𝛼 ∈ L0 takes time O( |𝛼 |𝑛0), and checking whether 𝛽 ∈ L1 takes time O( |𝛽 |𝑛1). It
simplifies things to overestimate and use |𝜎 |, rather than worry about the length of the substrings. Hence each
step of the pass can be done in O( |𝜎 |max(𝑛0,𝑛1 ) ) time. The pass itself takes |𝜎 | + 1 many steps, so overall the
algorithm runs in polytime, O( |𝜎 |1+max(𝑛0,𝑛1 ) ).

V.4.39 We are given a language L ∈ P (B∗) such that there is a Turing machine, PL, that decides the language
in polytime, in time that is some power, 𝑛 ∈ N, of the length of the input string.

We will follow the hint that 𝜎 ∈ L∗ if 𝜎 = 𝜀, or 𝜎 ∈ L, or 𝜎 = 𝛼⌢𝛽 for some 𝛼, 𝛽 ∈ L∗. Rather than
present a flowchart of pseudocode, we will work through the example of 𝜎 = ⟨𝑠0, 𝑠1, 𝑠2, 𝑠3⟩. This table lists the
substrings 𝜎 [𝑖 : 𝑗].

𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3
𝑖 = 0 ⟨𝑠0⟩ ⟨𝑠0𝑠1⟩ ⟨𝑠0𝑠1𝑠2⟩ ⟨𝑠0𝑠1𝑠2𝑠3⟩ = 𝜎
𝑖 = 1 ⟨𝑠1⟩ ⟨𝑠1𝑠2⟩ ⟨𝑠1𝑠2𝑠3⟩
𝑖 = 2 ⟨𝑠2⟩ ⟨𝑠2𝑠3⟩
𝑖 = 3 ⟨𝑠3⟩

We start on the main diagonal, which holds all of the length one substrings. We can determine whether
each of these is a member of L by using PL. If it is a member, put a checkmark next to the substring.

Next we move to the diagonal above, with the length two substrings. We can determine whether each is a
member of L by using PL, or, taking the hint, by knowing whether both length one substrings are members
of L∗ (which we can do quickly using the checkmarks). Again, when a substring in this diagonal is a member
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then checkmark it.
Now iterate. On the diagonal containing the length three substrings, we can determine whether each

is a member of L∗ by first asking PL if it is a member of L. If not, we then determine whether it is the
concatenation of two substrings. We’ve already checked or not checked all the members of both of the earlier
diagonals, so determining that is very fast.

In this way, we proceed through diagonals until we get to the table’s upper right. It holds the given string,
𝜎 , so we can determine whether 𝜎 ∈ L∗ in the same way.

Now for the runtime analysis. Let𝑚 = |𝜎 |. This is a triply-nested loop. The outer loop moves through the
diagonals, from the length one substrings to the length𝑚 substring 𝜎 . Inside that is a loop that moves through
a particular diagonal, starting at 𝑖 = 0, and covering at most𝑚 substrings. Finally, inside of that is a loop that
runs the machine PL and then possibly loops through the substring pairs. The runtime on this inner loop is
O(𝑚𝑛) + O(𝑚), and so in total we have O(𝑚) · O(𝑚) · (O(𝑚𝑛) + O(𝑚)), which is polynomial in𝑚 = |𝜎 |.

V.4.40 Suppose for contradiction that we could solve this problem, that there is a Turing machine that, given P
as input, decides whether it runs in polytime on the empty input. We will show how to, from P, construct a
new machine NP that runs in polynomial time if and only if P does not halt. That is a contradiction, because
then being able to test machines for running in polytime allows us to solve the Halting problem.

The machine NP takes as input bitstrings. For input 𝜎 , it uses a universal Turing machine to run P on the
empty tape. If P does not halt within |𝜎 | steps, then NP halts. If P does halts within that time then NP will
run for 2 |𝜎 | many steps. Clearly, if P halts then NP runs in exponential time, and if P does not halt then NP
runs in polynomial time, as required.

V.4.41
(a) Recall that a function is a kind of relation. Assume that there are computable functions 𝑓0, 𝑓1 : N → N

with associated Turing machines P0 and P1 that, given 𝑎 ∈ N, can find 𝑓0(𝑎) or 𝑓1(𝑎) in times O(𝑥𝑛0)
and O(𝑥𝑛1), for some powers 𝑛0, 𝑛1 ∈ N.

For addition the algorithm can, given 𝑎 ∈ N, compute 𝑓0(𝑎) and 𝑓1(𝑥) in time O(𝑥max(𝑛0,𝑛1 ) ). The grade
school addition algorithm brings the time up to O(𝑥1+max(𝑛0,𝑛1 ) ).
The scalar multiplication algorithm can, given 𝑎 ∈ N, compute 𝑓0(𝑎) in time O(𝑥𝑛0). The naive

multiplication algorithm brings the time up to O(𝑥2+𝑛0).
To subtract we can use a branch that tests if the second number is greater than the first, and if so returns 0.

In any event, clearly polytime.
Multiplication is similar, and also in polytime.
For composition, if 𝑓0 is O(𝑥𝑛0) and 𝑓1 is O(𝑥𝑛1) then the composition is O(𝑥𝑛0𝑛1), also polytime.

(b) Here is the naive algorithm. The solution algorithm gets a string 𝜎 . it can determine in polytime that
𝜎 = str(⟨𝑎,𝑦⟩) for some 𝑎,𝑦 ∈ N (if 𝜎 does not have that form then the algorithm rejects it). Now, the
algorithm uses P0 to determine whether 𝑓0(𝑎) = 0, 𝑓0(𝑎) = 1, . . . 𝑓0(𝑎) = 𝑦. If none of those relations are
true then the algorithm rejects 𝜎 . Otherwise, let 𝑘 ∈ N be such that 𝑓 (𝑎) = 𝑘. The algorithm uses 𝑇𝑀1 to
determine whether 𝑓1(𝑎) = 𝑦 − 𝑘. If so, the algorithm accepts 𝜎 , otherwise it rejects.

The reason it is pseudopolynomial and not properly polynomial lies in the testing of the 𝑦 + 1 many pairs.
Inside of the input 𝜎 , the number 𝑦 is represented in binary. So taking 𝑦 + 1 steps is taking time that is
exponential in the length of the input.

V.4.42 Because L0 ∈ P, there is a Turing machine with runtime O(𝑥𝑛) for some power 𝑛 ∈ N, and whose
input/output behavior is the characteristic function of L0. Because L1 ≤𝑝 L0, there is a Turing machine whose
runtime is O(𝑥𝑚) for some𝑚 ∈ N, whose input/output behavior is the function 𝑓 : N → N, and such that
𝜎 ∈ L1 if and only if 𝑓 (𝜎) ∈ L0.

So, to decide questions about whether 𝜎 ∈ L1, first translate them, at a cost of O( |𝜎 |𝑚), to questions about
whether 𝑓 (𝜎) ∈ L0. Those questions we can settle in O( |𝜎 |𝑛). The result, O( |𝜎 |max(𝑛,𝑚) ), is polytime.

V.5.13 That lemma requires that the verifier have the property that if 𝜎 ∈ L then there is a witness leading to
acceptance, while if 𝜎 ∉ L then there exists no witness that would cause the verifier to accept.

For instance, consider the problem L = {𝑛 ∈ N
�� 𝑛 is even}. Your study partner’s proposed verifier inputs

a pair ⟨𝜎,𝜔⟩, where 𝜎 is a number and 𝜔 is a bit, and then accepts the pair if 𝜔 = 1. Absolutely, if you give
your verifier the pair ⟨101, 0⟩ then it will not accept (here, 101 represents the number 5, and is not an element
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of L). However, give it ⟨101, 1⟩ and your verifier will accept. So, for 𝜎 = 101 there exists an 𝜔 leading to
acceptance. Consequently, your verifier is wrong.

V.5.14 It is none. The negation is that every branch fails to accept. That does not mean that every branch
rejects; some of them could be computations that never halt.

V.5.15
(a) This formula is satisfiable.

𝑃 𝑄 𝑅 𝑃 ∧𝑄 ¬𝑄 ¬𝑄 ∧ 𝑅 (𝑃 ∧𝑄) ∨ (¬𝑄 ∧ 𝑅)
𝐹 𝐹 𝐹 𝐹 𝑇 𝐹 𝐹
𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇
𝐹 𝑇 𝐹 𝐹 𝐹 𝐹 𝐹
𝐹 𝑇 𝑇 𝐹 𝐹 𝐹 𝐹

𝑇 𝐹 𝐹 𝐹 𝑇 𝐹 𝐹
𝑇 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇
𝑇 𝑇 𝐹 𝑇 𝐹 𝐹 𝑇
𝑇 𝑇 𝑇 𝑇 𝐹 𝐹 𝑇

(b) This formula is not satisfiable.
𝑃 𝑄 𝑅 𝑃 → 𝑄 𝑃 ∧𝑄 ¬𝑃 (𝑃 ∧𝑄) ∨ ¬𝑃 ¬((𝑃 ∧𝑄) ∨ ¬𝑃) (𝑃 → 𝑄) ∧ ¬((𝑃 ∧𝑄) ∨ ¬𝑃)
𝐹 𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝐹 𝑇 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝑇 𝐹 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝑇 𝑇 𝑇 𝐹 𝑇 𝑇 𝐹 𝐹

𝑇 𝐹 𝐹 𝐹 𝐹 𝐹 𝐹 𝑇 𝐹
𝑇 𝐹 𝑇 𝐹 𝐹 𝐹 𝐹 𝑇 𝐹
𝑇 𝑇 𝐹 𝑇 𝑇 𝐹 𝑇 𝐹 𝐹
𝑇 𝑇 𝑇 𝑇 𝑇 𝐹 𝑇 𝐹 𝐹

V.5.16 True, by Lemma 5.6.
V.5.17 The machine accepts 𝜎 because there is at least one accepting branch.
V.5.18
(a) Backtracking will solve the problem. But it is a deterministic algorithm. (Technically, a deterministic

algorithm is a special case of a nondeterministic one, but when you ask about it, your professor says, “The
point of this exercise is to demonstrate understanding of nondeterminism, not to quibble like a sea lawyer.”)

(b) Your algorithm chooses, but it does so at random. If there are paths through the maze, but the random
choices happens not to fall on such a path, then your algorithm will not detect them. A nondeterministic
algorithm is required to output 1 if there is a path (and not to output 1 if there is not).

(c) We will give two answers, one using the unbounded parallelism imagery and one using choosing.
The unbounded parallelism algorithm has a computational history that is a tree. Whenever the algorithm

finds itself at a place in the maze where it can do more than one thing, it forks child processes to handle
each possibility. So it may have lots of branches, and lots of them may go to dead ends, but if there is a way
through the maze then this algorithm will find it. So it reports 1 if there is a path, and never reports 1 when
there is not.

The choosing algorithm is to choose. That is, the machine guesses at the correct path (and then verifies it
against the input maze). By definition, if there is a way for this guess to be right then the algorithm is right.
(Note again that is algorithm is not guessing at random. It is guessing correctly.)

V.5.19 The algorithm is given an unordered array ⟨𝑎0, 𝑎1, ... 𝑎𝑛−1⟩. It returns Yes if 𝑘 = 𝑎𝑖 for some index 𝑖.
In the unbounded parallelism model, the computation tree of the algorithm is a single node with 𝑛 children,

each of which is a process. Child 𝑖 checks whether 𝑎𝑖 = 𝑘, and if so causes the algorithm to output Yes.
The guessing model is much the same, except that the machine does not compute the tree. It guesses at

a child process, and if the array entry equals 𝑘 then it causes the algorithm to output Yes. This model, by
definition, is the same as the other because it says that an algorithm is right if there is a way for the guess to
correctly result in Yes, which will happen if and only if there is an array entry that equals 𝑘.

V.5.20
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(a) A deterministic algorithm is to try every permutation, one after the other, until the program recognizes the
result as correctly decoding.

(b) The unbounded parallelism model is to do the same, except that it tries them simultaneously. That is,
the computation tree has a single root node with one child process for each of the 26!-many permu-
tations. That child takes its single permutation, substitutes it, and then checks it. This machine has
403 291 461 126 605 635 584 000 000 − 1 child processes that fail the check. But one of the substitutions is
right, so overall you get the correctly decoded string.

(c) The guessing model guesses. It guesses a permutation (or is given it in a hint from the demon), and then it
works like any of the prior item’s processes: it makes the substitution and then applies the program to check
it. This is correct because under this model of nondeterminism it just needs to be possible to have a guess
that checks out.

V.5.21 First the unbounded parallelism description, which works by brute force. Where the number of vertices
in the graph is 𝑘, the number of colorings is bounded, by 4𝑘 . The computation tree has a single root node
with that many branches. Each branch tries its coloring and then checks to see whether it is correct, that is,
whether all connected vertices are different colors. If there is a correct coloring then this algorithm will find it
and output Yes.

In the second model, the machine does not spawn 4𝑘 -many branches. The demon gives the machine a
branch and the machine just verifies that all connected vertices are different colors. If a correct coloring exists
for this graph then there exists a hint that results in the machine verifying a correct coloring and outputting
Yes, so this satisfies the definition of a guessing algorithm working.

V.5.22 We recast this as a sequence of language decision problems for a family of languages parametrized by
the bound 𝐵 ∈ N.

L𝐵 = { ⟨𝑥0, 𝑥1, ... 𝑥𝑛⟩ ∈ Z𝑛+1 �� the 𝑥 𝑗 satisfy all the constraints and 𝑓 (𝑥0, 𝑥1, ... 𝑥𝑛) ≤ 𝐵 }
An unboundedly parallel algorithm tries all possible assignments, in some way guaranteed to try every

assignment eventually (as with Cantor’s enumeration). If there is a satisfying assignment then this algorithm
will find it and accept that branch. If there is no satisfying assignment then the computation history tree is
infinite, but with no accepting branch.

A guessing algorithm guesses an assignment ⟨𝑥0, ... 𝑥𝑛⟩ and then verifies that the assignment has
𝑓 (𝑥1, ... 𝑥𝑛) ≤ 𝐵. If there is a satisfying assignment then there is a way to guess it so, by definition,
this machine recognizes the language L𝐵 .

V.5.23 The language is L = {𝑛 ∈ N
�� 𝑛’s prime factorization has exactly two nontrivial primes}.

One unbounded parallelism algorithm tries each conceivable prime factorization, simultaneously. For
instance, given the input 8, it could check the products 20305070, 21305070, . . . 27375777, to see whether
any of them equals 8 and nontrivially involves exactly two primes. Multiplying is fast and checking whether a
number is composite or prime can also be done in polytime. Thus each branch check happens in polytime.

A guessing algorithm is that the machine inputs the number 𝑛 and guesses a two-prime factorization (or
is given one by a demon). For instance, given 45, the machine might guess 3251. (It could also guess 3152,
but that won’t verify.) Again, the verification is polytime because multiplication is polytime, as is checking
whether the two numbers are composite or prime. By definition, the machine recognizes the language L if,
given 𝑛 ∈ N, when 𝑛 ∈ L then there exists a guess that verifies, and when 𝑛 ∉ L then there is no way for a
guess to verify. So this algorithm recognizes L.

V.5.24
(a) This is the language.

L = {𝑀 ∈ 𝑋 × 𝑌 × 𝑍
�� 𝑀 has an 𝑛-element subset �̂� where no triples agree on any coordinate}

A nondeterministic algorithm, framed in terms of guessing, is: given 𝑀 , the machine guesses a size 𝑛
subset �̂� meeting the conditions. Verifying the conditions clearly takes only polytime. If there is such an �̂�
then there is a way for the machine to guess it, and it will verify. If there is no such �̂� then there is no
way for the machine to guess one that verifies. So by the definition of this model of nondeterminism, the
machine recognizes the language in polytime.
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(b) Here is the language.

L = {𝐴
�� 𝐴 is a multiset of natural numbers with an 𝐴 ⊆ 𝐴 so that ∑𝑎∈𝐴 𝑎 =

∑
𝑎∈𝐴−𝐴 𝑎 }

A nondeterministic algorithm stated in guessing terms is that, when asked to determine if the given 𝐴 is
a member of L, the machine guesses at a 𝐴. (That is, 𝐴 is the witness.) Verifying that ∑𝑎∈𝐴 𝑎 =

∑
𝑎∉𝐴 𝑎

is clearly polytime. If there is such a partition then for this machine there exists a guess that would pass
verification. If there is no such partition then no guess will verify. So by the definition, this machine
recognizes the language L.

V.5.25 For unbounded parallelism, we can try every possible 𝐵-coloring of the graph’s nodes. There are a large
but finite number of those (where the graph has 𝑘 vertices, there are 𝐵𝑘 -many colorings). So the computation
tree has a single node with that many children. Each coloring is easy to check for validity, since we just have
to check every pair of vertices to see if they are the same color. If any of the child nodes is OK, then there is a
𝐵-coloring.

For guessing, the machine nondeterministically selects one coloring (that is, it guesses one or is given one
by a demon). It then checks, by iterating through every vertex pair to see if they are the same color. If there is
a way to correctly nondeterministically guess then by definition this algorithm succeeds.

V.5.26
(a) This is the language L.

{𝜎
�� 𝜎 represents a Propositional Logic statement where at least two lines of the truth tables end in 𝑇 }

These are suitable fill-ins: (1) a Propositional Logic statement, (2) a pointer to two lines of the truth
table, (3) for those two truth table lines, the statement returns 𝑇 , (4) two truth table lines that cause the
expression 𝜎 to evaluate to 𝑇 , and (5) pair of truth table lines.

(b) Here is the problem cast as the decision problem for a language.

L = { ⟨𝑆,𝑇 ⟩
�� a subset of 𝐴 ⊆ 𝑆 has ∑𝑎∈𝐴 𝑎 = 𝑇 }

These are fill-ins: (1) a set and number pair ⟨𝑆,𝑇 ⟩, (2) a set of numbers, (3) that is a subset of the given 𝑆
and that its elements sum to 𝑇 , (4) a subset of 𝑆 whose elements sum to 𝑇 , and (5) subset of 𝑆 .

V.5.27 Lemma 5.9 requires that we product a deterministic Turing machine verifier, V. It must input pairs
of the form ⟨𝜎,𝜔⟩, where 𝜎 = ⟨𝑠0, ... 𝑠5,𝑇 ⟩. It must have the property that if 𝜎 ∈ CD then there is a 𝜔 such
that V accepts the input, while if 𝜎 ∉ Countdown then there is no such witness 𝜔 . And it must run in time
polynomial in |𝜎 |.

The witness 𝜔 is an arithmetic expression (or, more precisely, a string representation of an arithmetic
expression) that evaluates to the target𝑇 and that involves a subset of the six numbers 𝑠0, . . . 𝑠5, each used at
most once. The verifier checks that the expression does indeed evaluate to the target, and does indeed use
each of the six numbers at most once. Clearly those checks can be done in polytime.

If 𝜎 ∈ CD then by definition there is an arithmetic expression, and so a witness 𝜔 exists that will cause V
to accept the input. If 𝜎 ∉ CD then there is no such arithmetic expression, and therefore no witness 𝜔 will
cause V to accept.

V.5.28 We recast the Traveling Salesman problem from an optimization problem by using bounds 𝐵 ∈ N to get
this parametrized set of bitstrings.

T S𝐵 = {𝐺 ∈ B∗ �� 𝐺 is a weighted graph with a circuit of length less than 𝐵 }

To show that this problem is in NP, Lemma 5.9 requires that we produce a deterministic Turing machine
verifier, V. It must input pairs of the form ⟨𝜎,𝜔⟩, where 𝜎 is a graph, G (technically, a bitstring representation
of a graph). The verifier must have the property that if 𝜎 ∈ T S𝐵 then there is a 𝜔 such that V accepts the
input, while if 𝜎 ∉ T S𝐵 then there is no such 𝜔 . This verifier must run in time polynomial in |𝜎 |.

For a witness we can use a circuit 𝜔 = ⟨𝑣𝑖0, 𝑣𝑖1, ... 𝑣𝑖𝑘 ⟩ that is of total cost less than the bound. The verifier
gets an input pair ⟨𝜎,𝜔⟩ where 𝜎 is a weighted graph, and checks that 𝜔 is indeed a Hamiltonian circuit of
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the graph, and that it costs less than the bound. A verifier can do those checks in time polynomial in |𝜎 |. If
the graph 𝜎 is indeed an element of T S𝐵 then there is such an 𝜔 , so there is a pair ⟨𝜎,𝜔⟩ that the verifier can
accept. If 𝜎 is not an element of T S𝐵 then there is no such 𝜔 , and so the verifier will never accept such a pair.

V.5.29 The Independent Sets problem is the decision problem for this language.

L = { ⟨G, 𝑛⟩
�� the graph G has at least 𝑛 independent vertices}

To show that this language decision problem is in NP, Lemma 5.9 requires that we produce a deterministic
Turing machine verifier, V. This verifier must input pairs of the form ⟨𝜎,𝜔⟩, where 𝜎 is a graph-natural number
pair, ⟨G, 𝑛⟩. The verifier must satisfy that if 𝜎 ∈ L then there is a 𝜔 such that V accepts the input, while if
𝜎 ∉ L then there is no such 𝜔 . This verifier must run in time polynomial in |𝜎 |.

For a witness, take a size-𝑛 set of independent vertices from the graph, 𝜔 = ⟨𝑣0, ... 𝑣𝑛−1⟩. The verifier gets
an input pair ⟨𝜎,𝜔⟩ where 𝜎 is a graph, and checks that the vertices are in the graph and that no two of
them are connected. Those checks take time polynomial in |𝜎 | (obviously, this depends on the graph being
represented with reasonable efficiency, but we always make that assumption). If the pair 𝜎 is indeed an
element of L then there is such a witness 𝜔 , so there exists a pair ⟨𝜎,𝜔⟩ that the verifier can accept. If 𝜎 is not
an element of L then there is no such 𝜔 , and so there does not exist a pair that the verifier will accept.

V.5.30 The Knapsack problem is the decision problem for this language, L.

{ ⟨(𝑤0, 𝑣0), ... (𝑤𝑛−1, 𝑣𝑛−1), 𝐵,𝑇 ⟩
�� there is 𝐼 = {𝑖0, ... 𝑖𝑘 } ⊆ {0, ... 𝑛 − 1} so ∑

𝑖∈𝐼 𝑤𝑖 ≤ 𝐵 and ∑
𝑖∈𝐼 𝑣𝑖 ≥ 𝑇 }

To show that this language decision problem is in NP, Lemma 5.9 requires that we produce a deterministic
Turing machine verifier, V. The verifier input pairs ⟨𝜎,𝜔⟩, where 𝜎 = ⟨(𝑤0, 𝑣0), ... (𝑤𝑛−1, 𝑣𝑛−1), 𝐵,𝑇 ⟩. The
verifier must have the property that if 𝜎 ∈ L then there is a 𝜔 such that V accepts the input, while if 𝜎 ∉ L
then there is no such 𝜔 . This verifier must also run in time polynomial in |𝜎 |.

For a witness, take a set 𝜔 = {𝑖0, ... 𝑖𝑘 } ⊆ {0, ... 𝑛 − 1}. The verifier gets an input pair ⟨𝜎,𝜔⟩ and checks
that the sum of the weights of the indicated pairs, ∑𝑖∈𝜔 𝑤𝑖 , is less than or equal to the bound 𝐵, and also that
the sum of the values of pairs, ∑𝑖∈𝜔 𝑣𝑖 , is greater than or equal to the target 𝑇 . Those checks clearly take time
polynomial in |𝜎 |.

If 𝜎 is indeed an element of L then there is such a selection of indices, so there is such a witness 𝜔 , so
there exists a pair ⟨𝜎,𝜔⟩ that the verifier can accept. If 𝜎 is not an element of L then there is no such 𝜔 , and
so there does not exist a pair that the verifier will accept.

V.5.31 By Lemma 5.6 it suffices to show that the language decision problem is in P. But that’s clear: given a
triple ⟨𝑎, 𝑏, 𝑐⟩, checking whether the first two sum to the third is clearly a polytime task.

V.5.32 We start by expressing this as a language decision problem.

L = { ⟨G, 𝐵⟩
�� G has a simple path of length at least 𝐵 }

To show that this problem is in NP, Lemma 5.9 wants a deterministic Turing machine verifier, V. The
verifier input pairs ⟨𝜎,𝜔⟩, where 𝜎 = ⟨G, 𝐵⟩. The verifier must satisfy that if 𝜎 ∈ L then there is a 𝜔 such
that V accepts the input pair, while if 𝜎 ∉ L then there is no such 𝜔 . Also, the verifier must run in time
polynomial in |𝜎 |.

For a witness, take a path 𝜔 = ⟨𝑣0, ... 𝑣𝑛−1⟩. The verifier gets an input pair ⟨𝜎,𝜔⟩ and checks that the path
is in G, is simple (that no two vertices are equal), and has length at least 𝐵. Those checks clearly can be done
in time polynomial in |𝜎 |.

If 𝜎 is indeed an element of L then there is such a path 𝜔 , so there exists a pair ⟨𝜎,𝜔⟩ that the verifier
accepts. If 𝜎 is not an element of L then there is no such 𝜔 , and so there does not exist a pair that the verifier
accepts.

V.5.33
(a) Here is the recasting, as the decision problem for this language.

L0 = { ⟨𝑎, 𝑏⟩ ∈ N2 �� there exists 𝑥 ∈ N with 𝑎𝑥 + 1 = 𝑏 }
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For Lemma 5.9, we will produce a deterministic Turing machine verifier, V. It inputs pairs ⟨𝜎,𝜔⟩, where
𝜎 is the number pair ⟨𝑎, 𝑏⟩. The verifier must satisfy that if 𝜎 ∈ L0 then there is a witness 𝜔 such that V
accepts the input pair, while if 𝜎 ∉ L0 then there is no such 𝜔 . The verifier must run in time polynomial
in |𝜎 |.

For a witness, take a number 𝜔 = 𝑥 . The verifier gets an input pair ⟨𝜎,𝜔⟩ and checks that 𝑎𝑥 + 1 = 𝑏.
That can be done in time polynomial in |𝜎 |.

If 𝜎 is indeed an element of L0 then there is such a number 𝜔 = 𝑥 , so there exists a pair ⟨𝜎,𝜔⟩ that the
verifier can accept. If 𝜎 is not an element of L0 then there is no such 𝜔 , and so there does not exist a pair
that the verifier accepts.

(b) This is the associated language.

L1 = {𝑀
�� there is a set 𝑃 ⊂ Z of numbers such that 𝑀 is the multiset of pairwise distances}

Consider a deterministic Turing machine verifier, V, that inputs pairs ⟨𝜎,𝜔⟩, where 𝜎 is a multiset𝑀 . For
a witness, take a set of positions 𝜔 = 𝑃 . The verifier gets an input pair ⟨𝜎,𝜔⟩ and checks that the pairwise
distances among elements of 𝑃 equals 𝑀 . That can be done in time polynomial in |𝜎 |.

If 𝜎 ∈ L1 then there is such a set of positions 𝜔 = 𝑃 , so there exists a pair ⟨𝜎,𝜔⟩ that the verifier accepts.
If 𝜎 ∉ L1 then there is no such set 𝜔 , and so there does not exist a pair that the verifier accepts.

V.5.34 Countable. A verifier is a deterministic Turing machine, and there are countably many such machines.
V.5.35 We use Lemma 5.9. This is a suitable language (where the road map is G = ⟨N , E⟩).

L = {𝑁 ⊆ N
�� 𝑁 is a set of vertices where there are two suitable cycles}

To use Lemma 5.9, we must produce a verifier and suitable witnesses. The verifier inputs ⟨𝜎,𝜔⟩, where
𝜎 = 𝑁 (technically, 𝜎 is a string representation of a set 𝑁 ⊆ N ). A witness is the two cycles, 𝜔 = ⟨𝑐0, 𝑐1⟩. The
verifier checks that every vertex 𝑣 ∈ 𝑉 is on at least one of the two cycles, and that each of the cycles is of
length at most 𝐵. Clearly that check can be done in time polynomial in |𝜎 |.

If 𝜎 ∈ L then there is a pair of cycles, so there exists a suitable witness 𝜔 such that the verifier accepts the
pair ⟨𝜎,𝜔⟩. If 𝜎 ∉ L then there are not two such cycles. So there is no such witness 𝜔 that checks out, and so
the verifier will not accept for any such 𝜔 .

V.5.36
(a) The natural language is L = { ⟨G0, G1⟩

�� they are isomorphic}.
(b) We use Lemma 5.9, so we must produce a verifier and suitable witnesses. The verifier inputs pairs ⟨𝜎,𝜔⟩

where 𝜎 is a pair ⟨G0, G1⟩. The witness is a function, a set of ordered pairs ⟨𝑣, 𝑓 (𝑣)⟩. The verifier checks
that the function satisfies the conditions, that it is one-to-one and onto, and that {𝑣, 𝑣 } is an edge of G0 if
and only if { 𝑓 (𝑣), 𝑓 (𝑣) } is an edge of G1 That check takes time polynomial in |𝜎 |, because it depends only
on the size of the two graphs.

If 𝜎 ∈ L then there is such a function, so there exists a hint 𝜔 that will allow the verifier to accept the
pair ⟨𝜎,𝜔⟩. If the two graphs are not isomorphic then no witness 𝜔 will verify.

V.5.37 Suppose that a nondeterministic Turing machine P recognizes a language L. We will describe a
deterministic machine Q that does the same. Given an input 𝜎 , the nondeterministic machine P generates a
computation tree and Q can do a breadth-first traversal of that tree. If the tree triggered by 𝜎 has an accepting
branch then Q will eventually reach it, and will accept that input. If the tree has no accepting branch then Q
will never find one, and so will not accept 𝜎 .

V.5.38 A configuration of a nondeterministic Turing machine P is a set of four-tuples, ⟨𝑞, 𝑠, 𝜏𝐿, 𝜏𝑅⟩, where 𝑞 ∈ 𝑄 ,
𝑠 ∈ Σ, and where 𝜏𝐿 and 𝜏𝑅 are strings of elements from the tape alphabet, 𝜏𝐿, 𝜏𝑅 ∈ Σ∗. These signify the
current state, the character under the read/write head, and the tape contents to the left and right of the head.
We write C (𝑡) for the machine’s configuration after the 𝑡 -th transition, and say that this is the configuration at
step 𝑡 . The initial configuration has the form C (0) = { ⟨𝑞0, 𝑠, 𝛼, 𝜀⟩ }. We say that 𝛼⌢ ⟨𝑠⟩ is the machine’s input.

We next describe how the machine P transitions from being in configuration C (𝑡) to being in the next
configuration, C (𝑡 + 1). Start with an empty set and then get C (𝑡 + 1) by adding instructions to it as follows.

For each ⟨𝑞, 𝑠, 𝜏𝐿, 𝜏𝑅⟩ ∈ C (𝑡), compute the set Δ(𝑞, 𝑠). That set may be empty, but if not then for each
instruction 𝐼 = 𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 in that set, there are three possibilities. (1) If 𝑇𝑛 ∈ Σ then write that character to the
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tape, so that ⟨𝑞𝑛,𝑇𝑛, 𝜏𝐿, 𝜏𝑅⟩ ∈ C (𝑡 + 1). We say that 𝐼 ⊢ ⟨𝑞𝑛,𝑇𝑛, 𝜏𝐿, 𝜏𝑅⟩. (2) If 𝑇𝑛 = L then the machine moves
the tape head to the left, that is, ⟨𝑞𝑛, 𝑠, 𝜏𝐿, 𝜏𝑅⟩ ∈ C (𝑡 + 1), where 𝑠 is the rightmost character of the string 𝜏𝐿 (if
𝜏𝐿 = 𝜀 then 𝑠 is the blank character), where 𝜏𝐿 is 𝜏𝐿 with its rightmost character omitted (if 𝜏𝐿 = 𝜀 then 𝜏𝐿 = 𝜀
also), and where 𝜏𝑅 is the concatenation of ⟨𝑠⟩ and 𝜏𝑅 . We say that 𝐼 ⊢ ⟨𝑞𝑛, 𝑠, 𝜏𝐿, 𝜏𝑅⟩. (3) If 𝑇𝑛 = R then the
machine moves the tape head to the right. This is like (2) so we omit the details.

A computation tree branch is a sequence of configurations 𝐼0 ⊢ C (1) ⊢ · · · ⊢ C (ℎ), starting with the initial
configuration C (0), and such that there is no instruction 𝐼 where 𝐼𝑘 ⊢ 𝐼 . If the instruction 𝐼𝑘 = ⟨𝑞, 𝑠, 𝛽,𝛾⟩ is
such that its state is accepting, 𝑞 ∈ 𝐴, then we say the machine P accepts the input.

V.5.39
(a) The class NP is the set of languages decidable by a nondeterministic machine in polytime. Every problem

decidable by a nondeterministic Turing machine is decidable by a deterministic Turing machine. The Halting
problem is not decidable by a deterministic Turing machine, so it is not in NP.

(b) There is no polynomial bound on the number of steps, and consequently on the length of 𝜔 .
V.6.11 A fast algorithm for L0 would give a fast one for L1.
V.6.12 When L1 ≤𝑝 L0 then L1 reduces to L0.
V.6.13 The same is true about NP. Both are immediate from Lemma 6.10.
V.6.14 Assume L ≤𝑝 Lc. Then there is a polytime 𝑓 so that 𝜎 ∈ L if and only if 𝑓 (𝜎) ∈ Lc. That’s equivalent

to 𝜎 ∉ L if and only if 𝑓 (𝜎) ∉ Lc, which holds when 𝜎 ∈ Lc if and only if 𝑓 (𝜎) ∈ L.
V.6.15 Lemma 6.10 does not say that every L ∈ P is ≤𝑝 to every other language. It says that it is related in that
way to every other language in the collection Rec. Each language in that collection has a Turing machine
decider and so there are only countably many such languages.

V.6.16 There is indeed a subset that adds to 𝑇 , namely 𝐴 = {23, 31, 72}.
V.6.17 It has three clauses, 𝑥0 ∨ 𝑥1, ¬𝑥0 ∨ ¬𝑥1, and 𝑥0 ∨ ¬𝑥1, each with two literals. This is the graph.

E0,0 E0,1

E1,0

E1,1

E2,0

E2,1

V.6.18 For each vertex there is a clause.

𝑎0,0 ∨𝑏0,0 ∨ 𝑐0,0 𝑎0,1 ∨𝑏0,1 ∨ 𝑐0,1 𝑎1,0 ∨𝑏1,0 ∨ 𝑐1,0 𝑎1,1 ∨𝑏1,1 ∨ 𝑐1,1 𝑎2,0 ∨𝑏2,0 ∨ 𝑐2,0 𝑎2,1 ∨𝑏2,1 ∨ 𝑐2,1
For each edge there are three clauses. For instance, for the edge between 𝑣0,0 and 𝑣1,1 the three clauses are
here.

(¬𝑎0,0 ∨ ¬𝑎1,1) (¬𝑏0,0 ∨ ¬𝑏1,1) (¬𝑐0,0 ∨ ¬𝑐1,1)
Construct the entire expression by taking the conjunction of the clauses.

V.6.19
(a) This is wrong. For instance, if 𝐴 = ∅ then ∅ ≤𝑝 𝐵 for any language 𝐵 but while there is a decider for ∅ that

runs in time O(1), there may be no polynomial time decider for 𝐵 (for instance, if 𝐵 = 𝐾 then there is no
decider at all). The correct statement is the opposite: a polytime decider for 𝐵 can be used to decide the
set 𝐴 in polytime.

(b) This is also wrong. As in the prior item, if 𝐴 is the empty set, which is decidable, and 𝐵 = 𝐾 , then 𝐴 ≤𝑝 𝐵
but 𝐵 is not decidable in polytime. The reason that 𝐴 ≤𝑝 𝐵 is that 𝐴 can be decided in polytime without
any reference to 𝐵 at all; in fact, deciding 𝐴 is O(1). Instead, the other way around is right: if 𝐵 is polytime
decidable then 𝐴 is polytime decidable also.

(c) This is true.
V.6.20
(a) Three are: 𝛽2 = 1001001, 𝛽1 = 1100100, and 𝛽0 = 0110010.
(b) It is a cyclic shift, starting from index 𝑘 = 6.
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(c) It is the decision problem for this language.

L0 = { ⟨𝜎, 𝜏⟩ ∈ Σ2 �� 𝜏 is a substring of 𝜎 }

(d) It is the decision problem for this.

L1 = { ⟨𝛼, 𝛽⟩ ∈ Σ2 �� 𝛽 is a cyclic shift of 𝛼 }

(e) Following the hint, the reduction function 𝑓 inputs ⟨𝛼, 𝛽⟩ and if the two are the same length then it outputs
⟨𝛼𝛼, 𝛽⟩ (else it outputs some pair sure to fail, such as ⟨𝜀, 0⟩). Clearly 𝑓 is computable in polytime, and
⟨𝛼, 𝛽⟩ ∈ L1 if and only if 𝑓 (⟨𝛼, 𝛽⟩) ∈ L0. Therefore L1 ≤𝑝 L0.

V.6.21
(a) The Independent Set problem is the decision problem for this language.

L0 = { ⟨G, B⟩
�� there is 𝐼 ⊆ N (G) with |𝐼 | ≤ 𝐵 such that every edge contains a vertex from 𝐼 }

Vertex Cover is the decision problem for this language.

L1 = { ⟨H, 𝐷⟩
�� there is 𝐶 ⊆ N (H) with |𝐶 | ≤ 𝐷 such that every edge contains a vertex from 𝐶 }

(b) A vertex cover with 𝑘 = 4 elements is 𝑆 = {𝑞2, 𝑞5, 𝑞8, 𝑞9 }.
(c) An independent set with 𝑘 = 6 elements is 𝑆 = {𝑞0, 𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7 }.
(d) For any edge, if it has at least one endpoint in 𝑆 then it has at most one endpoint in the complement

𝑆 = N − 𝑆 . Conversely, if an edge has at most one endpoint in 𝑆 then it has at least one endpoint in the
complement 𝑆 = N − 𝑆 .

(e) We will do Independent Set ≤𝑝 Vertex Cover; the other reduction is similar. The definition requires that
we produce a polytime computable function 𝑓 . Given an instance of Independent Set 𝜎 = ⟨G, 𝑘⟩, then we
convert that to an instance of Vertex Cover 𝑓 (𝜎) = ⟨G, |G | − 𝑘⟩.

V.6.22
(a) Vertex Cover is the decision problem for this language.

L0 = { ⟨G, 𝐵⟩
�� there is 𝐶 ⊆ N (G) with |𝐶 | ≤ 𝐵 such that every edge contains a vertex from 𝐶 }

Set Cover is the decision problem for this language.

L1 = { ⟨𝑆, 𝑆0, ... 𝑆𝑘−1, 𝐷⟩
�� each 𝑆 𝑗 is a subset of 𝑆 , and 𝑘 ≤ 𝐷, and 𝑆0 ∪ · · · ∪ 𝑆𝑘−1 = 𝑆 }

(b) One vertex cover is 𝐶 = {𝑞0, 𝑞3, 𝑞4, 𝑞6, 𝑞7, 𝑞9 }.
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(c) The set of edges is 𝑆 = {𝑎, 𝑏, ... 𝑛 }. The subsets are these.

𝑆0 = {𝑎, 𝑏 }, 𝑆1 = {𝑎, 𝑐 }, 𝑆2 = {𝑏, 𝑑, 𝑒 }, 𝑆3 = {𝑐, 𝑑, 𝑓 , 𝑔 }, 𝑆4 = {𝑒, ℎ, 𝑖 },
𝑆5 = {𝑔, ℎ, 𝑗, 𝑘 }, 𝑆6 = { 𝑓 , 𝑗, 𝑙 }, 𝑆7 = {𝑖, 𝑘,𝑚 }, 𝑆8 = {𝑙,𝑚, 𝑛 }, 𝑆9 = {𝑛 }

The union of the subsets associated with vertices in the vertex cover

𝑆𝑞0 ∪ 𝑆𝑞3 ∪ 𝑆𝑞4 ∪ 𝑆𝑞6 ∪ 𝑆𝑞7 ∪ 𝑆𝑞9 = {𝑎, 𝑏 } ∪ {𝑐, 𝑑, 𝑓 , 𝑔 } ∪ {𝑒, ℎ, 𝑖 } ∪ { 𝑓 , 𝑗, 𝑙 } ∪ {𝑖, 𝑘,𝑚 } ∪ {𝑛 }

equals 𝑆 .
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(d) We must produce a reduction function, 𝑓 . It inputs an instance ⟨G, 𝐵⟩ of the Vertex Cover problem. The
computation is: construct the set 𝑆 of all edges, and for each vertex 𝑣 , construct 𝑆𝑣 ⊆ 𝑆 consisting
of the edges incident on 𝑣 . Then the output of the function is an instance of the Set Cover problem,
𝑓 (⟨G, 𝐵⟩) = ⟨𝑆, 𝑆𝑣0, ... 𝐵⟩. Clearly we can compute this function in polytime, and clearly also ⟨G, 𝐵⟩ ∈ L0 if
and only if ⟨𝑆, 𝑆𝑣0, ... 𝐵⟩ ∈ L1.

V.6.23
(a) The Hamiltonian Circuit problem is the decision problem for this language.

L0 = {H
�� the graph contains a circuit that includes each vertex exactly once}

The Traveling Salesman problem is this decision problem.

L1 = { ⟨G, 𝐵⟩
�� some circuit of G that includes each vertex has total cost less than or equal to 𝐵 }

(b) The reduction function inputs an instance of Hamiltonian Circuit, a graph H = ⟨N , E⟩ whose edges are
unweighted. It returns the instance of Traveling Salesman that uses the vertex set N as cities and that takes
the distances between the cities to be: 𝑑 (𝑣𝑖 , 𝑣 𝑗 ) = 1 if 𝑣𝑖𝑣 𝑗 is an edge of G and 𝑑 (𝑣𝑖 , 𝑣 𝑗 ) = 2 if 𝑣𝑖𝑣 𝑗 ∉ E , and
such that the bound 𝐵 is the number of vertices |N |.

The boundmeans that therewill be a Traveling Salesman solution if and only if there is aHamiltonian Circuit
solution, namely the Traveling Salesman solution uses the edges of the Hamiltonian circuit.

Clearly H ∈ L0 if and only if 𝑓 (H) ∈ L1. What remains is to show that 𝑓 runs in polytime. The number
of edges is less than twice the number of vertices, so that polytime in the input graph size is the same as
polytime in the number of vertices. To output the Traveling Salesman instance, the algorithm examines all
the pairs of vertices, which is a nested loop and so takes time that is quadratic in the number of vertices. So
𝑓 runs in polytime.

V.6.24
(a) Max-Flow has this language.

L0 = { ⟨𝐹, G, 𝐵⟩
�� the flow 𝐹 meets the constraints of G and the flow into the sink is at least 𝐵 }

This is the language for the Linear Programming optimization problem.

L1 = { ⟨®𝑥,𝐶, 𝑍, 𝐵⟩
�� the point ®𝑥 meets the constraints 𝐶 and makes 𝑍 ( ®𝑥) ≥ 𝐵 }

(b) There are algorithms to solve these problems, but for small ones we can do it by eye. The maximum flow
is 5, with each edge’s numbers given in parentheses.
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(c) The variables are 𝑥0,1, ... 𝑥5,6. These are the capacity constraints.

0 ≤ 𝑥0,1 ≤ 3, 0 ≤ 𝑥0,2 ≤ 2, 0 ≤ 𝑥0,3 ≤ 1, 0 ≤ 𝑥1,3 ≤ 2, 0 ≤ 𝑥1,4 ≤ 2,
0 ≤ 𝑥2,3 ≤ 2, 0 ≤ 𝑥2,5 ≤ 1, 0 ≤ 𝑥3,4 ≤ 4, 0 ≤ 𝑥3,5 ≤ 2, 0 ≤ 𝑥3,6 ≤ 2,
0 ≤ 𝑥4,6 ≤ 1, and 0 ≤ 𝑥5,6 ≤ 2

These are the flow constraints.

𝑥0,1 = 𝑥1,3 + 𝑥1,4, 𝑥0,2 = 𝑥2,3 + 𝑥2,5, 𝑥0,3 + 𝑥1,3 + 𝑥2,3 = 𝑥3,4 + 𝑥3,5 + 𝑥3,6,
𝑥1,4 + 𝑥3,4 = 𝑥4,6, and 𝑥2,5 + 𝑥3,5 = 𝑥5,6

We want to maximize 𝑍 = 𝑥3,6 + 𝑥4,6 + 𝑥5,6. Observe that all of these equations and inequalities are linear.
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(d) We must construct a reduction function 𝑓 . The input is a triple ⟨𝐹, G, 𝐵⟩. Use that information to make
variables, construct capacity constraints and flow constraints 𝐶, and produce an optimization expression 𝑍 .
In particular, the flow 𝐹 (shown in parentheses in the network above) gives an associated point ®𝑥 in theLinear Programming instance. Clearly that can be done in polytime. Clearly also ⟨𝐹, G, 𝐵⟩ ∈ L0 if and only
if ⟨®𝑥,𝐶, 𝑍, 𝐵⟩ ∈ L1.

V.6.25
(a) The maximum number of matches is three, as in (𝑏0, 𝑑0), (𝑏1, 𝑑1), and (𝑏3, 𝑑2).
(b) The Max-Flow problem has this language, where𝑊 is a bound.

L0 = { ⟨𝐹, G,𝑊 ⟩
�� the flow 𝐹 meets the constraints of G and the flow into the sink is at least𝑊 }

The Drummer problem has this, where 𝑋 is a bound.
L1 = { ⟨𝐵0, ... 𝐵𝑘 , (𝑏0, 𝑑𝑖0), ... (𝑏𝑚, 𝑑𝑖𝑚 ), 𝑋 ⟩

�� each 𝑑𝑖 𝑗 ∈ 𝐵 𝑗 and𝑚 ≥ 𝑋 }
(c) Here is a network diagram (note the weights of 1 on each edge).
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(d) A reduction function 𝑓 is given a sequence ⟨𝐵0, ... 𝐵𝑘 , (𝑏0, 𝑑𝑖0), ... (𝑏𝑚, 𝑑𝑖𝑚 ), 𝑋 ⟩. It constructs a network that,
from left to right, has a source node, a bank of band nodes, a bank of drummer nodes, and a sink node.
Every edge is directed, and every edge has weight 1. The pairs (𝑏, 𝑑) in the input give a flow 𝐹 . So the
output is the triple 𝑓 (⟨𝐵0, ... 𝐵𝑘 , (𝑏0, 𝑑𝑖0), ... (𝑏𝑚, 𝑑𝑖𝑚 ), 𝑋 ⟩) = ⟨𝐹, G, 𝑋 ⟩. Clearly we can compute this 𝑓 in
polytime. And also clearly, ⟨𝐵0, ... 𝐵𝑘 , (𝑏0, 𝑑𝑖0), ... (𝑏𝑚, 𝑑𝑖𝑚 ), 𝑋 ⟩ ∈ L1 if and only if ⟨𝐹, G, 𝑋 ⟩ ∈ L0.

V.6.26
(a) Any instance of Strict 3-Satisfiability is an instance of 3-SAT. So the reduction function is the identity

function.
(b) The most straightforward thing is to compare truth tables. Here, for all assignments of the variables the

results agree between the expression 𝑃 ∨𝑄 and the expression (𝑃 ∨𝑄 ∨ 𝑅) ∧ (𝑃 ∨𝑄 ∨ ¬𝑅). So they are
equivalent.

𝑃 𝑄 𝑅 𝑃 ∨𝑄 𝑃 ∨𝑄 ∨ 𝑅 𝑃 ∨𝑄 ∨ ¬𝑅 (𝑃 ∨𝑄 ∨ 𝑅) ∧ (𝑃 ∨𝑄 ∨ ¬𝑅)
𝐹 𝐹 𝐹 𝐹 𝐹 𝑇 𝐹
𝐹 𝐹 𝑇 𝐹 𝑇 𝐹 𝐹
𝐹 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇
𝐹 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝐹 𝐹 𝑇 𝑇 𝑇 𝑇
𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇

This gives the equivalence of the expression 𝑃 and the expression 𝐸 = (𝑃 ∨𝑄 ∨ 𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (𝑃 ∨
𝑄 ∨ ¬𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ ¬𝑅).

𝑃 𝑄 𝑅 𝑃 (𝑃 ∨𝑄 ∨ 𝑅) (𝑃 ∨ ¬𝑄 ∨ 𝑅) (𝑃 ∨𝑄 ∨ ¬𝑅) (𝑃 ∨ ¬𝑄 ∨ ¬𝑅) 𝐸
𝐹 𝐹 𝐹 𝐹 𝐹 𝑇 𝑇 𝑇 𝐹
𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝐹 𝑇 𝐹
𝐹 𝑇 𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝐹
𝐹 𝑇 𝑇 𝐹 𝑇 𝑇 𝑇 𝐹 𝐹
𝑇 𝐹 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
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(c) The reduction function inputs propositional logic expressions in Conjunctive Normal form 𝜎 = 𝜎0 ∧ 𝜎1 ∧ ...,
where the clauses are disjunctions of three or fewer literals. It must output propositional logic expressions
again in Conjunctive Normal form but where the clauses are disjunctions of exactly three literals. The prior
item shows how to do that, so that the output and input expressions are equivalent. Obviously the function
can run in polytime.

V.6.27
(a) An instance of 3-SAT is a propositional logic expression, in Conjunctive Normal form and such that the

clauses have at most three literals, that is satisfiable. An instance of SAT is a propositional logic expression
in Conjuctive Normal form that is satisfiable. So take the reduction function 𝑓 to be the identity 𝑓 (𝜎) = 𝜎 .
Obviously 𝑓 runs in polytime.

(b) We can talk our way through it but the most straightforward thing is to exhibit a truth table.

𝑃 𝑄 𝑃 → 𝑄 ¬𝑃 ¬𝑃 ∨𝑄
𝐹 𝐹 𝑇 𝑇 𝑇
𝐹 𝑇 𝑇 𝑇 𝑇
𝑇 𝐹 𝐹 𝐹 𝐹
𝑇 𝑇 𝑇 𝐹 𝑇

(c) That 𝐴 → (𝑃 ∨𝑄) is equivalent to (𝑃 ∨𝑄 ∨¬𝐴) is an instance of the prior item. For the other direction, by
the prior item (𝑃 ∨𝑄) → 𝐴 is equivalent ¬(𝑃 ∨𝑄) ∨𝐴. Both are clauses with three literals.

(d)
(e) The reduction function inputs Conjunctive Normal form expressions 𝜎 = 𝜎0∧𝜎1 ... It must output Conjunctive

Normal form expressions where the clauses have three or fewer literals. The prior items show how to do
that, and clearly those transformations can be done in polytime.

V.6.28
(a) The natural independent set is this.

@0 @1 @2

@3 @4 @5

V.6.29
(a) These constraints

0 ≤ 𝑧0 ≤ 1, 0 ≤ 𝑧1 ≤ 1, 0 ≤ 𝑧2 ≤ 1

ensure, in an Integer Programming context, that each variable is either 0 or 1. As to the expression, use
𝑧0 + (1 − 𝑧1) + (1 − 𝑧2) > 0.

(b) We must produce a reduction function 𝑓 . It is given a propositional logic expression. For each variable 𝑃𝑖 in
that expression, create a variable 𝑧𝑖 for the Integer Linear Programming problem. To force each 𝑧𝑖 to be
either 0 or 1, include the constraint 0 ≤ 𝑧𝑖 ≤ 1. For every clause in the propositional logic expression, add
a constraint to the Integer Linear Programming instance as in the prior item.

𝑃𝑖 ∨ ¬𝑃 𝑗 ∨ ¬𝑃𝑘 is associated with 𝑧𝑖 + (1 − 𝑧 𝑗 ) + (1 − 𝑧𝑘 ) > 0

Clearly this function can be done in polytime.
V.6.30
(a) This is just the definition of ‘or’.
(b) Suppose first that all three polynomials in 𝑆𝐸0 = {𝑥0(1 − 𝑥0), 𝑥1(1 − 𝑥1), 𝑥0(1 − 𝑥1) } have a value of 0. The

first polynomial 𝑥0(1 − 𝑥0) evaluates to 0 if and only if 𝑥0 is either 0 or 1. The second polynomial gives the
same for 𝑥1. The third evaluates to 0 if and only if either 0 = 𝑥0 or 0 = 1 − 𝑥1.

(c) For 𝐸1 = (𝑃0 ∨ ¬𝑃1 ∨ ¬𝑃2) ∧ (𝑃1 ∨ 𝑃2 ∨ ¬𝑃3), the analogous set is this.

𝑆𝐸1 = {𝑥0(1 − 𝑥0), 𝑥1(1 − 𝑥1), 𝑥2(1 − 𝑥2), 𝑥3(1 − 𝑥3), 𝑥0(1 − 𝑥1) (1 − 𝑥2), 𝑥1𝑥2(1 − 𝑥3) }
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(d) Take the sum of squares.

𝑝 (𝑥0, 𝑥1, 𝑥2, 𝑥3) = [𝑥0(1−𝑥0)]2+[𝑥1(1−𝑥1)]2+[𝑥2(1−𝑥2)]2+[𝑥3(1−𝑥3)]2+[𝑥0(1−𝑥1) (1−𝑥2)]2+[𝑥1𝑥2(1−𝑥3)]2

(e) We must produce the reduction function 𝑓 , which inputs an instance 𝐸 of 3-Satisfiability, a Boolean
expression in which all clauses have three or fewer literals, and outputs an instance 𝑝 of D. We must verify
that 𝐸 is satisfiable if and only of 𝑝 has zero for some integer 𝑛-tuple. (And we must show it runs in polytime,
although that will be clear.)
The function 𝑓 constructs the polynomial 𝑝 following the pattern outlined in the prior items. For each

variable 𝑃𝑖 used in the input expression 𝐸, put 𝑥𝑖 (1 − 𝑥1) into the set 𝑆𝐸 . In addition, for each clause
𝐿𝑖0 ∨ 𝐿𝑖1 ∨ 𝐿𝑖2 , where 𝐿𝑖 is a literal, add an at most three-factor polynomial: it has the factor 𝑥𝑖 if 𝐿𝑖 = 𝑃𝑖 ,
and for a negation 𝐿𝑖 = ¬𝑃𝑖 has the factor (1 − 𝑥𝑖). Finally, the polynomial 𝑝 is the sum of the squares of
the polymomials from 𝑆𝐸 .

For one direction of the verification, suppose that 𝐸 is satisfiable. For all atoms 𝑃𝑖 that are assigned 𝑇 ,
take 𝑥𝑖 = 0, while if 𝑃𝑖 is assigned 𝐹 then take 𝑥𝑖 = 1. Notice that as a result each polynomial member of 𝑆𝐸
has the value of 0. Consequently, 𝑝 has a value of 0, and so this set of 𝑥𝑖 ’s is a zero.

Now for the other direction. Suppose that we have a tuple of integers ®𝑐 that make the polynomial 𝑝 have
value 0. Because 𝑝 is a sum of squares, each term must have a value of 0. Notice that each term of the form
𝑥𝑖 (1 − 𝑥𝑖) is 𝑧𝑒𝑟𝑜, and therefore 𝑥𝑖 = 0 or 𝑥𝑖 = 1. Notice also that each term that matches the form of a
clause must have a value of 0, and therefore there is a matching assignment to the atoms 𝑃𝑖 that makes the
clause true (namely, 𝑥𝑖 = 0 is associated with 𝑃𝑖 = 𝑇 , and 𝑥𝑖 = 1 is associated with 𝑃𝑖 = 𝐹 ).

V.6.31
(a) A symmetric instance is a special case of an asymmetric instance.
(b) This is the matrix. It is clearly symmetric.

ℎ0 ℎ1 ℎ2 ℎ̂0 ℎ̂1 ℎ̂2©«
ª®®®®®®¬

ℎ0 – 3 5
ℎ1 – 1 6
ℎ2 – 2 4
ℎ̂0 1 2 –
ℎ̂1 3 4 –
ℎ̂2 5 6 –

(c) The adjusted matrix is also symmetric.

ℎ0 ℎ1 ℎ2 ℎ̂0 ℎ̂1 ℎ̂2©«
ª®®®®®®¬

ℎ0 – −19 3 5
ℎ1 – 1 −19 6
ℎ2 – 2 4 −19
ℎ̂0 −19 1 2 –
ℎ̂1 3 −19 4 –
ℎ̂2 5 6 −19 –

(d) The solution for G is 𝑔0 → 𝑔𝑖 → 𝑔2 → 𝑔0, of total length 10. For H the solution is ℎ0 → ℎ̂0 → ℎ1 → ℎ̂1 →
ℎ2 → ℎ̂2 → ℎ̂2 → ℎ0. The large negative weights ensure that those edges must be part of a circuit. (Any
circuit must have a number of edges equal to the number of vertices, and within that limit substituting
larger numbers for the −19’s must increase the total.) The solution thus alternates between edges of the
form ℎ𝑖ℎ̂𝑖 and those of the form ℎ̂𝑖ℎ 𝑗 , where 𝑔𝑖𝑔 𝑗 are in G’s optimal circuit. These reductions can clearly be
done in polytime.

V.6.32
(a) A little time playing with the table numbers
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𝐶 (𝑡𝑖 ,𝑤 𝑗 ) 𝑤0 𝑤1 𝑤2 𝑤3
𝑡0 13 4 7 6
𝑡1 1 11 5 4
𝑡2 6 7 2 8
𝑡3 1 3 5 9

shows that the optimum solution is to pair 𝑡0,𝑤1, along with 𝑡1,𝑤3, and 𝑡2,𝑤2, and finally 𝑡3,𝑤0. The total
cost is 11.

(b) As in the hint, the reduction function 𝑓 inputs a triple ⟨𝑊,𝑇,𝐶⟩ of the set of workers, the same-sized set of
tasks, and the table of costs. It outputs a graph 𝑓 (⟨𝑊,𝑇,𝐶⟩) = G that is bipartite, meaning that there are
no inter-𝑤 edges or inter-𝑡 edges. For each 𝑤 and 𝑡 there is a directed edge in each direction.

For each 𝑖 and 𝑗 give the edge from𝑤𝑖 to 𝑡 𝑗 the weight𝐶 (𝑤𝑖 , 𝑡 𝑗 ). Give the edge from 𝑡 𝑗 to𝑤𝑖 the weight 0.
(If you want all weights to be positive then these can be 𝐶 (𝑤𝑖 , 𝑡 𝑗 ) + 1 and 1.) This function 𝑓 is clearly
computable in polytime.

The function 𝑔 inputs an assignment of workers to tasks,𝑤0 ↦→ 𝑡𝑖0, 𝑤1 ↦→ 𝑡𝑖1 ... and outputs an associated
circuit through G. That circuit starts at the vertex𝑤0, then travels to vertex 𝑡𝑖0 , then to𝑤1 and 𝑡𝑖1 , etc, until
returning back to𝑤0. Clearly this map 𝑔 is polytime computable and also clearly its input is optimal if and
only if its output is also optimal.

V.6.33
(a) The tweaks are small, but here is the entire argument. Let L be an infinite subset of {a𝑛b𝑛

�� 𝑛 ∈ N}. For
contradiction, assume that it is regular. Then the Pumping Lemma says that L has a pumping length, 𝑝.

Consider the list of strings a𝑝b𝑝 , a𝑝+1b𝑝+1, . . . Because L is infinite, at least one member of that list is a
member of L; let it be 𝜎 . It is an element of L and its length is greater than or equal to 𝑝 so the Pumping
Lemma applies. So 𝜎 decomposes into substrings 𝜎 = 𝛼⌢𝛽⌢𝛾 satisfying the three conditions. Condition (1)
is that the length of the prefix 𝛼⌢𝛽 is less than or equal to 𝑝. This implies that both 𝛼 and 𝛽 are composed
exclusively of a’s. Condition (2) is that 𝛽 is not the empty string, so it contains at least one a.
Condition (3) is that all of the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , . . . are members of L. To get the desired

contradiction, consider 𝛼𝛽2𝛾 . Compared with 𝜎 = 𝛼𝛽𝛾 , this string has an extra 𝛽, which adds at least one a
without adding any balancing b’s. In short, 𝛼𝛽2𝛾 has more a’s than b’s and is therefore not a member of L.
But the Pumping Lemma says that it must be a member of L, and therefore the assumption that L is regular
is incorrect.

(b) The flowchart makes clear that this behavior can be programmed on an everyday computer. Thus Church’s
Thesis says there is a Turing machine with this behavior. Let that machine have index 𝑒.

Applying the s-m-n lemma gives a family of machines, of which this is the 𝑥 -th.

Y
N

Y N

Start
Read f

f matches a=b=?

PG accepts a g of length=?
Print 1 Print 0

End
(c) The reduction function 𝑓 must have domain N and codomain N. It must have the property that 𝑖 ∈ 𝐹 if and

only if 𝑥 ∈ 𝑅. And it must run in polynomial time.
The function 𝑓 is 𝑖 ↦→ 𝑠 (𝑒, 𝑖). Suppose that 𝑖 ∈ 𝐹 . Note first that the machine P𝑖 is a language decider,

and so halts on all inputs 𝜏 . Because the language of P𝑖 is finite, the language of P𝑠 (𝑒,𝑖 ) is finite also. Any
finite language is regular, so the language of P𝑠 (𝑒,𝑖 ) is regular.

Now suppose that 𝑖 ∉ 𝐹 . If the machine P𝑠 (𝑒,𝑥 ) has even one input 𝜎 where the second test box fails to
halt on some 𝜏 then this machine is not a language decider, and so 𝑠 (𝑒, 𝑖) ∉ 𝑅. If, on the other hand, for all
input 𝜎 , the second test box halts on all relevant 𝜏 ’s then because 𝑖 ∉ 𝐹 , the language decided by P𝑠 (𝑒,𝑖 ) is
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an infinite subset of {a𝑛b𝑛
�� 𝑛 ∈ N}, and so is not regular.

V.6.34
(a) The oracle machine P𝐴 can just ignore the oracle and compute membership in the set 𝐵. (By the way, note

that this computation happens in polytime.) But for 𝐵 ≤𝑚 𝐴, no function giving 𝑥 ∈ 𝐵 ⇔ 𝑓 (𝑥) ∈ 𝐴 exists
because never is 𝑓 (𝑥) an element of 𝐴 = ∅.

(b) Suppose that 𝐵 ≤𝑚 𝐴 and that 𝐵 is computably enumerable. As we enumerate 𝐵 = {𝑏0, 𝑏1 ... } we can also
enumerate 𝐴 = { 𝑓 (𝑏0), 𝑓 (𝑏1) ... }, and therefore 𝐴 is computably enumerable. As to the conclusion, if a set
and its complement are both computably enumerable then both are computable. But of course 𝐾 is not
computable.

V.6.35
(a) We must show that L ≤𝑝 L for any L ∈ P ((∗Σ)). Take the reduction function to be the identity, 𝑓 (𝜎) = 𝜎 .

Clearly it can be computed in polytime, and just as clearly 𝜎 ∈ L if and only if 𝑓 (𝜎) ∈ L.
For transitivity, let L0 ≤𝑝 L1 via the function 𝑓 , and let L1 ≤𝑝 L2 via the function 𝑔, which are polytime

computable. Then for all 𝜎 ∈ B∗ we have 𝜎 ∈ L0 if and only if 𝑓 (𝜎) ∈ L1, and 𝑓 (𝜎) ∈ L1 if and only if
𝑔 ◦ 𝑓 (𝜎) ∈ L2. Because 𝑓 , 𝑔 are polytime, 𝑔 ◦ 𝑓 is polytime also.

(b) Suppose that L ≤𝑝 ∅. Then there is a function 𝑓 such that 𝜎 ∈ L if and only if 𝑓 (𝜎) ∈ ∅. Since 𝑓 (𝜎) is
never an element of the empty set, 𝜎 is never an element of L. That is, L is empty.

The argument that L ≤𝑝 B∗ implies that L = B∗ is just as easy.
(c) Assume that L0 ≤𝑝 L1, so that there is a polytime function 𝑓 : B∗ → B∗ such that 𝜎 ∈ L0 if and only if

𝑓 (𝜎) ∈ L1. We will use this reduction to show that L1 ∈ NP implies that L0 ∈ NP.
If L1 ∈ NP then there is a nondeterministic Turing machine P1 that decides L1. For the nondeterministic

machine P0 that decided L0, start with an input candidate string 𝜏 . Compute 𝑓 (𝜏). Run P1 on input 𝑓 (𝜏).
If it accepts then P0 accepts, and if it rejects then P0 rejects.

V.6.36 It is not possible for L0 ≤𝑝 L2 or for L1 ≤𝑝 L2
V.6.37
(a) Take L0 to be the language of strings whose length is a multiple of four, and L1 to be the language of strings

whose length is even. Clearly both languages are in P, so L0 ≤𝑝 L1.
(b) Take L0 to be the language of even-length strings, and L1 to be the language of odd-length strings. Clearly

both languages are in P, so L0 ≤𝑝 L1.
(c) Take L0 to be the language of even-length strings and L1 = B∗. Because some strings are elements of it and

some are not, the set L0 does not reduce to B∗.
(d) Take L0 to be the language of even-length strings and take L1 = ∅. Because some strings are elements of it

and some are not, the set L0 does not reduce to B∗.
V.7.10 Here is the figure again.

P NP

NP hard

RecRE

(a) The language 𝐾 is at the top of RE, in the upper left.
(b) The empty set, ∅, is all the way at the bottom, in the middle.
(c) There are a variety of algorithms for the shortest path problem, but all are fast (linear or not much slower),

so the language L𝐵 is in P but close to its bottom, just above where ∅ is.
(d) Because SAT is NP complete, it is all the way at the top of the NP problems.
V.7.11 The number one mistake is that “not computable in polynomial time” isn’t the criteria for membership

in NP. Instead, the criteria for a problem being a member of NP is that it has a polytime verifier.
Another thing wrong is that the statement seems to confuse NP with the set difference NP − P. That is,

the speaker seems to mean something like, “experts suspect that Satisfiability is a problem in NP but not in P.”
(Along with that, the speaker likely means NP complete, not just an element of NP.)
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One more thing wrong is that the statement seems to say that the problem is in that class because there is
not algorithm yet known. It is not a question of whether we know of such an algorithm, it is a question of
whether one exists.

V.7.12 This algorithm is indeed exponential, not polynomial. But how to prove that this is the best possible
algorithm? No one knows.

V.7.13 In saying that the problem has a polytime algorithm, your friend is saying that there is a deterministic
Turing machine that solves this problem and that runs in polytime. But a deterministic Turing machine is a
special case of a nondeterministic one. That is, P ⊆ NP, so this problem is in NP.

V.7.14 Computational classes such as NP do not contain algorithms, they contain languages. (We don’t
distinguish too sharply between problems and languages, and so may say that a problem is in a complexity
class, but we do distinguish between languages and algorithms to decide those languages.)

V.7.15
(a) The statement “NP is a subset of NP complete” is false. Rather, NP complete is a subset of NP. The other

part, that NP complete is a subset of NP hard is true. It is the intersection of NP hard and NP.
(b) This is a false statement, because nondeterministic machines are a not a specialization. Rather, nondeter-

ministic machines are a generalization of deterministic machines, that is, any deterministic machine is a
nondeterministic one.

However, the clause about subset is trickier. We know that P ⊆ NP, which is the opposite direction than
the one stated. Most experts judge that NP is not a subset of 𝑃 , but of course we have no proof.

V.7.16
(a) True. Because Primality ∈ NP, it can be solved on a nondeterministic Turing machine. We can simulate

such a machine with a deterministic one, and so we can solve the problem on a “regular” computer. (Of
course, the solution algorithm may be quite slow.)

(b) False; we cannot infer this from the given facts. It may be that there is an efficient algorithm, but we don’t
know. (We don’t know from the statement as given, and we also don’t know in general.)

(c) False. The Traveling Salesman problem isNP complete. Thus, from Prime Factorization ∈ NP, we can deduce
that Prime Factorization ≤𝑝 Traveling Salesman, and from an efficient algorithm for Traveling Salesman we
would get an efficient algorithm for Prime Factorization. But this is the reverse of what the question asks.
The question says that Prime Factorization is not known to be NP complete, so we don’t know the other
direction.

V.7.17 (a) No, from L1 ≤𝑝 L0 and L0 is NP complete, you cannot conclude that L1 is NP complete. An example
is where L0 is the Satisfiability problem, and L1 is the problem of determining whether an input number is even.
(b) False. It may be that L0 is not a member of NP. (c) False. This is a reprise of the first item: from L1 ≤𝑝 L0
and L0 is NP complete, you cannot conclude that L1 is NP complete, even knowing that L1 ∈ NP. An example
is where L0 is the Satisfiability problem, and L1 is the problem of determining whether an input number is even.
(d) True; this is Lemma 7.4. If L1 is NP complete then any L ∈ NP is reducible to L1, so L ≤𝑝 L1, and
transitivity of ≤𝑝 gives that L ≤ L0. That, along with the statement that L0 ∈ NP, gives that L0 is NP complete.
(e) False. A problem is NP complete if it is in NP and every problem L in NP reduces to it. So two NP complete
problems reduce to each other. For example, any of the problems on the Basic List are reducible to any
of the others, or to Satisfiability. (f) False. An example is that L1 is the problem of determining whether
a number is even, and L0 is a problem whose fastest solution algorithm is exponential (such as chess).
(g) True. This is Lemma 6.10, that P is closed downward.

V.7.18
(a) Clearly L = {𝑛

�� 𝑛 is even} is in P. That implies it is in NP. Showing that L is NP complete would show
that P = NP.

(b) This is like the prior item, except that it is not as trivially a member of 𝑃 . To see that it is a member of P,
just note that there is an algorithm to check all 4-tuples with a nested loop.

V.7.19 Fix a language L ∈ P that is nontrivial, so L ≠ ∅ and L ≠ N. Because P ⊆ NP we have L ∈ NP. What
remains is to show that L is NP hard, that every language L̂ ∈ NP satisfies that L̂ ≤𝑝 L. But if P = NP then
L̂ ∈ P, and Lemma 6.10 says that every nontrivial computable language is P hard, so L̂ ≤𝑝 L.

V.7.20 (a) False; for example, the brute force algorithm solves all instances. (b) True, where we use Cobham’s
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Thesis to take ‘quickly’ to mean polytime. (c) False. If Traveling Salesman ∈ P then every NP problem is
in P, because every NP problem reduces to Traveling Salesman. That contradicts the P ≠ NP assumption.
(d) False. This would imply that Traveling Salesman is in P, which the prior item says is impossible.

V.7.21 The obvious thing to do is to prove that 3-Satisfiability ≤𝑝 4-Satisfiability. Briefly, given a propositional
logic expression in which the clauses have three literals, such as 𝑃𝑖 ∨ 𝑃 𝑗 ∨ ¬𝑃𝑘 , convert it into an expression in
which the clauses have four literals by repeating the final literal, as in 𝑃𝑖 ∨ 𝑃 𝑗 ∨ ¬𝑃𝑘 ∨ ¬𝑃𝑘 .

V.7.22
(a) In short, the witness 𝜔 is the path.

The longer version is that, to apply Lemma 5.9, we will produce a deterministic Turing machine verifier,
V. It inputs pairs ⟨G, 𝜔⟩, and must satisfy that if G has a Hamiltonian path then there is a witness 𝜔 such
that V accepts the input pair, while if G does not have a Hamiltonian path then no witness will result in the
pair being accepted. The verifier must run in polytime.

The verifier here interprets the witness 𝜔 to be a Hamiltonian path through the graph, so it checks that it
is a legal path in the given graph and that every vertex is in the path. If there is such a path then there is a
witness that will check out. If there is no such path then no witness will suffice. The verifier clearly runs in
polytime (the size of a graph is polynomial in the number of vertices since the number of edges is O( |N |)).

(b) A Hamiltonian path is ⟨𝑣0, 𝑣7, 𝑣1, 𝑣2, 𝑣3, 𝑣6, 𝑣5, 𝑣4, 𝑣8⟩. The two 𝑣0 and 𝑣8 bust be the start and end of the path
because they have degree 1.

(c) We must produce a reduction function 𝑓. It must input a graph G, outputs a graph H, and have the property
that G has a Hamiltonian circuit if and only if H has a Hamiltonian path.

Given G, we form the graph H by adding three vertices. First, fix a vertex 𝑣 ∈ G. Add a new vertex 𝑣 ∈ H
that has the same connections as 𝑣 . That is, for every edge 𝑣𝑖𝑣 or 𝑣𝑣 𝑗 , add 𝑣𝑣𝑖 or 𝑣𝑣 𝑗 . Also add two vertices
of degree one: 𝑤 connects only to 𝑣 , and �̂� connects only to 𝑣 .
We must show that there is a Hamiltonian path in H if and only if there is a Hamiltonian circuit in G. If

there is a Hamiltonian circuit in G then the Hamiltonian path in H is derived by splitting the circuit at 𝑣 ,
and hooking it to a path in H that starts at 𝑤 , goes to 𝑣 , then through the circuit, out to 𝑣 , and then to �̂� .

For the other direction suppose that there is a Hamiltonian path in 𝐻 . Then, as in the prior item, its start
and end must be𝑤 and �̂� . Further, it must then proceed to 𝑣 and 𝑣 . Because 𝑣 is a copy of 𝑣 , a Hamiltonian
path in H that starts off at these vertices corresponds to a Hamiltonian circuit in G.

(d) Because the Hamiltonian Circuit problem is on the list of Basic NP Complete Problems, the fact that it reduces
to Hamiltonian Path, and the latter is a member of NP, means that Hamiltonian Path is NP complete.

V.7.23
(a) There is a Hamiltonian path: ⟨𝑞3, 𝑞6, 𝑞4, 𝑞7, 𝑞8, 𝑞5, 𝑞0, 𝑞1, 𝑞2⟩.
(b) Take 𝐵 ∈ N to be the parameter and consider this family of languages.

L𝐵 = { ⟨G, 𝐵⟩
�� G has a simple path of length at least 𝐵 }

For the reduction, the witness 𝜔 is the path. That is, consider a Turing machine verifier V that inputs
⟨G, 𝐵, 𝜔⟩. It accepts the triple if and only if 𝜔 represents a path a simple path through the graph, of length
at least 𝐵. Clearly that can be done in polytime. If ⟨G, 𝐵⟩ ∈ L𝐵 then there is such a witness 𝜔 , so V accepts
the input. If ⟨G, 𝐵⟩ ∉ L𝐵 then there is no such witness, and so the verifier V does not accept the triple.

(c) Given an instance G of the Hamiltonian Path problem the reduction function converts it into the pair
⟨𝐺, |𝐺 | − 1⟩. Obviously that computation can be done in polytime. Further, where a graph has 𝑛-many
vertices, a simple path containing |𝐺 | − 1 edges must be Hamiltonian.

(d) The prior exercise shows that the Hamiltonian Path problem is NP complete, and that, along with the other
parts of this exercise, gives that Longest Path is NP complete.

V.7.24
(a) The sum of elements in 𝑆 = {6, 7, 19} equals the sum of elements in 𝑆 − 𝑆 = {3, 4, 12, 13}.
(b) The sum of the elements of 𝑇 = {4, 6, 7, 13} is 𝐵 = 30.
(c) If we can partition a set 𝑆 ⊂ N into 𝑆 ⊂ 𝑆 and 𝑆 − 𝑆 with equal sums, then the total of the elements of 𝑆 is

twice the sum of the elements of 𝑆 , and so is even.
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(d) This is the Subset Sum problem.

L0 = { ⟨𝑇, 𝐵⟩
�� a subset 𝑇 ⊆ 𝑇 has ∑𝑡 ∈𝑇 𝑡 = 𝐵 }

This is the Partition problem.

L1 = { ⟨𝑆⟩
�� there is 𝑆 ⊂ 𝑆 with ∑

𝑠∈𝑆 𝑠 =
∑

𝑠∈𝑆−𝑆 𝑠 }
(e) We must produce a polytime computable function that takes in 𝜎 = ⟨𝑆⟩ and outputs 𝑓 (𝜎) = ⟨𝑇, 𝐵⟩, such

that 𝜎 ∈ L0 if and only if 𝑓 (𝜎) ∈ L1.
Given 𝜎 = ⟨𝑆⟩, consider the sum of its elements 𝑥 =

∑
𝑠∈𝑆 𝑠. Where

𝑓 (𝜎) =
{
⟨𝑆, 𝑥/2⟩ – if 𝑥 is even
⟨𝑆, 𝑥 + 1⟩ – otherwise

we have that 𝜎 ∈ L1 if and only if 𝑓 (𝜎) ∈ L0, as required (and 𝑓 is clearly computable in polytime).
(f) Partition is one of the NP complete sets listed in the section. So Subset Sum is NP hard. But Subset Sum is

clearly NP; as a witness 𝜔 we can use the subset.
V.7.25
(a) The natural independent set is this.

@0 @1 @2

@3 @4 @5

(b) This is the language.

L0 = { ⟨G, 𝐵⟩
�� G has at least 𝐵-many disconnected vertices}

(c) One way to satisfy it is by taking 𝑃0 = 𝑇 , 𝑃1 = 𝑃2 = 𝑃3 = 𝐹 .
(d) This is the language.

L1 = {𝐸
�� 𝐸 is a satisfiable expression with at most 3 literals per clause}

(e) The graph associated with the expression is this.

E0
E1

E2

F1

F2
F3

(f) We must produce a reduction function, 𝑓. It inputs an instance of the 3-Satisfiability problem, 𝐸. It constructs
a graph G as in the prior item. That is, for the 𝑗 -th clause it adds three vertices, labeling with 𝑣 𝑗,𝑖 if the
literal is 𝑃𝑖 , and with 𝑣 𝑗,𝑖 if the literal is ¬𝑃𝑖 . It connects there three vertices completely, making a triangle.
Further, the reduction function connects any two vertices labeled with the same index 𝑖 and where one has
an overline and the other does not, that is, it connects all pairs of 𝑣 𝑗0,𝑖 and 𝑣 𝑗1,𝑖 . Clearly this construction
can happen in polytime.

The expression 𝐸 is satisfiable if and only if in each clause at least one one literal evaluates to 𝑇 . Let 𝑆 be
a minimal such set of literals. Consider the associated vertices in the graph G. In each triangle there must
be at least one vertex associated with a literal from 𝑆 because in each clause there must be a literal from 𝑆
that evaluates to 𝑇 . Further, for each literal in 𝑆 , the negation evaluates to 𝐹 , and so each associated vertex
is not connected to an associated vertex in another triangle. Thus this forms an independent set of vertices.
The converse works the same way.

V.7.26 Move the head left, write a 1, and halt. This is a constant time algorithm.
V.7.27 No. If we knew of a problem inNP−P then we’d know that P ≠ NP. We don’t know that. (Experts suspect

that some problems are in this area, such as the Vertex-to-Vertex Path problem, but this is guesswork.)
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V.7.28 Let L be any NP complete language of bitstrings. Take L2 = {0⌢𝜎
�� 𝜎 ∈ L}, and L1 = {0⌢𝜎

�� 𝜎 ∈ Σ∗ },
and L0 = L1 ∪ {1⌢𝜎

�� 𝜎 ∈ L}. (The language L1 is an element of 𝑃 because testing membership is as simple
as testing whether the first character is 0.)

V.7.29 Assume that L0 is NP complete. Assume also that L0 ≤𝑝 L1 and L1 ∈ NP. To verify that L1 is 𝑁𝑃
complete we must show that it is NP hard, that for every L ∈ NP we have L ≤𝑝 L1.

The assumption that L0 is NP complete gives L ≤𝑝 L0. Thus L ≤𝑝 L0 ≤𝑝 L1 and transitivity of polytime
reduction from Lemma 6.10 gives that L ≤𝑝 L1.

V.7.30
(a) Fix L, L̂ ∈ NP. There are associated polytime verifiers V and V̂. A verifier for the union can just run those

two on the input, and accept if either accepts.
(b) Fix L, L̂ ∈ NP. There are associated polytime verifiers V and V̂. A verifier for the concatenation inputs a

string 𝜎 , and loops over splitting it into substrings 𝜎 = 𝜎 [0 : 𝑖]⌢𝜎 [𝑖 :] for 𝑖 ∈ [0 .. |𝜎 |), testing whether
both verifiers accept. Each verifier is polytime, and running the loop still keeps the overall algorithm inside
of polytime.

(c) The class P is closed under complement. Consequently, if NP is not closed under complement then P ≠ NP.
(But it is possible that NP is closed under complement but is still different than P).)

V.7.31 Countable. It is a subset of NP, which is countable because a verifier is a deterministic Turing machine,
and there are countably many such machines.

V.7.32
(a) It is not a member of NP because it is not decidable.
(b) Since L ∈ NP there is an associated nondeterministic machine P that decides membership. Consider the

Turing machine P̂L that, given an input 𝜏 , constructs the computation tree of PL on input 𝜏 and halts if and
only if PL accepts 𝜏 .
The reduction L ≤𝑝 HP will be done by a function 𝑓L. This function will, given 𝜎 , return the pair

P̂, 𝜎 where P̂. (Note that this function is polynomial since, while running P̂L may not be polynomial,
constructing it from P is polynomial.)

V.8.14
(a) The naive algorithm is to try all subsets. Where the set has 𝑛 elements, there are 2𝑛 subsets.
(b) The naive algorithm is to check each assignment of the 𝑘 colors to the 𝑛 vertices. There are 𝑘𝑛 many

assignments.
V.8.15 First, 𝑛! ≤ 𝑛𝑛 = (2lg𝑛)𝑛 = 2𝑛 lg𝑛 ≤ 2𝑛2 . With that, the naive algorithm is to compute all circuits, and

find the one of minimum cost. Where there are 𝑛 cities, there are 𝑛! many circuits.
V.8.16
(a) Googling gives 1086.
(b) lg(1086) = 86 · lg(10) ≈ 86 · 3.32 = 285.52
(c) The average chess game is about 40 moves (see (SE:Chess)). The longest game in the cited database is 277

moves, so 286 is a long chess game, but not completely out of range.
V.8.17
V.A.11 They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,

and 97.
V.A.12
(a) 𝑛 = 𝑝𝑞 = 134, (𝑝 − 1) · (𝑞 − 1) = 120
(b) Use 𝑒 = 7 (the three 2, 3, and 5 are not relatively prime).
(c) The multiplicative inverse of 𝑒 = 7 modulo 𝑛 = 134 is 𝑑 = 103.
(d) The encryption is𝑚𝑒 mod 𝑛 = 97 mod 143 = 48. The decryption is 48103 mod 143 = 9.
V.A.13
(a) With two factors 𝑛 = 𝑘0 · 𝑘1 if one is greater than√𝑛 then the other must be less.
(b) If 𝑛 is a perfect square 𝑛 = 𝑘 · 𝑘 then its first nontrivial factor is 𝑘 =

√
𝑛.

(c) The square root of 1012 is 106 = 1 000 000, a million.
(d) The input 𝑛 has size about lg(𝑛) bits. Thus√𝑛 ≈

√
2size of 𝑛 ≈(1/2) ·size of 𝑛.
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V.B.1 The main point relevant to this section is that for an input as small as size 100 we have very capable
solvers, which will return the answer quite quickly. The fact that a problem is NP hard does not mean that
most of its instances are slow to solve.

V.B.2 𝑛!
V.B.3 Here is the exhaustive search.

City sequence First edge Second Third Return Total
𝑣0-𝑣1-𝑣2-𝑣3 3 1 4 7 15
𝑣0-𝑣1-𝑣3-𝑣2 3 5 4 2 14
𝑣0-𝑣2-𝑣1-𝑣3 2 1 5 7 15
𝑣0-𝑣2-𝑣3-𝑣1 2 4 5 3 14
𝑣0-𝑣3-𝑣1-𝑣2 7 5 1 2 15
𝑣0-𝑣3-𝑣2-𝑣1 7 4 1 3 15
𝑣1-𝑣0-𝑣2-𝑣3 3 2 4 5 14
𝑣1-𝑣0-𝑣3-𝑣2 3 7 4 1 15
𝑣1-𝑣2-𝑣0-𝑣3 1 2 7 5 15
𝑣1-𝑣2-𝑣3-𝑣0 1 4 7 3 15
𝑣1-𝑣3-𝑣0-𝑣2 5 7 2 1 15
𝑣1-𝑣3-𝑣2-𝑣0 5 4 2 3 14
𝑣2-𝑣0-𝑣1-𝑣3 2 3 5 4 14
𝑣2-𝑣0-𝑣3-𝑣1 2 7 5 1 15
𝑣2-𝑣1-𝑣0-𝑣3 1 3 7 4 15
𝑣2-𝑣1-𝑣3-𝑣0 1 5 7 2 15
𝑣2-𝑣3-𝑣0-𝑣1 4 7 3 1 15
𝑣2-𝑣3-𝑣1-𝑣0 4 5 3 2 14
𝑣3-𝑣0-𝑣1-𝑣2 7 3 1 4 15
𝑣3-𝑣0-𝑣2-𝑣1 7 2 1 5 15
𝑣3-𝑣1-𝑣0-𝑣2 5 3 2 4 14
𝑣3-𝑣1-𝑣2-𝑣0 5 1 2 7 15
𝑣3-𝑣2-𝑣0-𝑣1 4 2 3 5 14
𝑣3-𝑣2-𝑣1-𝑣0 4 1 3 7 15

Basically, you can go around the outside for 14 or go through the middle for 15.



Appendices

A.1
(a) 𝜎⌢𝜏 = 10110⌢110111 = 10110110111.
(b) 𝜎⌢𝜏⌢𝜎 = 10110⌢110111⌢10110 = 1011011011110110
(c) 𝜎R = 10110R = 01101
(d) 𝜎3 = 10110⌢10110⌢10110 = 101101011010110
(e) 03⌢𝜎 = 000⌢10110 = 00010110

A.2
(a) abbca
(b) ababbcabca
(c) baacb
(d) ababab
A.3 There are 24 = 16 bit strings of length 4 and half of them start with 0, so there are 8 strings in the

language.
A.4
(a) Yes.
(b) Yes.
(c) No.
(d) Yes.
A.5 Show that the length of a concatenation is the sum of the two lengths: |𝜎⌢𝜏 | = |⟨𝑠0 ... 𝑠𝑖−1, 𝑡0, ... 𝑡 𝑗−1⟩| =
𝑖 + 𝑗 = |𝜎 | + |𝜏 |. Proving this by induction is routine.

A.7 One example using B is 𝜎 = ⟨0⟩ and 𝜏 = ⟨1⟩. Then 𝜎⌢𝜏 = ⟨0, 1⟩ while 𝜏⌢𝜎 = ⟨1, 0⟩.
B.1
(a) For one-to-one, suppose that 𝑓 (𝑥0) = 𝑓 (𝑥1) for 𝑥0, 𝑥1 ∈ R. Then 3𝑥0 + 1 = 3𝑥1 + 1. Subtract the 1’s and

divide by 3 to conclude that 𝑥0 = 𝑥1.
For onto, fix a member of the codomain 𝑐 ∈ R. Observe that 𝑑 = (𝑐 − 1)/3 is a member of the domain

and that 𝑓 (𝑑) = 3 · ((𝑐 − 1)/3) + 1 = (𝑐 − 1) + 1 = 𝑐. Thus 𝑓 is onto.
(b) The function 𝑔 is not one-to-one because 𝑔(2) = 𝑔(−2). It is not onto because no element of the domain R

is mapped by 𝑔 to the element 0 of the codomain.
B.2
(a) It is a left inverse because 𝑔 ◦ 𝑓 has the action (𝑥,𝑦) ↦→ (𝑥,𝑦, 0) ↦→ (𝑥,𝑦) for all 𝑥 and 𝑦. It is not a right

inverse because there is an input on which the composition 𝑓 ◦ 𝑔 is not the identity, namely the action is
(1, 2, 3) ↦→ (1, 2) ↦→ (1, 2, 0).

(b) Observe that 𝑓 (2) = 𝑓 (−2) = 4. Any left inverse would have to map 4 to 2 and also to map 4 to −2. That
would be not well-defined, so no function is the left inverse.

(c) One right inverse is 𝑔0 : 𝐶 → 𝐷 given by 10 ↦→ 0, 11 ↦→ 1. A second is 𝑔1 : 𝐶 → 𝐷 given by 10 ↦→ 2,
11 ↦→ 3.

B.3
(a) First, the domain of each equals the codomain of the other so their composition is defined in both ways.

Next, 𝑔 ◦ 𝑓 (𝑎) = 𝑔(𝑓 (𝑎)) = 𝑔(𝑎 + 3) = (𝑎 + 3) − 3 = 𝑎 is the identity map. Similarly, 𝑓 ◦ 𝑔 (𝑎) = (𝑎 − 3) + 3
is also the identity map. Thus they are inverse.

(b) The inverse of ℎ is itself. The domain and codomain are equal, as required. If 𝑛 is odd then ℎ ◦ ℎ (𝑛) =
ℎ(𝑛 − 1) = (𝑛 − 1) + 1 = 𝑛 (the second equality holds because 𝑛 − 1 is even in this case). Similarly if 𝑛 is
even then ℎ ◦ ℎ (𝑛) = (𝑛 + 1) − 1 = 𝑛.
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(c) The inverse of 𝑠 is the map 𝑟 : R+ → R+ given my 𝑟 (𝑥) =√𝑥 (that is, the positive root). The domain of each
is the codomain of the other, and each of 𝑠 ◦ 𝑟 and 𝑟 ◦ 𝑠 is the identity function.

B.4 This is a bean diagram of the function 𝑓

0

1

2

10

11

12

and this is a diagram of 𝑔.

0

1

2

10

11

12

(a) By inspection 𝑓 is both one-to-one and onto.
(b) Reverse the association made by 𝑓 so that 𝑓 −1(10) = 0, 𝑓 −1(11) = 1, and 𝑓 −1(12) = 2.
(c) The map 𝑔 is not one-to-one since 𝑔(0) = 𝑔(1). (In addition, 𝑔 is not onto since no input is sent to 11 ∈ 𝐶.)
(d) If a ℎ were the inverse of 𝑔 then both ℎ(10) = 0 and ℎ(10) = 1, which would violate the definition of a

function.
B.5
(a) Let 𝑓 : 𝐷 → 𝐶 and 𝑔 : 𝐶 → 𝐵 be one-to-one. Suppose that 𝑔 ◦ 𝑓 (𝑥0) = 𝑔 ◦ 𝑓 (𝑥1) for some 𝑥0, 𝑥1 ∈ 𝐷.

Then 𝑔(𝑓 (𝑥0)) = 𝑔(𝑓 (𝑥1)). The function 𝑔 is one-to-one and so, since the two values 𝑔(𝑓 (𝑥0)) and 𝑔(𝑓 (𝑥1))
are equal, the arguments 𝑓 (𝑥0) and 𝑓 (𝑥1) are also equal. The function 𝑓 is one-to-one and so 𝑥0 = 𝑥1.
Because 𝑔 ◦ 𝑓 (𝑥0) = 𝑔 ◦ 𝑓 (𝑥1) implies that 𝑥0 = 𝑥1, the composition is one-to-one.

(b) Let 𝑓 : 𝐷 → 𝐶 and 𝑔 : 𝐶 → 𝐵 be onto. If 𝐵 is the empty set then by the definition of function, 𝐶 = ∅ also,
and again by the definition of function, in turn 𝐷 = ∅, and so the composition is onto, vacuously. Otherwise,
fix an element of the codomain of the composition, 𝑏 ∈ 𝐵. The function 𝑔 is onto so there is a 𝑐 ∈ 𝐶 such
that 𝑔(𝑐) = 𝑏. The function 𝑓 is onto so there is a 𝑑 ∈ 𝐷 such that 𝑓 (𝑑) = 𝑐. Then 𝑔 ◦ 𝑓 (𝑑) = 𝑏, and so the
composition is onto.

(c) Let 𝑓 : 𝐷 → 𝐶 and 𝑔 : 𝐶 → 𝐵 be such that the composition 𝑔 ◦ 𝑓 is one-to-one. Suppose that 𝑓 is not
one-to-one. Then there are 𝑑0, 𝑑1 ∈ 𝐷 with 𝑑0 ≠ 𝑑1 such that 𝑓 (𝑑0) = 𝑓 (𝑑1). But this implies that
𝑔(𝑓 (𝑑0)) = 𝑔(𝑓 (𝑑1)), contradicting that the composition is one-to-one.

(d) Let 𝑓 : 𝐷 → 𝐶 and 𝑔 : 𝐶 → 𝐵 be such that the composition 𝑔 ◦ 𝑓 is onto. Suppose for a contradiction that 𝑔
is not onto. Then for some 𝑏 ∈ 𝐵 there is no 𝑐 ∈ 𝐶 with 𝑔(𝑐) = 𝑏. But this means that there is no 𝑑 ∈ 𝐷
such that 𝑏 = 𝑔(𝑓 (𝑑)), contradicting that the composition is onto. So 𝑔 must be onto.

(e) The answer to both questions is “no.”
Let 𝐷 = {0, 1}, 𝐶 = {10, 11, 12}, and 𝐵 = {20, 21}. Let 𝑓 and 𝑔 be as shown below. Then 𝑔 ◦ 𝑓 is onto

because 𝑔 ◦ 𝑓 (0) = 20 and 𝑔 ◦ 𝑓 (1) = 21. But 𝑓 is not onto because no element of its domain 𝐷 is mapped
to the element 10 of its codomain 𝐶.

0

1

10

11

12

20

21

The same function is an example of a composition 𝑔 ◦ 𝑓 that is one-to-one but where the function performed
second, 𝑔, is not one-to-one.

B.6
(a) We first prove that if the function 𝑓 : 𝐷 → 𝐶 has an inverse 𝑓 −1 : 𝐶 → 𝐷 then it must be a correspondence.

To verify that 𝑓 is one-to-one, suppose that 𝑑0, 𝑑1 ∈ 𝐷 are such that 𝑓 (𝑑0) = 𝑓 (𝑑1) = 𝑐 for some 𝑐 ∈ 𝐶.
Consider 𝑓 −1(𝑐). Because 𝑓 −1 ◦ 𝑓 is the identity map on 𝐷 we have both that 𝑓 −1(𝑐) = 𝑓 −1(𝑓 (𝑑0)) = 𝑑0
and that 𝑓 −1(𝑐) = 𝑓 −1(𝑓 (𝑑1)) = 𝑑1. Thus 𝑑0 = 𝑑1 and so 𝑓 is one-to-one.
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Next we verify that 𝑓 is onto. Suppose otherwise, so that there is a 𝑐 ∈ 𝐶 that is not associated with
any 𝑑 ∈ 𝐷. The map 𝑓 ◦ 𝑓 −1 cannot give 𝑐 = 𝑓 ◦ 𝑓 −1 (𝑐) = 𝑓 (𝑓 −1(𝑐)) because 𝑐 ∉ ran(𝑓 ), so this is
impossible. Therefore 𝑓 is onto.

To finish, we prove that if a map 𝑓 : 𝐷 → 𝐶 is a correspondence then it has an inverse. We will define an
association 𝑔 : 𝐷 → 𝐶 and show that it is well-defined. For each 𝑐 ∈ 𝐶, let 𝑔(𝑐) be the element 𝑑 ∈ 𝐷 such
that 𝑓 (𝑑) = 𝑐; note that there is such an element because 𝑓 is onto, and that there is a unique such element
because 𝑓 is one-to-one. So 𝑔 is well-defined. That 𝑔 ◦ 𝑓 and 𝑓 ◦ 𝑔 are identity maps is clear.

(b) Suppose that 𝑓 : 𝐷 → 𝐶 has two inverses 𝑔0, 𝑔1 : 𝐶 → 𝐷. We will show that the two make the same
associations, that is, we will show that they have the same graph and thus are the same function.

Let 𝑐 be an element of the domain 𝐶 of the two. The prior item shows that 𝑓 is onto so there exists
a 𝑑 ∈ 𝐷 such that 𝑓 (𝑑) = 𝑐. The prior item also shows that 𝑓 is one-to-one, so there is only one 𝑑 with that
property: 𝑑 = 𝑔0(𝑐) and 𝑑 = 𝑔1(𝑐). Therefore 𝑔0(𝑐) = 𝑔1(𝑐).

(c) An inverse is a function that has an inverse: the inverse of 𝑓 −1 is 𝑓 . By the first item then, 𝑓 −1 is a
correspondence.

(d) Here is the verification that one order gives the identity function (𝑓 −1 ◦ 𝑔−1) ◦ (𝑔 ◦ 𝑓 ) (𝑥) = (𝑓 −1 ◦ 𝑔−1) (𝑔(𝑓 (𝑥))) =
𝑓 −1(𝑔−1(𝑔(𝑓 (𝑥)))) = 𝑓 −1(𝑓 (𝑥)) = 𝑥 . Verification of the other order is similar.

B.7
(a) We will do induction on the number of elements in the range. Before the proof we give an illustration. Fix

𝐷 = {𝑑0, 𝑑1, 𝑑2, 𝑑3 } and 𝐶 = {𝑐0, 𝑐1, 𝑐2 }. Consider the function 𝑓 : 𝐷 → 𝐶 given here, which is onto and so
ran(𝑓 ) = 𝐶.

𝑑0 ↦→ 𝑐0 𝑑1 ↦→ 𝑐1 𝑑2 ↦→ 𝑐2 𝑑3 ↦→ 𝑐2

To do the induction, we pick an element of the range and omit it; suppose that we omit 𝑐2. We then want to
consider a restriction map that is onto 𝐶 − {𝑐2 }. For this map to be well-defined, we must omit from its
domain all of the elements that map to 𝑐2, the set 𝑓 −1(𝑐2) = {𝑑2, 𝑑3 }. We then have the function 𝑓 with
domain �̂� = {𝑑0, 𝑑1 } and codomain 𝐶 = {𝑐0, 𝑐1 } given here.

𝑑0 ↦→ 𝑐0 𝑑1 ↦→ 𝑐1

The inductive hypothesis gives that 𝑓 ’s domain, �̂�, has at least as many elements as its range, 𝐶. To finish
the argument, we will add back the omitted elements to get 𝑓 and conclude that its domain, 𝐷 , has at least
as many elements as its range, 𝐶.

Time for the proof. The base step is to consider a function 𝑓 whose range is empty. The domain must also
be empty since the definition of function requires that every element of the domain is mapped somewhere.
Hence | ran(𝑓 ) | ≤ |𝐷 |, because both of them are zero.

Next assume that the statement holds for all functions 𝑓 between finite sets, where | ran(𝑓 ) | = 0,
| ran(𝑓 ) | = 1, . . . | ran(𝑓 ) | = 𝑘, for 𝑘 ∈ N. Consider a function with | ran(𝑓 ) | = 𝑘 + 1.
Fix some 𝑐 ∈ ran(𝑓 ) (the range is not empty because 𝑘 + 1 > 0). Let 𝐶 = ran(𝑓 ) − {𝑐 }. Because 𝑐 is in

the range of 𝑓 , the set �̂� = 𝑓 −1(𝑐) = {𝑑 ∈ 𝐷
�� 𝑓 (𝑑) = 𝑐 } has at least one element, that is, |𝐷 − �̂� | +1 ≤ |𝐷 |.

Now the key point: the map 𝑓 : 𝐷 − �̂� → 𝐶 is onto, as any element 𝑐 ∈ ran(𝑓 ) is the image of some 𝑑 ∈ 𝐷
and so any such element with 𝑐 ≠ 𝑐 must be the image of some 𝑑 ∈ 𝐷 − �̂�. Therefore the inductive
hypothesis applies, giving that |𝐶 | ≤ |𝐷 − �̂� |. Finish by adding one, | ran(𝑓 ) | = |𝐶 | + 1 ≤ |𝐷 − �̂� | + 1 ≤ |𝐷 |.
Alternate proof. We can instead do induction on the number of elements in the domain, 𝐷 . As above, we first
illustrate the argument. Fix a domain 𝐷 = {𝑑0, 𝑑1, 𝑑2, 𝑑3 } and codomain 𝐶 = {𝑐0, 𝑐1, 𝑐2 }. To do induction,
we will omit an element of the domain, in this example 𝑑3, giving �̂� = 𝐷 − {𝑑3 }. There are two cases. The
first is that the omitted element 𝑑3 maps to the same member of the codomain as at least one other, not
omitted, element of the domain. This case happens with this function 𝑓 .

𝑑0 ↦→ 𝑐0 𝑑1 ↦→ 𝑐1 𝑑2 ↦→ 𝑐2 𝑑3 ↦→ 𝑐2

Consider the restriction, 𝑓 : �̂� → 𝐶 given by 𝑓 (𝑑) = 𝑓 (𝑑). The inductive hypothesis applies, giving
| ran(𝑓 ) | ≤ |�̂� |. In this first case, 𝑑3 is not the only element of 𝐷 associated with 𝑐2, so | ran(𝑓 ) | = | ran(𝑓 ) |
and the desired conclusion is immediate, | ran(𝑓 ) | = | ran(𝑓 ) | ≤ |�̂� | < |𝐷 |.
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The other case is that the omitted domain element 𝑑3 does not map to the same member of the codomain
as any other domain element. That happens for this function 𝑓 .

𝑑0 ↦→ 𝑐0 𝑑1 ↦→ 𝑐1 𝑑2 ↦→ 𝑐2 𝑑3 ↦→ 𝑐3

To do the induction, we omit 𝑑3 from the domain, giving �̂� = 𝐷 − {𝑑3 }. Consider the restriction map
𝑓 : �̂� → 𝐶 defined by 𝑓 (𝑑) = 𝑓 (𝑑). The inductive hypothesis applies, so | ran(𝑓 ) | ≤ |�̂� |. Then adding 1 to
both sides gives | ran(𝑓 ) | = | ran(𝑓 ) | + 1 ≤ |�̂� | + 1 = |𝐷 |.

We are ready for the proof. The base step is to consider a function 𝑓 whose domain that 𝐷 has no
elements at all. The only function with an empty domain is the empty function, whose range is empty, so
0 = | ran(𝑓 ) | ≤ |𝐷 | = 0.

For the inductive step, assume that the statement is true for functions between finite sets when |𝐷 | = 0,
|𝐷 | = 1, . . . |𝐷 | = 𝑘, with 𝑘 ∈ N. Consider a function 𝑓 where |𝐷 | = 𝑘 + 1.
Fix some 𝑑 ∈ 𝐷 (there must be such an element since the domain is not empty, as 𝑘 + 1 > 0). Let

�̂� = 𝐷 − {𝑑 } and let 𝑓 : �̂� → 𝐶 be the restriction of 𝑓 to �̂�, defined by 𝑓 (𝑑) = 𝑓 (𝑑). The inductive
hypothesis gives | ran(𝑓 ) | ≤ |�̂� |.

Consider the codomain element 𝑐 = 𝑓 (𝑑). There are two cases: either (1) 𝑐 is also the image of another
domain element, that is, there is a 𝑑 ∈ �̂� with 𝑑 ≠ 𝑑 and 𝑓 (𝑑) = 𝑐, or else (2) it is not. In the first case,
ran(𝑓 ) = ran(𝑓 ) and we have | ran(𝑓 ) | = | ran(𝑓 ) | ≤ |�̂� | < |𝐷 |. In the second case, ran(𝑓 ) = ran(𝑓 ) + 1
and we have | ran(𝑓 ) | = | ran(𝑓 ) | + 1 ≤ |�̂� | + 1 = |𝐷 |.

(b) We will will use induction on the number of elements in the range. The base step is that the range is
empty. The only function with an empty range is the empty function, which has an empty domain, and so
0 = | ran(𝑓 ) | = |𝐷 | = 0.

For the inductive step, assume that the statement is true for any one-to-one function 𝑓 between finite sets
with | ran(𝑓 ) | = 0, | ran(𝑓 ) | = 0, . . . | ran(𝑓 ) | = 𝑘, where 𝑘 ∈ N. Consider a one-to-one function 𝑓 with
| ran(𝑓 ) | = 𝑘 + 1.

Fix 𝑐 ∈ ran(𝑓 ) (such an element exists because 𝑘 + 1 > 0). Let 𝐶 = 𝐶 − {𝑐 }. Because 𝑐 is an element of
the range of 𝑓 , there is a domain element that maps to it. Because 𝑓 is one-to-one, there is only one such
element. Call it 𝑑 and let �̂� = 𝐷 − {𝑑 }.

The restriction function 𝑓 : �̂� → 𝐶 is defined by 𝑓 (𝑑) = 𝑓 (𝑑). This map is also one-to-one: thinking of 𝑓
as a set of ordered pairs, the assumption that it is one-to-one means that no two pairs have the same second
element, and the restriction 𝑓 is a subset of 𝑓 so it also has no two with the same second element. By the
inductive hypothesis, | ran(𝑓 ) | = |�̂� |. Adding 1 gives | ran(𝑓 ) | = | ran(𝑓 ) | + 1 = |�̂� | + 1 = |𝐷 |.

Alternate proof. We can instead do induction on the number of elements in the domain 𝐷. The base step is
that the domain is empty, |𝐷 | = 0. The only function with an empty domain is the empty function and we
have 0 = | ran(𝑓 ) | = |𝐷 | = 0.

For the inductive step, assume that the statement is true for any one-to-one function between finite sets
with |𝐷 | = 0, . . . |𝐷 | = 𝑘, where 𝑘 ∈ N. Consider a one-to-one function 𝑓 whose domain has |𝐷 | = 𝑘 + 1.

Fix some 𝑑 ∈ 𝐷 (the set 𝐷 is not empty because 𝑘 + 1 > 0) and let �̂� = 𝐷 − {𝑑 }. Consider 𝑐 = 𝑓 (𝑑).
Because 𝑓 is one-to-one, 𝑐 is not the image of any element of the domain other than 𝑑. So the restriction
map 𝑓 : �̂� → 𝐶 has one less element in its range, ran(𝑓 ) = ran(𝑓 ) + 1.

The key point is that because 𝑓 is one-to-one, 𝑓 is also one-to-one: thinking of 𝑓 as a set of ordered pairs,
one-to-one-ness means that no two pairs have the same second element, and 𝑓 is a subset of 𝑓 so it has the
same property. Therefore the inductive hypothesis applies, giving | ran(𝑓 ) | = |�̂� |. Add 1 to get the desired
conclusion, that | ran(𝑓 ) | = | ran(𝑓 ) | + 1 = |�̂� | + 1 = |𝐷 |.

C.1
(a) This is a table for (𝑃 ∧𝑄) ∧ 𝑅.
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𝑃 𝑄 𝑅 𝑃 ∧𝑄 (𝑃 ∧𝑄) ∧ 𝑅
𝐹 𝐹 𝐹 𝐹 𝐹
𝐹 𝐹 𝑇 𝐹 𝐹
𝐹 𝑇 𝐹 𝐹 𝐹
𝐹 𝑇 𝑇 𝐹 𝐹
𝑇 𝐹 𝐹 𝐹 𝐹
𝑇 𝐹 𝑇 𝐹 𝐹
𝑇 𝑇 𝐹 𝑇 𝐹
𝑇 𝑇 𝑇 𝑇 𝑇

(b) And this is a table for 𝑃 ∧ (𝑄 ∧ 𝑅). It has the same final column as the one from the prior item.
𝑃 𝑄 𝑅 𝑄 ∧ 𝑅 𝑃 ∧ (𝑄 ∧ 𝑅)
𝐹 𝐹 𝐹 𝐹 𝐹
𝐹 𝐹 𝑇 𝐹 𝐹
𝐹 𝑇 𝐹 𝐹 𝐹
𝐹 𝑇 𝑇 𝑇 𝐹
𝑇 𝐹 𝐹 𝐹 𝐹
𝑇 𝐹 𝑇 𝐹 𝐹
𝑇 𝑇 𝐹 𝐹 𝐹
𝑇 𝑇 𝑇 𝑇 𝑇

(c) This is a table for 𝑃 ∧ (𝑄 ∨ 𝑅).
𝑃 𝑄 𝑅 𝑄 ∨ 𝑅 𝑃 ∧ (𝑄 ∨ 𝑅)
𝐹 𝐹 𝐹 𝐹 𝐹
𝐹 𝐹 𝑇 𝑇 𝐹
𝐹 𝑇 𝐹 𝑇 𝐹
𝐹 𝑇 𝑇 𝑇 𝐹
𝑇 𝐹 𝐹 𝐹 𝐹
𝑇 𝐹 𝑇 𝑇 𝑇
𝑇 𝑇 𝐹 𝑇 𝑇
𝑇 𝑇 𝑇 𝑇 𝑇

(d) And this is a table for (𝑃 ∧𝑄) ∨ (𝑃 ∧ 𝑅). It has the same final column as the prior item.
𝑃 𝑄 𝑅 𝑃 ∧𝑄 𝑃 ∧ 𝑅 (𝑃 ∧𝑄) ∨ (𝑃 ∧ 𝑅)
𝐹 𝐹 𝐹 𝐹 𝐹 𝐹
𝐹 𝐹 𝑇 𝐹 𝐹 𝐹
𝐹 𝑇 𝐹 𝐹 𝐹 𝐹
𝐹 𝑇 𝑇 𝐹 𝐹 𝐹
𝑇 𝐹 𝐹 𝐹 𝐹 𝐹
𝑇 𝐹 𝑇 𝐹 𝑇 𝑇
𝑇 𝑇 𝐹 𝑇 𝐹 𝑇
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇

C.2
(a) This is a table for ¬(𝑃 ∨𝑄).

𝑃 𝑄 𝑃 ∨𝑄 ¬(𝑃 ∨𝑄)
𝐹 𝐹 𝐹 𝑇
𝐹 𝑇 𝑇 𝐹
𝑇 𝐹 𝑇 𝐹
𝑇 𝑇 𝑇 𝐹

(b) The same for ¬𝑃 ∧ ¬𝑄 .
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𝑃 𝑄 ¬𝑃 ¬𝑄 ¬𝑃 ∧ ¬𝑄
𝐹 𝐹 𝑇 𝑇 𝑇
𝐹 𝑇 𝑇 𝐹 𝐹
𝑇 𝐹 𝐹 𝑇 𝐹
𝑇 𝑇 𝐹 𝐹 𝐹

It has the same final column as the prior item.
(c) This is a table for ¬(𝑃 ∧𝑄).

𝑃 𝑄 𝑃 ∧𝑄 ¬(𝑃 ∧𝑄)
𝐹 𝐹 𝐹 𝑇
𝐹 𝑇 𝐹 𝑇
𝑇 𝐹 𝐹 𝑇
𝑇 𝑇 𝑇 𝐹

(d) This is the one for ¬𝑃 ∨ ¬𝑄 .
𝑃 𝑄 ¬𝑃 ¬𝑄 ¬𝑃 ∨ ¬𝑄
𝐹 𝐹 𝑇 𝑇 𝑇
𝐹 𝑇 𝑇 𝐹 𝑇
𝑇 𝐹 𝐹 𝑇 𝑇
𝑇 𝑇 𝐹 𝐹 𝐹

The final column is the same as the final column of the prior item.
C.3
(a) The second, third and sixth lines show 𝑇 . The associated clauses are ¬𝑃 ∧ ¬𝑄 ∧ 𝑅, ¬𝑃 ∧ 𝑄 ∧ ¬𝑅, and

𝑃 ∧ ¬𝑄 ∧ 𝑅. The resulting CNF expression is this.

(¬𝑃 ∧ ¬𝑄 ∧ 𝑅) ∨ (¬𝑃 ∧𝑄 ∧ ¬𝑅) ∨ (𝑃 ∧ ¬𝑄 ∧ 𝑅)
(b) The 𝑇 lines give four clauses.

(¬𝑃 ∧ ¬𝑄 ∧ ¬𝑅) ∨ (¬𝑃 ∧𝑄 ∧ ¬𝑅) ∨ (𝑃 ∧𝑄 ∧ ¬𝑅) ∨ (𝑃 ∧𝑄 ∧ 𝑅)
C.4
(a) The 𝐹 lines are first, fourth, fifth, seventh, and eighth. So we have this.

𝐸0 ≡ ¬
(
(¬𝑃 ∧ ¬𝑄 ∧ ¬𝑅) ∨ (¬𝑃 ∧𝑄 ∧ 𝑅) ∨ (𝑃 ∧ ¬𝑄 ∧ ¬𝑅) ∨ (𝑃 ∧𝑄 ∧ ¬𝑅) ∨ (𝑃 ∧𝑄 ∧ 𝑅)

)
Apply DeMorgan’s law to distribute the negation across the ∨’s.

¬(¬𝑃 ∧ ¬𝑄 ∧ ¬𝑅) ∧ ¬(¬𝑃 ∧𝑄 ∧ 𝑅) ∧ ¬(𝑃 ∧ ¬𝑄 ∧ ¬𝑅) ∧ ¬(𝑃 ∧𝑄 ∧ ¬𝑅) ∧ ¬(𝑃 ∧𝑄 ∧ 𝑅)
Now distribute the ¬’s across the ∧’s.

(𝑃 ∨𝑄 ∨ 𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ ¬𝑅) ∧ (¬𝑃 ∨𝑄 ∨ 𝑅) ∧ (¬𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (¬𝑃 ∨ ¬𝑄 ∨ ¬𝑅)
(b) Find the 𝐹 lines.

𝐸1 ≡ ¬
(
(¬𝑃 ∧ ¬𝑄 ∧ 𝑅) ∨ (¬𝑃 ∧𝑄 ∧ 𝑅) ∨ (𝑃 ∧ ¬𝑄 ∧ ¬𝑅) ∨ (𝑃 ∧ ¬𝑄 ∧ 𝑅)

)
Distribute the negation ¬ across the ∨’s.

¬(¬𝑃 ∧ ¬𝑄 ∧ 𝑅) ∧ ¬(¬𝑃 ∧𝑄 ∧ 𝑅) ∧ ¬(𝑃 ∧ ¬𝑄 ∧ ¬𝑅) ∧ ¬(𝑃 ∧ ¬𝑄 ∧ 𝑅)
Distribute the four ¬’s across the ∧’s.

(𝑃 ∨𝑄 ∨ ¬𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ ¬𝑅) ∧ (¬𝑃 ∨𝑄 ∨ 𝑅) ∧ (¬𝑃 ∨𝑄 ∨ ¬𝑅)
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C.5 Here are the sixteen.

𝑃 𝑄 𝑂0
𝐹 𝐹 𝐹
𝐹 𝑇 𝐹
𝑇 𝐹 𝐹
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂1
𝐹 𝐹 𝐹
𝐹 𝑇 𝐹
𝑇 𝐹 𝐹
𝑇 𝑇 𝑇

𝑃 𝑄 𝑂2
𝐹 𝐹 𝐹
𝐹 𝑇 𝐹
𝑇 𝐹 𝑇
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂3
𝐹 𝐹 𝐹
𝐹 𝑇 𝐹
𝑇 𝐹 𝑇
𝑇 𝑇 𝑇

𝑃 𝑄 𝑂4
𝐹 𝐹 𝐹
𝐹 𝑇 𝑇
𝑇 𝐹 𝐹
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂5
𝐹 𝐹 𝐹
𝐹 𝑇 𝑇
𝑇 𝐹 𝐹
𝑇 𝑇 𝑇

𝑃 𝑄 𝑂6
𝐹 𝐹 𝐹
𝐹 𝑇 𝑇
𝑇 𝐹 𝑇
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂7
𝐹 𝐹 𝐹
𝐹 𝑇 𝑇
𝑇 𝐹 𝑇
𝑇 𝑇 𝑇

𝑃 𝑄 𝑂8
𝐹 𝐹 𝑇
𝐹 𝑇 𝐹
𝑇 𝐹 𝐹
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂9
𝐹 𝐹 𝑇
𝐹 𝑇 𝐹
𝑇 𝐹 𝐹
𝑇 𝑇 𝑇

𝑃 𝑄 𝑂10
𝐹 𝐹 𝑇
𝐹 𝑇 𝐹
𝑇 𝐹 𝑇
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂11
𝐹 𝐹 𝑇
𝐹 𝑇 𝐹
𝑇 𝐹 𝑇
𝑇 𝑇 𝑇

𝑃 𝑄 𝑂12
𝐹 𝐹 𝑇
𝐹 𝑇 𝑇
𝑇 𝐹 𝐹
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂13
𝐹 𝐹 𝑇
𝐹 𝑇 𝑇
𝑇 𝐹 𝐹
𝑇 𝑇 𝑇

𝑃 𝑄 𝑂14
𝐹 𝐹 𝑇
𝐹 𝑇 𝑇
𝑇 𝐹 𝑇
𝑇 𝑇 𝐹

𝑃 𝑄 𝑂15
𝐹 𝐹 𝑇
𝐹 𝑇 𝑇
𝑇 𝐹 𝑇
𝑇 𝑇 𝑇

The operators are: 𝑂0 is 𝐹 (sometimes called falsum and represented ⊥), 𝑂1 is 𝑃 ∧𝑄 , 𝑂2 is ¬(𝑃 → 𝑄), 𝑂3 is
𝑃 , 𝑂4 is ¬(𝑄 → 𝑃), 𝑂5 is 𝑄 , 𝑂6 is ¬(𝑃 ↔ 𝑄), 𝑂7 is 𝑃 ∨𝑄 , 𝑂8 is ¬(𝑃 ∨𝑄), 𝑂9 is 𝑃 ↔ 𝑄 , 𝑂10 is ¬𝑄 , 𝑂11 is
𝑄 → 𝑃 , 𝑂12 is ¬𝑃 , 𝑂13 is 𝑃 → 𝑄 , 𝑂14 is ¬(𝑃 ∧𝑄), and 𝑂15 is 𝑇 (sometimes represented ⊤).


