
Finite State machines

Jim Hefferon

University of Vermont
hefferon.net

Finite State machines

Motivation
Turing and other researchers tried to define what is computable in principle. Church’s
Thesis is that their definitions do indeed capture the intuitive idea of effectively
computable, of computable by an unbounded mechanism.
A person could object, “Although a Turing machine has only finitely many states, it can
write to the tape. Consequently there are Turing machines that write arbitrarily many
times to the tape, and so have unboundedly many configurations. But the physical
universe cannot support unboundedly many configurations.”
We will next study machines that are modifications of Turing machines to have a
bounded number of configurations. These have finitely many states and can read, but
they cannot write. Instead, they just consume their input and then indicate either that
the input string was accepted or that it was not accepted.

Definitions
Definition A Finite State machine or Finite State automata ⟨𝑄,𝑞0, 𝐹 , Σ,Δ⟩ has a finite
set of states 𝑄 , one of which is the start state 𝑞0, a subset 𝐹 ⊆ 𝑄 of final states or
accepting states, a finite input alphabet set Σ, and a next-state function or transition
function Δ : 𝑄 × Σ → 𝑄 .

Remark: Recall that Turing machines are defined to be sets of four-tuple instructions
𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 , subject to the restriction that the set is deterministic, that no two instructions
can begin with the same pair 𝑞𝑝𝑇𝑝 . Consequently, over all 𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 ∈ P the association
of present pair 𝑞𝑝𝑇𝑝 with next pair 𝑇𝑛𝑞𝑛 , defines a function, the next-state function
Δ : 𝑄 × Σ → Σ ∪ {L, R} ×𝑄 .
Finite State machines work the same way, and in the definition above we skipped
four-tuples and went straight to the function.

Definitions
Definition A Finite State machine or Finite State automata ⟨𝑄,𝑞0, 𝐹 , Σ,Δ⟩ has a finite
set of states 𝑄 , one of which is the start state 𝑞0, a subset 𝐹 ⊆ 𝑄 of final states or
accepting states, a finite input alphabet set Σ, and a next-state function or transition
function Δ : 𝑄 × Σ → 𝑄 .

Remark: Recall that Turing machines are defined to be sets of four-tuple instructions
𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 , subject to the restriction that the set is deterministic, that no two instructions
can begin with the same pair 𝑞𝑝𝑇𝑝 . Consequently, over all 𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 ∈ P the association
of present pair 𝑞𝑝𝑇𝑝 with next pair 𝑇𝑛𝑞𝑛 , defines a function, the next-state function
Δ : 𝑄 × Σ → Σ ∪ {L, R} ×𝑄 .
Finite State machines work the same way, and in the definition above we skipped
four-tuples and went straight to the function.

Example This machine has input alphabet Σ = B = {0, 1}. The set of states is
𝑄 = {𝑞0, 𝑞1, 𝑞2 }. It has one accepting state 𝐹 = {𝑞2 }, marked in the diagram with a
double circle.

1

0

1

0 0,1

@0 @1 @2

The transition function is a tabular version of the diagram. For instance, Δ(𝑞1, 1) = 𝑞2.

Δ 0 1

𝑞0 𝑞0 𝑞1
𝑞1 𝑞1 𝑞2

+ 𝑞2 𝑞2 𝑞2

The + next to 𝑞2 marks it as an accepting state.
This machine accepts the string 01010. It does not accept the string 001. In general, it
accepts strings that contain at least two 1’s.

Example This machine accepts strings that are valid decimal representations of integers.
So it accepts the strings 21 and -707 but does not accept 501-.
The transition graph and the table both group some inputs together when they result in
the same action. For instance, when in state 𝑞0 this machine does the same thing
whether the input is + or -, namely it passes into 𝑞1.

+,- 0,...,9

0,...,9

other

0,..,9

other
other

0,..,9

any

@0 @1 @2

4

Δ +, - 0, . . . 9 other
𝑞0 𝑞1 𝑞2 𝑒
𝑞1 𝑒 𝑞2 𝑒

+ 𝑞2 𝑒 𝑞2 𝑒
𝑒 𝑒 𝑒 𝑒

Example This machine accepts only the single string HEF.
H

other

E

other

F

other
any

any

@0 @1 @2 @3

4

Example This machine accepts strings that are valid decimal representations of integers.
So it accepts the strings 21 and -707 but does not accept 501-.
The transition graph and the table both group some inputs together when they result in
the same action. For instance, when in state 𝑞0 this machine does the same thing
whether the input is + or -, namely it passes into 𝑞1.

+,- 0,...,9

0,...,9

other

0,..,9

other
other

0,..,9

any

@0 @1 @2

4

Δ +, - 0, . . . 9 other
𝑞0 𝑞1 𝑞2 𝑒
𝑞1 𝑒 𝑞2 𝑒

+ 𝑞2 𝑒 𝑞2 𝑒
𝑒 𝑒 𝑒 𝑒

Example This machine accepts only the single string HEF.
H

other

E

other

F

other
any

any

@0 @1 @2 @3

4

Example This machine accepts only strings where HEF is the prefix.

H

other

E

other

F

other

any

any

@0 @1 @2 @3

4

Example This machine accepts only strings where HEF is the suffix.

H

other

E

other

H

F

H

other

H

other

@0 @1 @2 @3

Example This machine accepts only strings where HEF is the prefix.

H

other

E

other

F

other

any

any

@0 @1 @2 @3

4

Example This machine accepts only strings where HEF is the suffix.

H

other

E

other

H

F

H

other

H

other

@0 @1 @2 @3

Example This machine accepts only strings where HEF is a substring.

H

other

E

other

H

F

H

other

any@0 @1 @2 @3

Example This machine accepts only strings consisting of zero or more repetitions of HEF.

H

other

E

other

F

other

any

@0 @1 @2

4

The string consisting of zero-many repetitions of HEF is the empty string, 𝜀.

Example This machine accepts only strings where HEF is a substring.

H

other

E

other

H

F

H

other

any@0 @1 @2 @3

Example This machine accepts only strings consisting of zero or more repetitions of HEF.

H

other

E

other

F

other

any

@0 @1 @2

4

The string consisting of zero-many repetitions of HEF is the empty string, 𝜀.

Example This machine accepts all strings starting with zero or more copies of HEF.

anyany@0

(It is a gotcha question; all strings begin with zero-many copies of HEF.)

Example This machine accepts only the strings CAT or DOG.

C

other

A
other

T

other
any

any

D other

O

other

G

any

@0

@1 @2 @3

4

@4 @5 @6

Example This machine accepts all strings starting with zero or more copies of HEF.

anyany@0

(It is a gotcha question; all strings begin with zero-many copies of HEF.)
Example This machine accepts only the strings CAT or DOG.

C

other

A
other

T

other
any

any

D other

O

other

G

any

@0

@1 @2 @3

4

@4 @5 @6

Example This machine, with input alphabet 𝜎 = {a, b}, accepts only strings with an
even number of a’s.

a

b

a

b@0 @1

Example This machine, with the same alphabet, accepts strings with at least three a’s.
a

b

a

b

a

b any

@0 @1 @2 @3

Example This machine, with input alphabet 𝜎 = {a, b}, accepts only strings with an
even number of a’s.

a

b

a

b@0 @1

Example This machine, with the same alphabet, accepts strings with at least three a’s.
a

b

a

b

a

b any

@0 @1 @2 @3

The action of a Finite State machine
As with Turing machines, we can give a definition of how Finite State machines act that is
mathematically precise. A configuration of a Finite State machine M is a pair C = ⟨𝑞, 𝜏⟩,
with 𝑞 ∈ 𝑄 and 𝜏 ∈ Σ∗. Where C0 = ⟨𝑞0, 𝜏0⟩ is the initial configuration, 𝜏0 is the input.
Example We can trace through this machine when given the input 𝜏0 = abababb.

a

b

a

b

a

b any

@0 @1 @2 @3

The transition function Δ determines how the machine moves step-by-step, in response
to the input (read ‘⊢’ aloud as “yields”).

C0 = ⟨𝑞0, abababb⟩ ⊢ C1 = ⟨𝑞1, bababb⟩
⊢ C2 = ⟨𝑞1, ababb⟩
⊢ C3 = ⟨𝑞2, babb⟩
⊢ C4 = ⟨𝑞2, abb⟩
⊢ C5 = ⟨𝑞3, bb⟩
⊢ C6 = ⟨𝑞3, b⟩
⊢ C7 = ⟨𝑞3, 𝜀⟩

The machine accepts 𝜏0 because when 𝜏 = 𝜀 then the state 𝑞3 is accepting.

Language of a machine
Definition The set of strings accepted by a Finite State machine M is the language of
that machine, L(M), or the language recognized or decided, or accepted, by the
machine.
Example This machine

C

other

A
other

T

other
any

any

D other

O

other

G

any

@0

@1 @2 @3

4

@4 @5 @6

has the language L(𝑀) = {CAT, DOG}.

Example This machine

H

other

E

other

F

other

any

@0 @1 @2

4

has the language L = {𝜀, HEF, HEFHEF, (HEF)3, ... }.
Example This machine recognizes a natural number that is a multiple of three, such as
15 or 5013.

1,4,7

2,5,8

0,3,6,9

2,5,8

1,4,7

0,3,6,9

1,4,7 2,5,8

0,3,6,9

@0 @1

@2

Where Σ = {0, ... 9}, the language is this.
L(M) = {𝜎 ∈ Σ∗

�� 𝜎 is the decimal representation of a multiple of three}

Finite State machines translate easily to code
Here is a Python implementation of the above multiple of three machine.
def multiple_of_three_fsm(s) :

s tate = 0
for ch in s :

i f s tate == 0:
i f ch in set ([0 ,3 ,6 ,9]):

s tate = 0
e l i f ch in set ([1 ,4 ,7]):

s tate = 1
else :

s tate = 2
e l i f s tate == 1:

i f ch in set ([0 ,3 ,6 ,9]):
s tate = 1

e l i f ch in set ([1 ,4 ,7]):
s tate = 2

else :
s tate = 0

else :
i f ch in set ([0 ,3 ,6 ,9]):

s tate = 2
e l i f ch in set ([1 ,4 ,7]):

s tate = 0
else :

s tate = 1
i f s tate == 0:

return True
else :

return False

Extended transition function
Definition For any Finite State machine, the extended transition function Δ̂ : Σ∗ → 𝑄
gives the state in which the machine ends after starting in the start state and consuming
the given string.
Example For this machine, compute the extended transition function on all strings of
length less than three.

a

b

a

b

a

b any

@0 @1 @2 @3

The alphabet Σ = {a, b} has two elements so there are seven strings of length less than
three.

Input 𝜎 𝜀 a b aa ab ba bb

Δ̂(𝜎) 𝑞0 𝑞1 𝑞0 𝑞2 𝑞1 𝑞1 𝑞0

Nondeterminism

Recall: determinism
The Turing machine definition gives that the set of instructions 𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 must be
deterministic, meaning that no two instructions can begin with the same pair 𝑞𝑝𝑇𝑝 . For
instance the definition outlaws that both 𝑞010𝑞1 and 𝑞011𝑞2 are in the same machine
because they both start with 𝑞01.
Consequently, over the four-tuples 𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 in a machine, the association of present pair
𝑞𝑝𝑇𝑝 with next pair 𝑇𝑛𝑞𝑛 defines a function, the next-state function.

Δ : 𝑄 × Σ → Σ ∪ {L, R} ×𝑄

It is this function that governs the sequence of transitions from configuration to
configuration.
Finite State machines work the same way. The definition gives them as also deterministic.

We now drop determinism. We will do it here for Finite State machines and in the next
chapter for Turing machines.
Nondeterminism is very important. But it can give the initial impression of being
unnatural. So before the definition we will see two examples of computations that, in
some sense, do more than one thing at a time. These will lead to two mental models,
which we will rely on for the rest of the course.

Recall: determinism
The Turing machine definition gives that the set of instructions 𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 must be
deterministic, meaning that no two instructions can begin with the same pair 𝑞𝑝𝑇𝑝 . For
instance the definition outlaws that both 𝑞010𝑞1 and 𝑞011𝑞2 are in the same machine
because they both start with 𝑞01.
Consequently, over the four-tuples 𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 in a machine, the association of present pair
𝑞𝑝𝑇𝑝 with next pair 𝑇𝑛𝑞𝑛 defines a function, the next-state function.

Δ : 𝑄 × Σ → Σ ∪ {L, R} ×𝑄

It is this function that governs the sequence of transitions from configuration to
configuration.
Finite State machines work the same way. The definition gives them as also deterministic.

We now drop determinism. We will do it here for Finite State machines and in the next
chapter for Turing machines.
Nondeterminism is very important. But it can give the initial impression of being
unnatural. So before the definition we will see two examples of computations that, in
some sense, do more than one thing at a time. These will lead to two mental models,
which we will rely on for the rest of the course.

Nondeterminism: deriving a string from a grammar
From this grammar

S → TbU
T → aT | 𝜀
U → aU | bU | 𝜀

we can derive, for example, 𝜎0 = aabab

S ⇒ T b U ⇒ a T b U ⇒ a a T b U ⇒ a a 𝜀 b U =a a b U
⇒ a a b a U ⇒ a a b a b U ⇒ a a b a b 𝜀 =a a b a b

or 𝜎1 = baab.

S ⇒ T b U ⇒ 𝜀 b U = b U ⇒ b a U
⇒ b a a U ⇒ b a a b U ⇒ b a a b 𝜀 = b a a b

Derivation is a computation in that it is pushing symbols by following rigid rules.

This computation is nondeterministic in the sense that while doing a sequence of
⇒ steps, we often find that more than one → rule applies. So there is more than one
next thing to do, not just a unique next string.

Nondeterminism: deriving a string from a grammar
From this grammar

S → TbU
T → aT | 𝜀
U → aU | bU | 𝜀

we can derive, for example, 𝜎0 = aabab

S ⇒ T b U ⇒ a T b U ⇒ a a T b U ⇒ a a 𝜀 b U =a a b U
⇒ a a b a U ⇒ a a b a b U ⇒ a a b a b 𝜀 =a a b a b

or 𝜎1 = baab.

S ⇒ T b U ⇒ 𝜀 b U = b U ⇒ b a U
⇒ b a a U ⇒ b a a b U ⇒ b a a b 𝜀 = b a a b

Derivation is a computation in that it is pushing symbols by following rigid rules.
This computation is nondeterministic in the sense that while doing a sequence of
⇒ steps, we often find that more than one → rule applies. So there is more than one
next thing to do, not just a unique next string.

Suppose that we have a grammar where there is sometimes more than one applicable
rule. Give a target string 𝜎 , how to derive it?
One way is brute force: perform all applicable production rules to the start symbol, then
for each result perform all applicable rules, etc. If 𝜎 is in the language of the grammar
then we will eventually derive it. This is a breadth-first search of the ⇒ sequences; here
are the first few levels for the grammar on the prior slide.

S

TbU

Suppose that we have a grammar where there is sometimes more than one applicable
rule. Give a target string 𝜎 , how to derive it?
One way is brute force: perform all applicable production rules to the start symbol, then
for each result perform all applicable rules, etc. If 𝜎 is in the language of the grammar
then we will eventually derive it. This is a breadth-first search of the ⇒ sequences; here
are the first few levels for the grammar on the prior slide.

S

TbU

aTbU YbU=bU TbaU TbbU TbY = Tb

Suppose that we have a grammar where there is sometimes more than one applicable
rule. Give a target string 𝜎 , how to derive it?
One way is brute force: perform all applicable production rules to the start symbol, then
for each result perform all applicable rules, etc. If 𝜎 is in the language of the grammar
then we will eventually derive it. This is a breadth-first search of the ⇒ sequences; here
are the first few levels for the grammar on the prior slide.

S

TbU

aTbU YbU=bU TbaU TbbU TbY = Tb

aaTbU
aYbU = abU

baU
bbU
bY = b

aTbaU
YbaU = baU

TbaaU
TbabU
TbaY = Tba

aTbbU
YbbU = bbU
TbbaU

TbbbU
TbbY = Tbb

aTb
Yb = b

Suppose that we have a grammar where there is sometimes more than one applicable
rule. Give a target string 𝜎 , how to derive it?
One way is brute force: perform all applicable production rules to the start symbol, then
for each result perform all applicable rules, etc. If 𝜎 is in the language of the grammar
then we will eventually derive it. This is a breadth-first search of the ⇒ sequences; here
are the first few levels for the grammar on the prior slide.

S

TbU

aTbU YbU=bU TbaU TbbU TbY = Tb

aaTbU
aYbU = abU

baU
bbU
bY = b

aTbaU
YbaU = baU

TbaaU
TbabU
TbaY = Tba

aTbbU
YbbU = bbU
TbbaU

TbbbU
TbbY = Tbb

aTb
Yb = b

The second way, the way that we actually solve these problems, for instance on the
Grammar section’s homework, is to guess. Then we verify that guess by exhibiting a
derivation.

Nondeterminism: a machine
This machine is nondeterministic: for a given pair ⟨present state, input character⟩ there
may be one next state, or more than one, or none. For instance, leaving 𝑞0 are two
different arrows labeled 0. And there is no arrow at all leaving 𝑞1 with the label 1.

0

0,1

0 1
@0 @1 @2 @3

Suppose that this machine gets the input 00001. Just as with the grammar, we will have
two ways to think of what happens. First, we can trace out every possible branch.

0

0,1

0 1
@0 @1 @2 @3

@0

Input: 0 0 0 0 1

0 1 2 3 4 5Step:

0

0,1

0 1
@0 @1 @2 @3

@0 ⊢
⊢

@0

@1

Input: 0 0 0 0 1

0 1 2 3 4 5Step:

0

0,1

0 1
@0 @1 @2 @3

@0 ⊢
⊢

@0

@1

⊢
⊢

⊢

@0

@1

@2

Input: 0 0 0 0 1

0 1 2 3 4 5Step:

0

0,1

0 1
@0 @1 @2 @3

@0 ⊢
⊢

@0

@1

⊢
⊢

⊢

@0

@1

@2

⊢
⊢

⊢

@0

@1

@2

Input: 0 0 0 0 1

0 1 2 3 4 5Step:

0

0,1

0 1
@0 @1 @2 @3

@0 ⊢
⊢

@0

@1

⊢
⊢

⊢

@0

@1

@2

⊢
⊢

⊢

@0

@1

@2

⊢
⊢

⊢

@0

@1

@2

Input: 0 0 0 0 1

0 1 2 3 4 5Step:

0

0,1

0 1
@0 @1 @2 @3

@0 ⊢
⊢

@0

@1

⊢
⊢

⊢

@0

@1

@2

⊢
⊢

⊢

@0

@1

@2

⊢
⊢

⊢

@0

@1

@2

⊢

⊢

@0

@3

Input: 0 0 0 0 1

0 1 2 3 4 5Step:

0

0,1

0 1
@0 @1 @2 @3

@0 ⊢
⊢

@0

@1

⊢
⊢

⊢

@0

@1

@2

⊢
⊢

⊢

@0

@1

@2

⊢
⊢

⊢

@0

@1

@2

⊢

⊢

@0

@3

Input: 0 0 0 0 1

0 1 2 3 4 5Step:

The highlighted branch ends in an accepting state.

As with the grammar, we are picturing that when the machine is asked to do two things,
it does them both. And when there is no next state, the branch dies. So the computation
history is not straight-line but instead is a tree.
After the first step, the machine is in multiple states simultaneously, namely 𝑞0 and 𝑞1.
The same also happens at all later steps; in all of those steps the machine is in a set of
states.
There is a branch that gets to the end and accepts the input string 00001. Branches can
fail to accept the string because they die, or because they get to the end and they just are
not in an accepting state.

As with the grammar, there is a second way to think of what is happening. This machine,

0

0,1

0 1
@0 @1 @2 @3

when presented with an input string 00001, must decide: when should it stop going
around 𝑞0’s loop and start following the tail to the right? Above we’ve seen the machine
accepting 00001, so it has solved this problem. We could say that the machine has
correctly guessed.

As with the grammar, we are picturing that when the machine is asked to do two things,
it does them both. And when there is no next state, the branch dies. So the computation
history is not straight-line but instead is a tree.
After the first step, the machine is in multiple states simultaneously, namely 𝑞0 and 𝑞1.
The same also happens at all later steps; in all of those steps the machine is in a set of
states.
There is a branch that gets to the end and accepts the input string 00001. Branches can
fail to accept the string because they die, or because they get to the end and they just are
not in an accepting state.
As with the grammar, there is a second way to think of what is happening. This machine,

0

0,1

0 1
@0 @1 @2 @3

when presented with an input string 00001, must decide: when should it stop going
around 𝑞0’s loop and start following the tail to the right? Above we’ve seen the machine
accepting 00001, so it has solved this problem. We could say that the machine has
correctly guessed.

First mental model for nondeterminism: spawning
For the grammar example, we made a branch each time a production rule applied to a
string. For the machine example, we also branched each time there was a possible thing
to do.
Another example of this branching is the Travelling Salesman problem. Suppose that we
want a cyclic trip that visits every state capitol in the forty eight contiguous US states in
less than 16 000 kilometers. If we start at Montpelier, Vermont then there are forty seven
possible next cities. A reasonable approach is to spawn forty seven child processes. The
process assigned Albany, for instance, would know that the trip so far is 126 kilometers.
After that, each child would fork its own set of children, forty six of them. At the end if
there is a trip of less than 16 000 kilometers then some branch has found it. Note that we
consider the overall computation a success if there exists even one process that is a
success.
The first mental model for nondeterminism is that when presented with multiple things
to do, the machine does them all. Think of it as an unboundedly parallelizable device.
This model is natural. In everyday computing, we are all used to having lots of windows
open on the screen, doing lots of things. Under the hood, the operating system forks
child processes to cover each thing that it must do.

Second mental model for nondeterminism: guessing
For both the grammar example and the machine example, we have also framed that the
system guessed the answer.
For example, we described the nondeterministic machine as guessing when to stop going
around 𝑞0’s loop and start following the tail to the right.

Saying “guessing” is jarring because our experience with computers in programming
class is that they don’t guess. An alternate way to state this model is that the machine is
furnished with the answer (“go around twice, then off to the right”) and it only has to
verify that answer. Often the furnisher is personified as a demon.

Flauros, the Duke of Hell.

Second mental model for nondeterminism: guessing
For both the grammar example and the machine example, we have also framed that the
system guessed the answer.
For example, we described the nondeterministic machine as guessing when to stop going
around 𝑞0’s loop and start following the tail to the right.
Saying “guessing” is jarring because our experience with computers in programming
class is that they don’t guess. An alternate way to state this model is that the machine is
furnished with the answer (“go around twice, then off to the right”) and it only has to
verify that answer. Often the furnisher is personified as a demon.

Flauros, the Duke of Hell.

What the two views share
In both mental models, the computation succeeds if there is a way for it to succeed. More
precisely, the machine accepts the input if there exists a sequence of configurations that
ends in an accepting state.
Very important: ‘if there exists’ doesn’t mean that there must be an algorithm for finding
it, such as backtracking or dynamic programming, etc. This is pure existence— it just
requires that there exist a way for the computation to succeed. That’s why the demon is
here; it is a being so powerful that it goes beyond needing ordinary computation to know
the answer.

Definition of a Nondeterministic Finite State machine
To make the definition of a nondeterministic Finite State machine, we change one thing
from the definition of Finite State machine, namely we change the codomain of Δ from 𝑄
to the power set P(𝑄).
Definition A nondeterministic Finite State machine ⟨𝑄,𝑞start, 𝐹 , Σ,Δ⟩ consists of a
finite set of states 𝑄 , one of which is the start state 𝑞start, a subset 𝐹 ⊆ 𝑄 of accepting
states or final states, a finite input alphabet set Σ, and a next-state function
Δ : 𝑄 × Σ → P(𝑄).
The machine accepts its input if there exists at least one sequence of configurations that
ends in acceptance.
Example This nondeterministic listener waits to hear the remote signal 0101110. That
is, it accepts the language {𝜎⌢0101110

�� 𝜎 ∈ B∗ }.

0,1
0 1 0 1 1 1 0

@0 @1 @2 @3 @4 @5 @6 @7

For example, if this listener hears a string 𝜎 = 010101110, with three 01’s in the prefix
instead of two then it ends in an accepting state. In terms of our second framing, it
guesses that it should ignore the first 01 but not the second.

Nondeterminism can simplify thinking about machines
Example This nondeterministic Finite State machine accepts only those strings ending
in HEF. (The alphabet Σ is the capital ASCII letters.)

any
H E F

@0 @1 @2 @3

Contrast that with what we got when we did this job using a deterministic machine.

H

other

E

other

H

F

H

other

H

other

@0 @1 @2 @3

The nondeterministic machine is easier to understand and more obviously matches its
specification.

Nondeterminism can simplify thinking about machines
Example This nondeterministic Finite State machine accepts only those strings ending
in HEF. (The alphabet Σ is the capital ASCII letters.)

any
H E F

@0 @1 @2 @3

Contrast that with what we got when we did this job using a deterministic machine.

H

other

E

other

H

F

H

other

H

other

@0 @1 @2 @3

The nondeterministic machine is easier to understand and more obviously matches its
specification.

Example This nondeterminstic Finite State machine M with alphabet Σ = {a, b}
accepts an input string only if it has a in the third position from the end.

a,b
a a,b a,b

@0 @1 @2 @3

Thus L(M) = {aaa, aab, aba, abb, aaaa, aaab, aaba, aabb, baaa, baab, ... }.

Example This nondeterministic machine M̂ with alphabet Σ = {0, 1} accepts an input
string only if it contains a substring with a 1 followed by any number of 0’s, including
possibly zero-many 0’s, followed by a second 1.

1
any

0

1
any@0 @1 @2

Thus L(M̂) = {11, 011, 110, 111, 0011, 0101, 0110, 0111, ... }.

Example This nondeterminstic Finite State machine M with alphabet Σ = {a, b}
accepts an input string only if it has a in the third position from the end.

a,b
a a,b a,b

@0 @1 @2 @3

Thus L(M) = {aaa, aab, aba, abb, aaaa, aaab, aaba, aabb, baaa, baab, ... }.
Example This nondeterministic machine M̂ with alphabet Σ = {0, 1} accepts an input
string only if it contains a substring with a 1 followed by any number of 0’s, including
possibly zero-many 0’s, followed by a second 1.

1
any

0

1
any@0 @1 @2

Thus L(M̂) = {11, 011, 110, 111, 0011, 0101, 0110, 0111, ... }.

𝜀 transitions
Another extension, beyond nondeterminism, is to allow 𝜀 transitions or 𝜀 moves. We
alter the definition of a nondeterministic Finite State machine so that instead of
Δ : 𝑄 × Σ → P(𝑄) the transition function’s signature is Δ : 𝑄 × (Σ ∪ {𝜀 }) → P(𝑄).
The associated behavior is that the machine can transition spontaneously, without
consuming any input.

Example The machine on the left accepts strings with prefix ab. The one on the right
accepts strings with suffix ab.

a b

any

@0 @1 @2 a

any

b
@3 @4 @5

This 𝜀 transition joins them together, serially.

a b

any

Y a

any

b
@0 @1 @2 @3 @4 @5

The joined machine accepts strings that begin with ab and end with ab.

𝜀 transitions
Another extension, beyond nondeterminism, is to allow 𝜀 transitions or 𝜀 moves. We
alter the definition of a nondeterministic Finite State machine so that instead of
Δ : 𝑄 × Σ → P(𝑄) the transition function’s signature is Δ : 𝑄 × (Σ ∪ {𝜀 }) → P(𝑄).
The associated behavior is that the machine can transition spontaneously, without
consuming any input.
Example The machine on the left accepts strings with prefix ab. The one on the right
accepts strings with suffix ab.

a b

any

@0 @1 @2 a

any

b
@3 @4 @5

This 𝜀 transition joins them together, serially.

a b

any

Y a

any

b
@0 @1 @2 @3 @4 @5

The joined machine accepts strings that begin with ab and end with ab.

Example We can take the same two machines, one that accepts strings with prefix ab
and one that accepts strings with suffix ab.

a b

any

@0 @1 @2 a

any

b
@3 @4 @5

and join them in parallel. The result accepts strings that begin with ab or end with ab.

Y

Y

a b
any

a

any

b

@0

@1 @2 @3

@4 @5 @6

Example Without the 𝜀 edge this machine’s language is L = {𝜀, ab}, while with it the
language is L∗ = { (ab)𝑛

�� 𝑛 ∈ N}.

a b

Y

@0 @1 @2

Example We can take the same two machines, one that accepts strings with prefix ab
and one that accepts strings with suffix ab.

a b

any

@0 @1 @2 a

any

b
@3 @4 @5

and join them in parallel. The result accepts strings that begin with ab or end with ab.

Y

Y

a b
any

a

any

b

@0

@1 @2 @3

@4 @5 @6

Example Without the 𝜀 edge this machine’s language is L = {𝜀, ab}, while with it the
language is L∗ = { (ab)𝑛

�� 𝑛 ∈ N}.

a b

Y

@0 @1 @2

Example For this nondeterministic Finite State machine with 𝜀 transitions

a Y b

Y

@0 @1 @2

the computation tree on input aab is below. The 𝜀 moves are shown vertically, within the
white stripes.

@0

⊢

@1

⊢ @0
⊢

@1

⊢ @0

⊢

@1 ⊢ @2

⊢

@0

⊢

@1
Input: a a b

0 1 2 3Step:

There is an accepting branch, highlighted.

𝜀 Closure
The 𝜀 closure function 𝐸 : 𝑄 → P(𝑄) inputs a state 𝑞 and returns the set of states that
are reachable from 𝑞 without consuming any input, that is, via 𝜀 moves alone.
Example For this machine, these are the 𝜀 closures.

1

0
Y

0

1

Y0

0,1

Y
0

@0

@1

@2

@3

state 𝑞0 𝑞1 𝑞2 𝑞3
𝜀 closure {𝑞0, 𝑞1 } {𝑞1 } {𝑞1, 𝑞2, 𝑞3 } {𝑞1, 𝑞3 }

Example We can compute a state’s 𝜀 closure by proceeding in steps. The table below
uses this machine.

a

Y

b

Y

Y

c

d

@0 @1 @2

@3 @4

@5 @6

𝑚 = 0 1 2 3 𝐸 (𝑞)
𝑞0 {𝑞0 } {𝑞0, 𝑞2 } {𝑞0, 𝑞2, 𝑞3, 𝑞5 } {𝑞0, 𝑞2, 𝑞3, 𝑞5 } {𝑞0, 𝑞2, 𝑞3, 𝑞5 }
𝑞1 {𝑞1 } {𝑞1 } {𝑞1 } {𝑞1 } {𝑞1 }
𝑞2 {𝑞2 } {𝑞2, 𝑞3, 𝑞5 } {𝑞2, 𝑞3, 𝑞5 } {𝑞2, 𝑞3, 𝑞5 } {𝑞2, 𝑞3, 𝑞5 }
𝑞3 {𝑞3 } {𝑞3 } {𝑞3 } {𝑞3 } {𝑞3 }
𝑞4 {𝑞4 } {𝑞4 } {𝑞4 } {𝑞4 } {𝑞4 }
𝑞5 {𝑞5 } {𝑞5 } {𝑞5 } {𝑞5 } {𝑞5 }

The initial column’s set contains only the row’s state. To move to column 1, add the
states reachable with one 𝜀 move from the initial state. Thus for the top row, that
machine has an 𝜀 move from 𝑞0 to 𝑞2 so the𝑚 = 1 set adds 𝑞2 to the𝑚 = 0 set. To move
to column 2, add states reachable with an 𝜀 move from any element of column 1’s set
(which are thus at most two 𝜀 moves away from the initial state). Doing the same for the
third column does not change the sets in any row, so we are done.

The action of a nondeterministic Finite State machine with 𝜀 moves
A configuration is a pair C = ⟨𝑞, 𝜏⟩ ∈ 𝑄 × Σ∗. These machines start in an initial
configuration C0 = ⟨𝑞0, 𝜏0⟩, with initial state 𝑞0 and input 𝜏0. As earlier, we will specify
when two configurations are related by ‘⊢’ and then we will say that a machine accepts
its input if there is at least one sequence of related configurations that ends in a halting
configuration whose state is accepting.
Consider a configuration C𝑠 = ⟨𝑞, 𝜏𝑠 ⟩, in order to describe under what circumstances
C𝑠 ⊢ Ĉ for some next Ĉ = ⟨𝑞, 𝜏⟩. There are two possibilities. The first is the same as for
any nondeterministic machine: 𝜏 is not empty and 𝜏 comes from popping 𝜏 ’s leading
character, 𝜏 = 𝑐⌢𝜏 where 𝑐 ∈ Σ, and 𝑞 is a member of Δ(𝑞, 𝑐). The second possibility
differs from the description for machines without 𝜀 moves: 𝜏 = 𝜏 and 𝑞 is a member of
the 𝜀 closure 𝐸 (𝑞) with 𝑞 ≠ 𝑞 (the significance of 𝜏 = 𝜏 is that the machine doesn’t
consume any input characters).
With that, a computation of a nondeterministic Finite State machine with 𝜀 transitions is
the set containing all of the sequences of transitions that are as described. A sequence
ends in a halting configuration if its final pair has an empty tape string, so that the
sequence has the form C0 = ⟨𝑞0, 𝜏0⟩ ⊢ C1 ⊢ · · · Cℎ = ⟨𝑞ℎ, 𝜀⟩. The machine accepts 𝜏0 if
there is at least one such sequence where 𝑞ℎ is an element of 𝐹 . If there is no such
sequence then the machine rejects 𝜏0.

Equivalence of machine types
We will show how to convert any nondeterministic Finite State machine into a
deterministic machine doing the same job. This may help obviate qualms over ‘guessing’.
Theorem The class of languages recognized by nondeterministic Finite State machines
equals the class of languages recognized by deterministic Finite State machines. This
remains true if we allow the nondeterministic machines to have 𝜀 transitions.

Inclusion in one direction is easy because any deterministic machine is, essentially, a
nondeterministic machine. In a deterministic machine the next-state function outputs
single states and to make it a nondeterministic machine, just convert those states into
singleton sets. Thus the set of languages recognized by deterministic machines is a
subset of the set recognized by nondeterministic machines.
We will demonstrate inclusion in the other direction constructively, starting with
nondeterministic machines and building deterministic machines that recognize the same
language. The two examples below show the powerset construction.

Example Here is a nondeterministic Finite State machine M.

1

0,1

1

1

0

@0 @1 @2

The equivalent deterministic machine’s states are the sets of M’s states. The starting
state is 𝑠1 = {𝑞0 }. A state is accepting if it contains any accepting state of the
nondeterministic machine.

0 1
𝑠0 = { } 𝑠0 𝑠0

𝑠1 = {𝑞0 } 𝑠1 𝑠4
𝑠2 = {𝑞1 } 𝑠0 𝑠5

+ 𝑠3 = {𝑞2 } 𝑠3 𝑠0
𝑠4 = {𝑞0, 𝑞1 } 𝑠1 𝑠7

+ 𝑠5 = {𝑞0, 𝑞2 } 𝑠5 𝑠4
+ 𝑠6 = {𝑞1, 𝑞2 } 𝑠3 𝑠5

+ 𝑠7 = {𝑞0, 𝑞1, 𝑞2 } 𝑠5 𝑠7

0,1

0

1
0

1

0

1

0

1

0

1

0

1

0
1

B0

B1

B2

B3

B4

B5

B6

B7

Here is that diagram again, along with the one showing only reachable states.

0,1

0

1
0

1

0

1

0

1

0

1

0

1

0
1

B0

B1

B2

B3

B4

B5

B6

B7

0

1

0

1

0

1

0
1

B1

B4

B5B7

Algorithm for converting to a deterministic machine
Now we give the algorithm for starting with a nondeterministic machine M𝑁 and
constructing a deterministic machine M𝐷 with the same behavior, whether or not M𝑁
has 𝜀 transitions. Elements of M𝐷 are sets of states from M𝑁 . Define the 𝜀 closure of a
set of states to be the union of the 𝜀 closures of its members.
The transition function Δ𝐷 inputs a state 𝑠𝑖 ∈ M𝐷 , that is, 𝑠𝑖 = {𝑞𝑘0 , ... 𝑞𝑘𝑖 }, along with
a tape character 𝑐 ∈ Σ. First apply M𝑁 ’s next state function to 𝑠𝑖 ’s elements to get
𝑠𝑖,𝑐 = Δ𝑁 (𝑞𝑘0 , 𝑐) ∪ · · ·Δ𝑁 (𝑞𝑘𝑖 , 𝑐). Second, where 𝑠𝑖,𝑐 = {𝑞 𝑗0 , ... 𝑞 𝑗𝑖 }, finish by taking the
𝜀 closure of all of 𝑠 ’s elements, Δ𝐷 (𝑠𝑖 , 𝑐) = 𝐸 (𝑞 𝑗0) ∪ · · · 𝐸 (𝑞 𝑗𝑖). (For machines without 𝜀
transitions this second part has no effect.)
The start state of M𝐷 is the 𝜀 closure of 𝑞0 (for machines without 𝜀 moves this is {𝑞0 }).
A state of M𝐷 is accepting if it contains any of M𝑁 ’s accepting states.

As an example, the next slide does the conversion for this machine.

M𝑁 :
1

0
Y

0

1

Y0

0,1

Y
0

@0

@1

@2

@3

Algorithm for converting to a deterministic machine
Now we give the algorithm for starting with a nondeterministic machine M𝑁 and
constructing a deterministic machine M𝐷 with the same behavior, whether or not M𝑁
has 𝜀 transitions. Elements of M𝐷 are sets of states from M𝑁 . Define the 𝜀 closure of a
set of states to be the union of the 𝜀 closures of its members.
The transition function Δ𝐷 inputs a state 𝑠𝑖 ∈ M𝐷 , that is, 𝑠𝑖 = {𝑞𝑘0 , ... 𝑞𝑘𝑖 }, along with
a tape character 𝑐 ∈ Σ. First apply M𝑁 ’s next state function to 𝑠𝑖 ’s elements to get
𝑠𝑖,𝑐 = Δ𝑁 (𝑞𝑘0 , 𝑐) ∪ · · ·Δ𝑁 (𝑞𝑘𝑖 , 𝑐). Second, where 𝑠𝑖,𝑐 = {𝑞 𝑗0 , ... 𝑞 𝑗𝑖 }, finish by taking the
𝜀 closure of all of 𝑠 ’s elements, Δ𝐷 (𝑠𝑖 , 𝑐) = 𝐸 (𝑞 𝑗0) ∪ · · · 𝐸 (𝑞 𝑗𝑖). (For machines without 𝜀
transitions this second part has no effect.)
The start state of M𝐷 is the 𝜀 closure of 𝑞0 (for machines without 𝜀 moves this is {𝑞0 }).
A state of M𝐷 is accepting if it contains any of M𝑁 ’s accepting states.

As an example, the next slide does the conversion for this machine.

M𝑁 :
1

0
Y

0

1

Y0

0,1

Y
0

@0

@1

@2

@3

M𝑁 :
1

0
Y

0

1

Y0

0,1

Y
0

@0

@1

@2

@3

The start state is 𝐸 ({𝑞0 }) = 𝑠7. A state of M𝐷 is accepting if and only if it contains 𝑞1.

𝑠𝑖,a Δ𝐷 (𝑠𝑖 , a) 𝑠𝑖,b Δ𝐷 (𝑠𝑖 , b)
𝑠0 = { } { } { } = 𝑠0 { } { } = 𝑠0

𝑠1 = {𝑞0 } {𝑞2 } {𝑞2 } = 𝑠3 {𝑞1 } {𝑞0, 𝑞1, 𝑞3 } = 𝑠12
+ 𝑠2 = {𝑞1 } { } { } = 𝑠0 { } { } = 𝑠0
𝑠3 = {𝑞2 } { } { } = 𝑠0 {𝑞0 } {𝑞0, 𝑞3 } = 𝑠7
𝑠4 = {𝑞3 } {𝑞3 } {𝑞3 } = 𝑠4 { } { } = 𝑠0

+ 𝑠5 = {𝑞0, 𝑞1 } {𝑞2 } {𝑞2 } = 𝑠3 {𝑞1 } {𝑞0, 𝑞1, 𝑞3 } = 𝑠12
𝑠6 = {𝑞0, 𝑞2 } {𝑞2 } {𝑞2 } = 𝑠3 {𝑞0, 𝑞1 } {𝑞0 .𝑞1, 𝑞3 } = 𝑠12
𝑠7 = {𝑞0, 𝑞3 } {𝑞2, 𝑞3 } {𝑞2, 𝑞3 } = 𝑠10 {𝑞1 } {𝑞0, 𝑞1, 𝑞3 } = 𝑠12

+ 𝑠8 = {𝑞1, 𝑞2 } { } { } = 𝑠0 {𝑞0 } {𝑞0, 𝑞3 } = 𝑠7
+ 𝑠9 = {𝑞1, 𝑞3 } {𝑞3 } {𝑞3 } = 𝑠4 { } { } = 𝑠0
𝑠10 = {𝑞2, 𝑞3 } {𝑞3 } {𝑞3 } = 𝑠4 {𝑞0 } {𝑞0, 𝑞3 } = 𝑠7

+ 𝑠11 = {𝑞0, 𝑞1, 𝑞2 } {𝑞2 } {𝑞2 } = 𝑠3 {𝑞0, 𝑞1 } {𝑞0, 𝑞1, 𝑞3 } = 𝑠12
+ 𝑠12 = {𝑞0, 𝑞1, 𝑞3 } {𝑞2, 𝑞3 } {𝑞2, 𝑞3 } = 𝑠10 {𝑞1 } {𝑞0, 𝑞1, 𝑞3 } = 𝑠12
𝑠13 = {𝑞0, 𝑞2, 𝑞3 } {𝑞2, 𝑞3 } {𝑞2, 𝑞3 } = 𝑠10 {𝑞0, 𝑞1 } {𝑞0, 𝑞1, 𝑞3 } = 𝑠12

+ 𝑠14 = {𝑞1, 𝑞2, 𝑞3 } {𝑞3 } {𝑞3 } = 𝑠4 {𝑞0 } {𝑞0, 𝑞3 } = 𝑠7
+ 𝑠15 = {𝑞0, 𝑞1, 𝑞2, 𝑞3 } {𝑞2, 𝑞3 } {𝑞2, 𝑞3 } = 𝑠10 {𝑞0, 𝑞1 } {𝑞0, 𝑞1, 𝑞3 } = 𝑠12

Here is that deterministic machine as a graph, showing only the reachable states.

b
b

a

b
a

a

a

b
a,bB0B4

B7

B10

B12

Regular expressions

Examples
The languages accepted by a Finite State machine have patterns. We exploit these
patterns to describe them with regular expressions. We will start with some examples
and then give a definition.
Example The regular expression p(a|e|i|o|u)t describes the language of strings that
start with p, have a vowel in the middle, and end with t. That is, this regular expression
describes the language consisting of five words, L = {pat, pet, pit, pot, put}.
The pipe operator, ‘|’, which is a kind of ‘or’, and the parentheses, which provide
grouping, are not part of the strings being described; they are metacharacters.
Besides the pipe and parentheses, the regular expression in that example also describes
concatenation since the language consists of strings where the initial p is concatenated
with a vowel, which in turn is concatenated with t.

Those strings are accepted by this Finite State machine.

h

else

a,e,i,o,u

else

t

else

any

any

@0 @1 @2 @3

4

Examples
The languages accepted by a Finite State machine have patterns. We exploit these
patterns to describe them with regular expressions. We will start with some examples
and then give a definition.
Example The regular expression p(a|e|i|o|u)t describes the language of strings that
start with p, have a vowel in the middle, and end with t. That is, this regular expression
describes the language consisting of five words, L = {pat, pet, pit, pot, put}.
The pipe operator, ‘|’, which is a kind of ‘or’, and the parentheses, which provide
grouping, are not part of the strings being described; they are metacharacters.
Besides the pipe and parentheses, the regular expression in that example also describes
concatenation since the language consists of strings where the initial p is concatenated
with a vowel, which in turn is concatenated with t.
Those strings are accepted by this Finite State machine.

h

else

a,e,i,o,u

else

t

else

any

any

@0 @1 @2 @3

4

Example The regular expression ab*c describes the language whose words begin with
an a, followed by any number of b’s (including possibly zero-many b’s), and ending with
a c. Thus, ‘∗’ means ‘repeat the prior thing any number of times, including possibily
zero-many times’. This regular expression describes the language
L = {ac, abc, abbc, ... }.

That is the language of this machine.

a

else

b

c

else
any

any

@0 @1 @2

4

Example The strings that are accepted by this machine match a*ba*.

a

b

a

b

a,b

@0 @1 @2

Example The regular expression ab*c describes the language whose words begin with
an a, followed by any number of b’s (including possibly zero-many b’s), and ending with
a c. Thus, ‘∗’ means ‘repeat the prior thing any number of times, including possibily
zero-many times’. This regular expression describes the language
L = {ac, abc, abbc, ... }.
That is the language of this machine.

a

else

b

c

else
any

any

@0 @1 @2

4

Example The strings that are accepted by this machine match a*ba*.

a

b

a

b

a,b

@0 @1 @2

Definition: syntax
Definition Let Σ be an alphabet not containing the metacharacters ‘)’, ‘(’, ‘|’, or ‘*’. A
regular expression over Σ is a string that can be derived from the grammar

⟨regex⟩ → ⟨concat⟩
| (⟨regex⟩ ‘|’ ⟨concat⟩)

⟨concat⟩ → ⟨simple⟩
| (⟨concat⟩ ⟨simple⟩)

⟨simple⟩ → ⟨char⟩
| (⟨simple⟩ *)

⟨char⟩ → ∅ | 𝜀 | 𝑥0 | 𝑥1 | . . .

where the 𝑥𝑖 characters are members of Σ.

Semantics
The language described by the regular expression ∅ is the empty language, L(∅) = ∅.
The language described by the regular expression consisting of only the character 𝜀 is the
one-element language containing only the empty string, L(𝜀) = {𝜀 } = { ‘ ’}. If the
regular expression consists of a single character from the alphabet Σ then the language
that it describes contains only one string and that string has only that single character, as
in L(a) = {a}.
We finish by doing the operations. Start with regular expressions 𝑅0 and 𝑅1 describing
languages L(𝑅0) and L(𝑅1). Then the pipe symbol describes the union of the languages,
so that L(𝑅0 |𝑅1) = L(𝑅0) ∪ L(𝑅1). Concatenation of the regular expressions describes
concatenation of the languages, L(𝑅0𝑅1) = L(𝑅0)⌢L(𝑅1). And L(𝑅0∗) = L(𝑅0)∗, so the
Kleene star of the regular expression describes the star of the language.

Examples
Example The language consisting of strings of a’s whose length is a multiple of three,
L = {𝑎3𝑘

�� 𝑘 ∈ N} = {𝜀, aaa, aaaaaa, ... }, is described by (aaa)*.

Example The empty string character 𝜀 is handy to mark things as optional. Thus
a*(𝜀|b) describes the language of strings that have any number of a’s and optionally end
in one b, L = {𝜀, b, a, ab, aa, aab, ... }. Similarly, to describe the language consisting of
words with between three and five a’s, L = {aaa, aaaa, aaaaa}, we can use aaa(𝜀|a|aa).
Example To match any character we can list them all. The language over Σ = {a, b, c}
of three-letter words ending in bc is {abc, bbc, cbc}. The regular expression (a|b|c)bc
describes it. Another regular expression that describes this language is
(abc)|(bbc)|(cbc).
Example The language {b, bc, bcc, ab, abc, abcc, aab, ... } has words starting with any
number of a’s (including zero-many a’s), followed by a single b, and then ending in fewer
than three c’s. To describe it we can use a*b(𝜀|c|cc).

Examples
Example The language consisting of strings of a’s whose length is a multiple of three,
L = {𝑎3𝑘

�� 𝑘 ∈ N} = {𝜀, aaa, aaaaaa, ... }, is described by (aaa)*.
Example The empty string character 𝜀 is handy to mark things as optional. Thus
a*(𝜀|b) describes the language of strings that have any number of a’s and optionally end
in one b, L = {𝜀, b, a, ab, aa, aab, ... }. Similarly, to describe the language consisting of
words with between three and five a’s, L = {aaa, aaaa, aaaaa}, we can use aaa(𝜀|a|aa).

Example To match any character we can list them all. The language over Σ = {a, b, c}
of three-letter words ending in bc is {abc, bbc, cbc}. The regular expression (a|b|c)bc
describes it. Another regular expression that describes this language is
(abc)|(bbc)|(cbc).
Example The language {b, bc, bcc, ab, abc, abcc, aab, ... } has words starting with any
number of a’s (including zero-many a’s), followed by a single b, and then ending in fewer
than three c’s. To describe it we can use a*b(𝜀|c|cc).

Examples
Example The language consisting of strings of a’s whose length is a multiple of three,
L = {𝑎3𝑘

�� 𝑘 ∈ N} = {𝜀, aaa, aaaaaa, ... }, is described by (aaa)*.
Example The empty string character 𝜀 is handy to mark things as optional. Thus
a*(𝜀|b) describes the language of strings that have any number of a’s and optionally end
in one b, L = {𝜀, b, a, ab, aa, aab, ... }. Similarly, to describe the language consisting of
words with between three and five a’s, L = {aaa, aaaa, aaaaa}, we can use aaa(𝜀|a|aa).
Example To match any character we can list them all. The language over Σ = {a, b, c}
of three-letter words ending in bc is {abc, bbc, cbc}. The regular expression (a|b|c)bc
describes it. Another regular expression that describes this language is
(abc)|(bbc)|(cbc).

Example The language {b, bc, bcc, ab, abc, abcc, aab, ... } has words starting with any
number of a’s (including zero-many a’s), followed by a single b, and then ending in fewer
than three c’s. To describe it we can use a*b(𝜀|c|cc).

Examples
Example The language consisting of strings of a’s whose length is a multiple of three,
L = {𝑎3𝑘

�� 𝑘 ∈ N} = {𝜀, aaa, aaaaaa, ... }, is described by (aaa)*.
Example The empty string character 𝜀 is handy to mark things as optional. Thus
a*(𝜀|b) describes the language of strings that have any number of a’s and optionally end
in one b, L = {𝜀, b, a, ab, aa, aab, ... }. Similarly, to describe the language consisting of
words with between three and five a’s, L = {aaa, aaaa, aaaaa}, we can use aaa(𝜀|a|aa).
Example To match any character we can list them all. The language over Σ = {a, b, c}
of three-letter words ending in bc is {abc, bbc, cbc}. The regular expression (a|b|c)bc
describes it. Another regular expression that describes this language is
(abc)|(bbc)|(cbc).
Example The language {b, bc, bcc, ab, abc, abcc, aab, ... } has words starting with any
number of a’s (including zero-many a’s), followed by a single b, and then ending in fewer
than three c’s. To describe it we can use a*b(𝜀|c|cc).

More examples
Example Produce a regular expression to match each description. For each, take the
alphabet to be the set of bits, B = {0, 1}.
1. The set of bitstrings that end in three consecutive 1’s.

2. The set of bitstrings with at least one 0.
3. The bitstrings containing at least three 1’s.
4. The set of bitstrings starting with a digit other than the one that it ends with.

More examples
Example Produce a regular expression to match each description. For each, take the
alphabet to be the set of bits, B = {0, 1}.
1. The set of bitstrings that end in three consecutive 1’s.
2. The set of bitstrings with at least one 0.

3. The bitstrings containing at least three 1’s.
4. The set of bitstrings starting with a digit other than the one that it ends with.

More examples
Example Produce a regular expression to match each description. For each, take the
alphabet to be the set of bits, B = {0, 1}.
1. The set of bitstrings that end in three consecutive 1’s.
2. The set of bitstrings with at least one 0.
3. The bitstrings containing at least three 1’s.

4. The set of bitstrings starting with a digit other than the one that it ends with.

More examples
Example Produce a regular expression to match each description. For each, take the
alphabet to be the set of bits, B = {0, 1}.
1. The set of bitstrings that end in three consecutive 1’s.
2. The set of bitstrings with at least one 0.
3. The bitstrings containing at least three 1’s.
4. The set of bitstrings starting with a digit other than the one that it ends with.

Kleene’s Theorem
Theorem (Kleene’s theorem) A language is recognized by a Finite State machine if
and only if that language is described by a regular expression.

Lemma If a language is described by a regular expression then there is a Finite State
machine recognizing that language.

Pf We will show that for any regular expression 𝑅 there is a machine that accepts
strings matching that expression. We give nondeterministic machines, but of course we
can convert them to deterministic ones if desired.
Start with regular expressions consisting of a single character. If 𝑅 = ∅ then L(𝑅) = { }
and the machine on the left below recognizes this language. If 𝑅 = 𝜀 then L(𝑅) = {𝜀 }
and the machine in the middle recognizes it. If the regular expression is a character from
the alphabet such as 𝑅 = a then the machine on the right works.

@0 @0 aa
@0 @2

Kleene’s Theorem
Theorem (Kleene’s theorem) A language is recognized by a Finite State machine if
and only if that language is described by a regular expression.
Lemma If a language is described by a regular expression then there is a Finite State
machine recognizing that language.

Pf We will show that for any regular expression 𝑅 there is a machine that accepts
strings matching that expression. We give nondeterministic machines, but of course we
can convert them to deterministic ones if desired.
Start with regular expressions consisting of a single character. If 𝑅 = ∅ then L(𝑅) = { }
and the machine on the left below recognizes this language. If 𝑅 = 𝜀 then L(𝑅) = {𝜀 }
and the machine in the middle recognizes it. If the regular expression is a character from
the alphabet such as 𝑅 = a then the machine on the right works.

@0 @0 aa
@0 @2

We finish by handling the three operations. Let 𝑅0 and 𝑅1 be regular expressions. The
inductive hypothesis gives a machine M0 whose language is described by 𝑅0 and a
machine M1 whose language is described by 𝑅1.
First consider alternation, 𝑅 = 𝑅0|𝑅1. Create the machine recognizing the language
described by 𝑅 by joining those two machines in parallel: introduce a new state 𝑠 and use
𝜀 transitions to connect 𝑠 to the start states of M0 and M1. For example, this shows two
machines combined

Y

Y

a

a,b

b

a

c
B0

@0 @1 @2

A0 A1

The top nondeterministic machine’s language is {𝜎 ∈ Σ∗
�� 𝜎 ends in ab} and the bottom

machine’s language is {𝜎 ∈ Σ∗
�� 𝜎 = (ac)𝑛 for some 𝑛 ∈ N}. The language for the entire

machine is the union.

L = {𝜎 ∈ Σ∗
�� either 𝜎 ends in ab or 𝜎 = (ac)𝑛 for 𝑛 ∈ N}

Next consider concatenation, 𝑅 = 𝑅0⌢𝑅1. Join the two machines serially: for each
accepting state in M0, make an 𝜀 transition to the start state of M1 and then convert all
of the accepting states of M0 to be non-accepting states. For example, the
machine on the left below recognizes the language of repetitions of the string aab,
L0 = { (aab)𝑖

�� 𝑖 ∈ N}. The machine on the right recognizes repetitions of either a or
aba, L1 = {𝜎0⌢ · · · 𝜎 𝑗−1

�� 𝑗 ∈ N and 𝜎𝑘 = a or 𝜎𝑘 = aba for 0 ≤ 𝑘 ≤ 𝑗 − 1}.

a

a

b

@0

@1@2

a

a

b

a

@3

@4 @5

The combined machine accepts strings in the concatenation of those languages,
L(M) = L0⌢L1.

a

a

b

Y

a

a

b

a

@0

@1@2

@3

@4 @5

then

Finally consider Kleene star, 𝑅 = (𝑅0)*. For each accepting state in the machine M0
that is not the start state, make an 𝜀 transition to the start state and then make the start
state an accepting state. For example, without the 𝜀 edge this machine’s language is
{𝜀, ab}, while with it the language is { (ab)𝑛

�� 𝑛 ∈ N}.

a b

Y

@0 @1 @2

Those are all the allowed operations, and so that ends the proof.

Lemma Any language recognized by a Finite State machine is described by a regular
expression.

Here is the idea: start with a Finite State machine and eliminate its states one at a time,
keeping the accepted language the same.

a b
@8 @ @>

abab
@8 @>

For this, we generalize the transition graphs to allow edge labels that are regular
expressions.
A bit more detail: take a, b, c, and d to be regular expressions. Start by introducing
a new start state guaranteed to have no incoming edges, 𝑒, and a new final state
guaranteed to be unique, 𝑓 .

a

d

b

c

@0

@1

@2 Y

a

d

b

c

Y4 @0

@1

@2 5

Then eliminate 𝑞1 as below.

Y d|(ab*c) Y4 @0 @2 5

The proof is in the book. Here is an illustration.
Example Consider M on the left. Introduce 𝑒 and 𝑓 to get M̂ on the right.

a

b

a

b

b

@0 @1

@2

Y
a

Y

b

a

Y

b

b

4 @0 @1

@2

5

Start by eliminating 𝑞2. That gives this machine.

Y
a

Y

b|(ab*b)

Y4 @0 @1 5

The proof is in the book. Here is an illustration.
Example Consider M on the left. Introduce 𝑒 and 𝑓 to get M̂ on the right.

a

b

a

b

b

@0 @1

@2

Y
a

Y

b

a

Y

b

b

4 @0 @1

@2

5

Start by eliminating 𝑞2. That gives this machine.

Y
a

Y

b|(ab*b)

Y4 @0 @1 5

Next eliminate 𝑞1.

Y

Y|a(b|ab*b)

Y|aY
4 @0 5

Finally, eliminate 𝑞0.

Y(Y|(a(b|ab*b)))*(Y|aY)Y(Y|(a(b|ab*b)))*(Y|aY)
4 5

That regular expression simplifies. For instance, a𝜀=a. The result is (a(b|ab*b))*(𝜀|a).

Next eliminate 𝑞1.

Y

Y|a(b|ab*b)

Y|aY
4 @0 5

Finally, eliminate 𝑞0.

Y(Y|(a(b|ab*b)))*(Y|aY)Y(Y|(a(b|ab*b)))*(Y|aY)
4 5

That regular expression simplifies. For instance, a𝜀=a. The result is (a(b|ab*b))*(𝜀|a).

Regular languages

Definition
Definition A regular language is one that is recognized by some Finite State machine
or equivalently, described by a regular expression.
Example The set {ab𝑛

�� 𝑛 ∈ N} = {a, ab, abb ... } is a regular language. Another
language that is regular is any finite set of strings.

In the proof of Kleene’s Theorem, we saw that if two languages are regular then their
union is also regular. We say that a structure is closed under an operation if performing
that operation on its members always yields another member.
Lemma The collection of regular languages is closed under the union of two languages,
the concatenation of two languages, and the Kleene star of a language.

Pf. In the first lemma for the proof of Kleene’s Theorem we did the regular expression
operations of pipe, concatenation, and Kleene star. Those correspond to set operations;
for instance, if 𝑅0 is a regular expression describing the language L0, and 𝑅1 describes
L1, then the regular expression 𝑅0|𝑅1 describes L0 ∪ L1.

Definition
Definition A regular language is one that is recognized by some Finite State machine
or equivalently, described by a regular expression.
Example The set {ab𝑛

�� 𝑛 ∈ N} = {a, ab, abb ... } is a regular language. Another
language that is regular is any finite set of strings.

In the proof of Kleene’s Theorem, we saw that if two languages are regular then their
union is also regular. We say that a structure is closed under an operation if performing
that operation on its members always yields another member.
Lemma The collection of regular languages is closed under the union of two languages,
the concatenation of two languages, and the Kleene star of a language.

Pf. In the first lemma for the proof of Kleene’s Theorem we did the regular expression
operations of pipe, concatenation, and Kleene star. Those correspond to set operations;
for instance, if 𝑅0 is a regular expression describing the language L0, and 𝑅1 describes
L1, then the regular expression 𝑅0|𝑅1 describes L0 ∪ L1.

Product construction
The machine on the left, M0, accepts strings with fewer than two a’s. The one on the
right, M1, accepts strings with an odd number of b’s.

a

b

a

b a,b

@0 @1 @2

a

b

a

b

B0 B1

The transition tables contain the same information as the pictures.

Δ0 a b
+ 𝑞0 𝑞1 𝑞0
+ 𝑞1 𝑞2 𝑞1
𝑞2 𝑞2 𝑞2

Δ1 a b
𝑠0 𝑠0 𝑠1

+ 𝑠1 𝑠1 𝑠0

This machine M has states that are the members of the cross product 𝑄0 ×𝑄1 and
transitions that are given by Δ

((𝑞𝑖 , 𝑟 𝑗)) = (
Δ0 (𝑞𝑖),Δ1 (𝑟 𝑗)

)
. It starts in (𝑞0, 𝑟0).

Δ a b

(𝑞0, 𝑠0) (𝑞1, 𝑠0) (𝑞0, 𝑠1)
(𝑞0, 𝑠1) (𝑞1, 𝑠1) (𝑞0, 𝑠0)
(𝑞1, 𝑠0) (𝑞2, 𝑠0) (𝑞1, 𝑠1)
(𝑞1, 𝑠1) (𝑞2, 𝑠1) (𝑞1, 𝑠0)
(𝑞2, 𝑠0) (𝑞2, 𝑠0) (𝑞2, 𝑠1)
(𝑞2, 𝑠1) (𝑞2, 𝑠1) (𝑞2, 𝑠0)

If we feed the string aba to M then the machine’s states go from (𝑞0, 𝑠0) to (𝑞1, 𝑠0), to
(𝑞1, 𝑠1), and then to (𝑞2, 𝑠1). This is simply because M0 passes from 𝑞0 to 𝑞1, to 𝑞1
again, and then to 𝑞2, while M1 does 𝑠0 to 𝑠0, to 𝑠1, and to 𝑠1. That is, we can view
that M runs M0 and M1 in parallel.

We have not yet specified which states are accepting. We can vary the language accepted
by a product machine by varying the set of accepting states. One possibility is to
stipulate, as on the left below, that the accepting states (𝑞𝑖 , 𝑠 𝑗) are the ones where both
𝑞𝑖 and 𝑠 𝑗 are accepting. That means M accepts a string 𝜎 if and only if both M0
and M1 accept it.

a b

(𝑞0, 𝑠0) (𝑞1, 𝑠0) (𝑞0, 𝑠1)
+ (𝑞0, 𝑠1) (𝑞1, 𝑠1) (𝑞0, 𝑠0)

(𝑞1, 𝑠0) (𝑞2, 𝑠0) (𝑞1, 𝑠1)
+ (𝑞1, 𝑠1) (𝑞2, 𝑠1) (𝑞1, 𝑠0)

(𝑞2, 𝑠0) (𝑞2, 𝑠0) (𝑞2, 𝑠1)
(𝑞2, 𝑠1) (𝑞2, 𝑠1) (𝑞2, 𝑠0)

a b

+ (𝑞0, 𝑠0) (𝑞1, 𝑠0) (𝑞0, 𝑠1)
(𝑞0, 𝑠1) (𝑞1, 𝑠1) (𝑞0, 𝑠0)

+ (𝑞1, 𝑠0) (𝑞2, 𝑠0) (𝑞1, 𝑠1)
(𝑞1, 𝑠1) (𝑞2, 𝑠1) (𝑞1, 𝑠0)
(𝑞2, 𝑠0) (𝑞2, 𝑠0) (𝑞2, 𝑠1)
(𝑞2, 𝑠1) (𝑞2, 𝑠1) (𝑞2, 𝑠0)

Another possibility is to stipulate, as on the right, that the accepting states (𝑞𝑖 , 𝑠 𝑗) are the
ones where 𝑞𝑖 is accepting but 𝑠 𝑗 is not. That means the machine accepts strings that are
in the language of M0 but not that of M1.

Theorem The collection of regular languages is closed under the intersection of two
languages, the set difference of two languages, and the set complement of a language.

Pf. Start with two Finite State machines, M0 and M1, which accept languages L0 and
L1 over some alphabet Σ. Perform the product construction to get M. If the accepting
states of M are those pairs where both the first and second component states are
accepting, in M0 and M1, then M accepts the intersection of the languages, L0 ∩ L1. If
the accepting states of M are those pairs where the first component state is accepting
but the second is not, then M accepts the set difference of the languages, L0 − L1. A
special case of this second one is when L0 is the set of all strings, Σ∗, and in this case M
accepts the complement, L1c.

Example Let Σ = B = {0, 1}. We could show that the language L = {𝜎1
�� 𝜎 ∈ Σ∗ } is

regular by producing a Finite State machine to accept it, or by giving a regular
expression that describes it. But we can also use closure. That language is the
concatenation L = L0⌢L1 of L0 = Σ∗ and L1 = {1}, which are both clearly regular.
Regular languages are closed under concatenation, so L is regular.

Theorem The collection of regular languages is closed under the intersection of two
languages, the set difference of two languages, and the set complement of a language.

Pf. Start with two Finite State machines, M0 and M1, which accept languages L0 and
L1 over some alphabet Σ. Perform the product construction to get M. If the accepting
states of M are those pairs where both the first and second component states are
accepting, in M0 and M1, then M accepts the intersection of the languages, L0 ∩ L1. If
the accepting states of M are those pairs where the first component state is accepting
but the second is not, then M accepts the set difference of the languages, L0 − L1. A
special case of this second one is when L0 is the set of all strings, Σ∗, and in this case M
accepts the complement, L1c.
Example Let Σ = B = {0, 1}. We could show that the language L = {𝜎1

�� 𝜎 ∈ Σ∗ } is
regular by producing a Finite State machine to accept it, or by giving a regular
expression that describes it. But we can also use closure. That language is the
concatenation L = L0⌢L1 of L0 = Σ∗ and L1 = {1}, which are both clearly regular.
Regular languages are closed under concatenation, so L is regular.

Example The language

L = {𝜎 ∈ {a, b, c}∗
�� 𝜎 does not have the substring acb}

it the complement of Lc = {𝜎 ∈ {a, b, c}∗
�� 𝜎 has the substring acb}. The language Lc is

regular because it is described by a regular expression, (a|b|c)*acb(a|b|c)*.

Example We can show that the language

L = {𝜎 ∈ {a, b}∗
�� 𝜎 contains both of the substrings acb and cbc}

is regular by constructing a Finite State machine for each substring or give regular
expressions, and then cite that the regular languages are closed under intersection. (By
the way, note that the string 𝜎 = acbc is a member of L.)

Example The language

L = {𝜎 ∈ {a, b, c}∗
�� 𝜎 does not have the substring acb}

it the complement of Lc = {𝜎 ∈ {a, b, c}∗
�� 𝜎 has the substring acb}. The language Lc is

regular because it is described by a regular expression, (a|b|c)*acb(a|b|c)*.
Example We can show that the language

L = {𝜎 ∈ {a, b}∗
�� 𝜎 contains both of the substrings acb and cbc}

is regular by constructing a Finite State machine for each substring or give regular
expressions, and then cite that the regular languages are closed under intersection. (By
the way, note that the string 𝜎 = acbc is a member of L.)

Languages that are not regular

Periodicity
The diagram below shows a machine that accepts aabbbc (it only shows some of the
states, those that the machine traverses in processing this input).

a

a

b

b

b c
@0 @81

@82@83

@84 @85

Because of the cycle, in addition to aabbbc this machine must also accept a(abb)2bc
since that string takes the machine tthrough the cycle twice. Likewise, this machine
accepts a(abb)3bc, and cycling more times pumps out more accepted strings.

Pumping lemma
Theorem (Pumping Lemma) Let L be a regular language. Then there is a
constant 𝑝 ∈ N, the pumping length for the language, such that every string 𝜎 ∈ L with
|𝜎 | ≥ 𝑝 decomposes into three substrings 𝜎 = 𝛼⌢𝛽⌢𝛾 satisfying: (1) the first two
components are short, |𝛼𝛽 | ≤ 𝑝, (2) 𝛽 is not empty, and (3) all of the strings 𝛼𝛾 , 𝛼𝛽2𝛾 ,
𝛼𝛽3𝛾 , . . . are also members of the language L.

Pf. Suppose that L is recognized by the Finite State machine M. Take 𝑝 to be the
number of states in M.
Consider a string 𝜎 ∈ L with |𝜎 | ≥ 𝑝. Finite State machines perform one transition per
character so the number of characters in an input string equals the number of transitions.
Thus the number of states, not necessarily distinct ones, that the machine visits is one
more than the number of transitions. (For instance, with a one-character input a machine
visits two states.) So in processing 𝜎 , the machine revisits at least one state. It cycles.

Of the states that are repeated as the machine processes 𝜎 , fix the one 𝑞 that it revisits
first. Also fix 𝜎 ’s shortest two prefixes ⟨𝑠0, ... 𝑠𝑖 ⟩ and ⟨𝑠0, ... 𝑠𝑖 , ... 𝑠 𝑗 ⟩ that take the
machine to 𝑞. That is, 𝑖 and 𝑗 are minimal such that 𝑖 ≠ 𝑗 and the extended transition
function gives Δ̂(⟨𝑠0, ... 𝑠𝑖 ⟩) = Δ̂(⟨𝑠0, ... 𝑠 𝑗 ⟩) = 𝑞. Let 𝛼 = ⟨𝑠0, ... , 𝑠𝑖 ⟩, let 𝛽 = ⟨𝑠𝑖+1, ... 𝑠 𝑗 ⟩,
and let 𝛾 = ⟨𝑠 𝑗+1, ... 𝑠𝑘 ⟩. (Think of 𝛼 as the initial substring of 𝜎 that transitions the
machine up to the loop, think of 𝛽 as the substring that takes the machine around the
loop once, and 𝛾 is the rest of 𝜎 . Possibly 𝛼 is empty. Possibly also 𝛾 is empty, or perhaps
it includes a substring that transitions the machine around the loop a number of
times after 𝛽 has taken it around the first time. For the machine in (∗) above, with
𝜎 = a(abb)2bc we have 𝛼 = a, 𝛽 = abb, and 𝛾 = abbbc.)
These strings satisfy conditions (1) and (2). In particular, choosing 𝑞, 𝑖, and 𝑗 to be
minimal guarantees that that |𝛼⌢𝛽 | ≤ 𝑝 because the machine has 𝑝-many states and so
a state must repeat by at most the 𝑝-th input character. For condition (3), this string

𝛼⌢𝛾 = ⟨𝑠0, ... 𝑠𝑖 , 𝑠 𝑗+1, ... 𝑠𝑘 ⟩
brings the machine from the start state 𝑞0 to 𝑞, and then to the same ending state as did
𝜎 . That is, Δ̂(𝛼𝛾) = Δ̂(𝛼𝛽𝛾) and so the machine accepts 𝛼𝛾 . The other strings in (3)
work the same way. For instance, for

𝛼⌢𝛽2⌢𝛾 = ⟨𝑠0, ... 𝑠𝑖 , 𝑠𝑖+1, ... , 𝑠 𝑗 , 𝑠𝑖+1, ... 𝑠 𝑗 , 𝑠 𝑗+1, ... 𝑠𝑘 ⟩
the substring 𝛼 brings the machine from 𝑞0 to 𝑞, the first 𝛽 brings it from 𝑞 around to 𝑞
again, the second 𝛽 makes the machine cycle to 𝑞 yet again, and finally 𝛾 brings it to the
same ending state as did 𝜎 .

Usually we use the Pumping Lemma to show that a language is not regular.
Example Show that this language over Σ = {a, b} is not regular: L = {a𝑛ba𝑛

�� 𝑛 ∈ N}.
First, here are five members of L: aba, aabaa, aaabaaa, a5ba5, and b. Five non-members
are aabaaa, a5ba4, a, aa, and ab.
The proof is by contradiction. Suppose that L is regular. Then it has a pumping length,
which we denote 𝑝. Consider the string 𝜎 = a𝑝𝑏a𝑝 . Observe that 𝜎 ∈ L.
Because |𝜎 | ≥ 𝑝, that string decomposes as 𝜎 = 𝛼⌢𝛽⌢𝛾 , subject to the three conditions.

Condition (1) says that the initial two substrings together have length no greater than
the pumping length, |𝛼𝛽 | ≤ 𝑝. Therefore, because the first 𝑝-many characters in 𝜎 are all
a’s, we conclude that substring 𝛼 and substring 𝛽 consist solely of a’s. Condition (2) says
that 𝛽 is not the empty string and so 𝛽 consists of at least one a. With that, consider
condition (3). It says that all of the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , etc., are members of L. We
will find the contradiction in 𝛼𝛾 . Compared with 𝜎 , the string 𝛼𝛾 has at least one fewer a
before the b (because it omits the string 𝛽), but the same number of a’s after the b.
Therefore, 𝛼𝛾 does not have the same number of a’s before the b as after. It is thus not a
member of L, which is a contradiction.

Usually we use the Pumping Lemma to show that a language is not regular.
Example Show that this language over Σ = {a, b} is not regular: L = {a𝑛ba𝑛

�� 𝑛 ∈ N}.
First, here are five members of L: aba, aabaa, aaabaaa, a5ba5, and b. Five non-members
are aabaaa, a5ba4, a, aa, and ab.
The proof is by contradiction. Suppose that L is regular. Then it has a pumping length,
which we denote 𝑝. Consider the string 𝜎 = a𝑝𝑏a𝑝 . Observe that 𝜎 ∈ L.
Because |𝜎 | ≥ 𝑝, that string decomposes as 𝜎 = 𝛼⌢𝛽⌢𝛾 , subject to the three conditions.
Condition (1) says that the initial two substrings together have length no greater than
the pumping length, |𝛼𝛽 | ≤ 𝑝. Therefore, because the first 𝑝-many characters in 𝜎 are all
a’s, we conclude that substring 𝛼 and substring 𝛽 consist solely of a’s.

Condition (2) says
that 𝛽 is not the empty string and so 𝛽 consists of at least one a. With that, consider
condition (3). It says that all of the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , etc., are members of L. We
will find the contradiction in 𝛼𝛾 . Compared with 𝜎 , the string 𝛼𝛾 has at least one fewer a
before the b (because it omits the string 𝛽), but the same number of a’s after the b.
Therefore, 𝛼𝛾 does not have the same number of a’s before the b as after. It is thus not a
member of L, which is a contradiction.

Usually we use the Pumping Lemma to show that a language is not regular.
Example Show that this language over Σ = {a, b} is not regular: L = {a𝑛ba𝑛

�� 𝑛 ∈ N}.
First, here are five members of L: aba, aabaa, aaabaaa, a5ba5, and b. Five non-members
are aabaaa, a5ba4, a, aa, and ab.
The proof is by contradiction. Suppose that L is regular. Then it has a pumping length,
which we denote 𝑝. Consider the string 𝜎 = a𝑝𝑏a𝑝 . Observe that 𝜎 ∈ L.
Because |𝜎 | ≥ 𝑝, that string decomposes as 𝜎 = 𝛼⌢𝛽⌢𝛾 , subject to the three conditions.
Condition (1) says that the initial two substrings together have length no greater than
the pumping length, |𝛼𝛽 | ≤ 𝑝. Therefore, because the first 𝑝-many characters in 𝜎 are all
a’s, we conclude that substring 𝛼 and substring 𝛽 consist solely of a’s. Condition (2) says
that 𝛽 is not the empty string and so 𝛽 consists of at least one a.

With that, consider
condition (3). It says that all of the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , etc., are members of L. We
will find the contradiction in 𝛼𝛾 . Compared with 𝜎 , the string 𝛼𝛾 has at least one fewer a
before the b (because it omits the string 𝛽), but the same number of a’s after the b.
Therefore, 𝛼𝛾 does not have the same number of a’s before the b as after. It is thus not a
member of L, which is a contradiction.

Usually we use the Pumping Lemma to show that a language is not regular.
Example Show that this language over Σ = {a, b} is not regular: L = {a𝑛ba𝑛

�� 𝑛 ∈ N}.
First, here are five members of L: aba, aabaa, aaabaaa, a5ba5, and b. Five non-members
are aabaaa, a5ba4, a, aa, and ab.
The proof is by contradiction. Suppose that L is regular. Then it has a pumping length,
which we denote 𝑝. Consider the string 𝜎 = a𝑝𝑏a𝑝 . Observe that 𝜎 ∈ L.
Because |𝜎 | ≥ 𝑝, that string decomposes as 𝜎 = 𝛼⌢𝛽⌢𝛾 , subject to the three conditions.
Condition (1) says that the initial two substrings together have length no greater than
the pumping length, |𝛼𝛽 | ≤ 𝑝. Therefore, because the first 𝑝-many characters in 𝜎 are all
a’s, we conclude that substring 𝛼 and substring 𝛽 consist solely of a’s. Condition (2) says
that 𝛽 is not the empty string and so 𝛽 consists of at least one a. With that, consider
condition (3). It says that all of the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , etc., are members of L. We
will find the contradiction in 𝛼𝛾 . Compared with 𝜎 , the string 𝛼𝛾 has at least one fewer a
before the b (because it omits the string 𝛽), but the same number of a’s after the b.
Therefore, 𝛼𝛾 does not have the same number of a’s before the b as after. It is thus not a
member of L, which is a contradiction.

Example Consider this language.
L = {𝜏⌢𝜏

�� 𝜏 ∈ B∗ }
Name five members and five nonmembers. Then use the Pumping Lemma to prove that
it is not a regular language.

Five members are 001001, 11011101, 00, 1111, and 𝜀. Five nonmembers are 000, 1,
0110, 001000, and 01.
For the proof, assume that L is regular. Then it has a pumping length, which we will
denote 𝑝. Consider the string 𝜎 = 0𝑝10𝑝1.
It is a member of L and |𝜎 | ≥ 𝑝 so it decomposes into three substrings 𝜎 = 𝛼𝛽𝛾 in a way
that satisfies the three conditions.
Condition (1) is that 𝛼 and 𝛽 together have length no greater than the pumping length,
|𝛼𝛽 | ≤ 𝑝. Because the first 𝑝-many characters in 𝜎 are all a’s, this means that substring 𝛼
and substring 𝛽 consist solely of 0’s. Condition (2) says that 𝛽 is not empty, and so 𝛽
consists of at least one 0. Condition (3) says that the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , etc., are
members of L. But compared with 𝜎 , the string 𝛼𝛽2𝛾 has at least one more 0 before its
first 1, but the same number of 0’s before its second1. Therefore, 𝛼𝛽2𝛾 does not have the
form 𝜏⌢𝜏 and is not a member of L. That’s a contradiction.
Example Show that each language over Σ = {a, b} is not regular.
1. {a𝑛b𝑚

�� 𝑛 =𝑚 + 1}
2. the set of palindromes

Example Consider this language.
L = {𝜏⌢𝜏

�� 𝜏 ∈ B∗ }
Name five members and five nonmembers. Then use the Pumping Lemma to prove that
it is not a regular language.
Five members are 001001, 11011101, 00, 1111, and 𝜀. Five nonmembers are 000, 1,
0110, 001000, and 01.
For the proof, assume that L is regular. Then it has a pumping length, which we will
denote 𝑝. Consider the string 𝜎 = 0𝑝10𝑝1.
It is a member of L and |𝜎 | ≥ 𝑝 so it decomposes into three substrings 𝜎 = 𝛼𝛽𝛾 in a way
that satisfies the three conditions.
Condition (1) is that 𝛼 and 𝛽 together have length no greater than the pumping length,
|𝛼𝛽 | ≤ 𝑝. Because the first 𝑝-many characters in 𝜎 are all a’s, this means that substring 𝛼
and substring 𝛽 consist solely of 0’s. Condition (2) says that 𝛽 is not empty, and so 𝛽
consists of at least one 0. Condition (3) says that the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , etc., are
members of L. But compared with 𝜎 , the string 𝛼𝛽2𝛾 has at least one more 0 before its
first 1, but the same number of 0’s before its second1. Therefore, 𝛼𝛽2𝛾 does not have the
form 𝜏⌢𝜏 and is not a member of L. That’s a contradiction.

Example Show that each language over Σ = {a, b} is not regular.
1. {a𝑛b𝑚

�� 𝑛 =𝑚 + 1}
2. the set of palindromes

Example Consider this language.
L = {𝜏⌢𝜏

�� 𝜏 ∈ B∗ }
Name five members and five nonmembers. Then use the Pumping Lemma to prove that
it is not a regular language.
Five members are 001001, 11011101, 00, 1111, and 𝜀. Five nonmembers are 000, 1,
0110, 001000, and 01.
For the proof, assume that L is regular. Then it has a pumping length, which we will
denote 𝑝. Consider the string 𝜎 = 0𝑝10𝑝1.
It is a member of L and |𝜎 | ≥ 𝑝 so it decomposes into three substrings 𝜎 = 𝛼𝛽𝛾 in a way
that satisfies the three conditions.
Condition (1) is that 𝛼 and 𝛽 together have length no greater than the pumping length,
|𝛼𝛽 | ≤ 𝑝. Because the first 𝑝-many characters in 𝜎 are all a’s, this means that substring 𝛼
and substring 𝛽 consist solely of 0’s. Condition (2) says that 𝛽 is not empty, and so 𝛽
consists of at least one 0. Condition (3) says that the strings 𝛼𝛾 , 𝛼𝛽2𝛾 , 𝛼𝛽3𝛾 , etc., are
members of L. But compared with 𝜎 , the string 𝛼𝛽2𝛾 has at least one more 0 before its
first 1, but the same number of 0’s before its second1. Therefore, 𝛼𝛽2𝛾 does not have the
form 𝜏⌢𝜏 and is not a member of L. That’s a contradiction.
Example Show that each language over Σ = {a, b} is not regular.
1. {a𝑛b𝑚

�� 𝑛 =𝑚 + 1}
2. the set of palindromes

Pushdown machines

Introduction
No Finite State machine can recognize the language of balanced parentheses. So this
machine model is not powerful enough to, for instance, decide whether input strings are
valid programs in most programming languages. To handle nested parentheses, the
natural data structure is a pushdown stack. We now supplement a Finite State machine
by giving it access to a stack.
Below on the right is a sequence of views of a stack. Initially the stack has two characters,
g3 and g2. We push g1 on the stack, and then g0. Now, although g1 is on the stack, we
don’t have immediate access to it. To get at g1 we must first pop off g0, as in the last
stack shown.

g2

g3

g1

g2

g3

g0

g1

g2

g3

g1

g2

g3

Definition A nondeterministic Pushdown machine ⟨𝑄,𝑞0, 𝐹 , Σ, Γ,Δ⟩ consists of a finite
set of states 𝑄 = {𝑞0, ... 𝑞𝑛−1 }, including a start state 𝑞0, a subset 𝐹 ⊆ 𝑄 of accepting
states, a nonempty input alphabet Σ, a nonempty stack alphabet Γ, and a transition
function Δ : 𝑄 × (Σ ∪ {B, 𝜀 }) × (Γ ∪ {⊥}) → P

(
𝑄 × (Γ ∪ {⊥})∗) .

The book has details. We will give a couple of examples.

Example This gives the machine as a set of instructions. (We could instead take it to
give the inputs and outputs for Δ.)

Instruction number Input Output
0 𝑞0, [,⊥ 𝑞0, ‘g0⊥’
1 𝑞0, [, g0 𝑞0, ‘g0 g0’
2 𝑞0,], g0 𝑞0, ‘ ’
3 𝑞0,],⊥ 𝑞0, ‘ ’
4 𝑞0, B,⊥ 𝑞1, ‘⊥’
5 𝑞0, B, g0 𝑞0, ‘g0’

The only accepting state is 𝑞1.
These machines always pop the stack before they make a transition. So Instruction 0
must push ⊥ back on the stack, and then it adds g0 on top of that. Instruction 2 pops the
g0 off and doesn’t replace it.
These machines sometimes need to do some action when the tape is exhausted, so we put
a B to mark the end of the input (and assume the input does not contain that character).

Step Configuration

0 [[]] [] B
@0

⊥

1 []] [] B
@0

g0 ⊥

2]] [] B
@0

g0 g0 ⊥

3] [] B
@0

g0 ⊥

4 [] B
@0

⊥

5] B
@0

g0 ⊥

6 B
@0

⊥

7 @1
⊥

Here is a rejection example, whose initial string does not have balanced
parentheses.

Step Configuration

0 []] B
@0

⊥

1]] B
@0

g0 ⊥

2] B
@0

⊥

3 B
@0

At the end, although the tape still has content, the stack is empty. The machine cannot
start the next step by popping the top stack character because there is no such character.
The computation dies, without accepting the input.

Example Palindromes that are odd length have a character in the middle that acts as its
own reverse. That is, they have the form 𝜎⌢𝑠⌢𝜎R for 𝑠 ∈ Σ. The language LMM uses
𝜎 ∈ {a, b}∗ along with the character 𝑠 = c as a middle marker so that
LMM = {𝜎 ∈ {a, b, c}∗

�� 𝜎 = 𝜏⌢c⌢𝜏R for some 𝜏 ∈ {a, b}∗ }.
The machine below accepts this language. It has 𝑄 = {𝑞0, 𝑞1, 𝑞2 }, 𝐹 = {𝑞2 },
Σ = {a, b, c}, and Γ = {g0, g1}.

Inst Input Output
0 𝑞0, a,⊥ 𝑞0, ‘g0⊥’
1 𝑞0, b,⊥ 𝑞0, ‘g1⊥’
2 𝑞0, c,⊥ 𝑞1, ‘⊥’
3 𝑞0, B,⊥ 𝑞3, ‘⊥’
4 𝑞0, a, g0 𝑞0, ‘g0 g0’
5 𝑞0, a, g1 𝑞0, ‘g0 g1’
6 𝑞0, b, g0 𝑞0, ‘g1 g0’
7 𝑞0, b, g1 𝑞0, ‘g1 g1’

Inst Input Output
8 𝑞0, c, g0 𝑞1, ‘g0’
9 𝑞0, c, g1 𝑞1, ‘g1’

10 𝑞1, a, g0 𝑞1, ‘ ’
11 𝑞1, b, g1 𝑞1, ‘ ’
12 𝑞1, B,⊥ 𝑞2, ‘⊥’

Here is an example computation accepting the input bacab.

Step Configuration

0 b a c a b B
@0

⊥

1 a c a b B
@0

g1 ⊥

2 c a b B
@0

g0 g1 ⊥

3 a b B
@1

g0 g1 ⊥

4 b B
@1

g1 ⊥

5 B
@1

⊥

6 @3
⊥

Pushdown machines with 𝜀 transitions
Example This machine accepts the language of even length palindromes.

LELP = {𝜎𝜎R
�� 𝜎 ∈ B∗ } = {𝜀, 00, 11, 0000, 0110, 1001, 1111, ... }

It has 𝐹 = {𝑞2 } as well as Γ = {g0, g1}.

Inst Input Output
0 𝑞0, 0,⊥ 𝑞0, ‘g0⊥’
1 𝑞0, 1,⊥ 𝑞0, ‘g1⊥’
2 𝑞0, 𝜀,⊥ 𝑞1,⊥
3 𝑞0, 0, g0 𝑞0, ‘g0g0’
4 𝑞0, 0, g1 𝑞0, ‘g0g1’
5 𝑞0, 1, g0 𝑞0, ‘g1g0’
6 𝑞0, 1, g1 𝑞0, ‘g1g1’

Inst Input Output
7 𝑞0, 𝜀, g0 𝑞1, ‘g0’
8 𝑞0, 𝜀, g1 𝑞1, ‘g1’
9 𝑞1, 0, g0 𝑞1, ‘ ’

10 𝑞1, 1, g1 𝑞1, ‘ ’
11 𝑞1, 𝜀,⊥ 𝑞2,⊥

Because this machine can guess, we can have it guess whether the input is finished. So
we will omit the terminating B that we used in the two prior examples.

The machine runs in two phases. Where the input is 𝜎𝜎R, the first phase works with 𝜎 . If
the tape character is 0 then the machine pushes the token g0 onto the stack, and if it is 1
then the machine pushes g1. This is done while in state 𝑞0.
The second phase works with 𝜎R. If 0 is on the tape and g0 tops the stack, or 1 and g1,
then the machine proceeds. Otherwise there is no matching instruction and the
computation branch dies. This is done while in state 𝑞1.
Without a middle marker how does the machine know when to change from phase one to
two, from pushing to popping? It is nondeterministic— it guesses. That happens in lines
7 and 8. The 𝜀 character in the input means that the machine can spontaneously
transition from 𝑞0 to 𝑞1.

Here is the branch of the computation tree where the machine accepts the even-length
palindrome string 0110.

Step Configuration

0 0 1 1 0
@0

⊥

1 1 1 0
@0

g0 ⊥

2 1 0
@1

g1 g0 ⊥

3 0
@1

g0 ⊥

4 @2
⊥

Here is the machine’s computation tree on input 00. The 𝜀 transitions go up. (The
relevant instructions are written next to the ⊢ symbols.)

@0,⊥

⊢ 2
@1,⊥

⊢ 11
@2,⊥

⊢
0

@0, g0⊥

⊢ 7

@1, g0⊥

⊢3 @0, g0g0⊥

⊢ 7
@1, g0g0⊥

⊢9 @1,⊥

⊢ 11
@2,⊥

Input: 0 0

0 1 2Step:

As the highlighted branch shows, it accepts.

Here is the machine’s full computation tree on input 100.

@0,⊥

⊢ 2
@1,⊥

⊢ 11
@2,⊥

⊢
1

@0, g1⊥

⊢ 8
@1, g1⊥

⊢4 @0, g0g1⊥

⊢ 7

@1, g0g1⊥

⊢3 @0, g0g0g1⊥

⊢ 7
@1, g0g0g1⊥

⊢9 @1, g1⊥
Input: 1 0 0

0 1 2 3Step:

None of the branches end both with an empty string and in an accepting state, so it
rejects the input.

Deterministic Pushdown machines
The definition that we gave earlier is of a nondeterministic Pushdown machine. For the
next slide we need to describe deterministic ones.
In contradistinction to a nondeterministic machine, in a deterministic machine at
any step there is exactly one legal move. So to adjust the definition we have for
nondeterministic Pushdown machines to one for deterministic ones we eliminate
situations where the machine has choices. There are two situations. One is that
Δ(𝑞𝑖 , 𝑡, 𝑔) is a set and so we will require that in a deterministic machine that
set must have exactly one element. The other is evident in the tree diagrams
above: nondeterministic machines can have that Δ(𝑞𝑖 , 𝜀, 𝑔) is a nonempty set and also
that Δ(𝑞𝑖 , 𝑡, 𝑔) is nonempty for 𝑡 ≠ 𝜀 (see for instance the the prior example’s machine in
lines 0–2). So we outlaw the possibility that both are nonempty.
This section’s first two example Pushdown machines are both deterministic.

Relation between machine types and languages
Below, the box includes all languages. That is, fix an alphabet Σ and then the universe
consists of every subset of Σ∗.

����

Class Machine type
𝐴 Finite State, including nondeterministic
𝐵 deterministic Pushdown
𝐶 nondeterministic Pushdown
𝐷 Turing

Class 𝐴 consists of the languages that are regular, those decided by some Finite State
machine. Class 𝐵 holds the languages that are decided by some deterministic Pushdown
machine. Class 𝐶 is the languages decided by some nondeterministic Pushdown
machine. Finally, class 𝐷 consists of the languages decided by some Turing machine.
(These are all proper subsets but proof of that lies outside of our scope.)
An important point to notice is that although for Finite State machines adding
nondeterminism does not change what languages the collection of machines can
recognize, for Pushdown machines it does. In particular, there is a nondeterministic
Pushdown machine that recognizes the language of palindromes over Σ = {a, b}. But no
deterministic Pushdown machine can do that— the intuition is that it has no way to
know when to change from pushing to popping.

Regexes

Regular expressions in practice
Regular expressions are so useful that they have escaped the theory and are widely used
for symbol manipulation in the wild.
Along the way, they acquired a large number of extensions. Some of these are
conveniences, things that you could do with the regular expression tools that we have
already seen. But some of these are genuine extensions, which allow you to do more than
is possible with the regular expressions that we have studied.
We shall refer to the in-practice expressions as regexes.

Convenience extensions
Our theory alphabets had two or three characters. In practice we need at least ASCII’s
printable characters: a – z, A – Z, 0 – 9, space, tab, period, dash, exclamation point, percent
sign, dollar sign, open and closed parenthesis, open and closed curly braces, etc. The
alphabet may even contain all of Unicode’s more than one hundred thousand characters.
Regexes allow matching a digit with [0123456789], using square brackets as
metacharacters. We can shorten it further to [0-9]. Similarly, [A-Za-z] matches a
single English letter.
To invert the set of matched characters, put a caret ‘^’ as the first thing inside the
bracket. Thus, [^0-9] matches a non-digit and [^A-Za-z] matches a character that is
not an ASCII letter.
The most common lists have short abbreviations. Another abbreviation for the ASCII
digits is \d. Use \D for the ASCII non-digits, \s for the whitespace characters (space, tab,
newline, formfeed, and line return) and \S for ASCII characters that are non-whitespace.
Cover the alphanumeric characters (upper and lower case ASCII letters, digits, and
underscore) with \w and cover the complement with \W.

Earlier, to match ‘at most one a’ we used 𝜀|a. So we can write something like (|a). But
depicting the empty string by just putting nothing there can be confusing. Modern
languages allow you to write a? for ‘at most one a’.
For ‘at least one a’ modern languages use a+, so the plus sign is another metacharacter.
More generally, we often want to specify quantities. For instance, to match five a’s
extended regular expressions use the curly braces as metacharacters, with a{5}. Match
between two and five of them with a{2,5} and match at least two with a{2,}. Thus, a+
is shorthand for a{1,}.

To match a metacharacter, escape it with a backslash, ‘\’. Thus, to look for the string
‘(Note’ put a backslash before the open parentheses: \(Note. Similarly, \| matches a
pipe and \[matches an open square bracket. And, To be or not to be\? matches the
famous question. Match backslash itself with \\.

Earlier, to match ‘at most one a’ we used 𝜀|a. So we can write something like (|a). But
depicting the empty string by just putting nothing there can be confusing. Modern
languages allow you to write a? for ‘at most one a’.
For ‘at least one a’ modern languages use a+, so the plus sign is another metacharacter.
More generally, we often want to specify quantities. For instance, to match five a’s
extended regular expressions use the curly braces as metacharacters, with a{5}. Match
between two and five of them with a{2,5} and match at least two with a{2,}. Thus, a+
is shorthand for a{1,}.
To match a metacharacter, escape it with a backslash, ‘\’. Thus, to look for the string
‘(Note’ put a backslash before the open parentheses: \(Note. Similarly, \| matches a
pipe and \[matches an open square bracket. And, To be or not to be\? matches the
famous question. Match backslash itself with \\.

Example US ZIP codes are five digits. Match them with \d{5}.
Example North American phone numbers match \d{3} \d{3}-\d{4}.
Example Canadian postal codes have seven characters: the fourth is a space, the first,
third, and sixth are letters, and the others are digits. The regular expression
[a-zA-Z]\d[a-zA-Z] \d[a-zA-Z]\d describes them.
Example Dates are often given in the ‘dd/mm/yy’ format. This matches:
\d\d/\d\d/\d\d.
Example In the twelve hour time format some typical times strings are ‘8:05 am’ or
‘10:15 pm’. You could use this (note the empty string at the start).

(|0|1)\d:\d\d\s(am|pm)

Note that it matches some strings that you don’t want, such as ‘18:05 am’.

Example The regex (-|\+)?\d+ matches an integer, positive or negative. The question
mark makes the sign optional. The plus sign makes sure there is at least one digit.
Example A natural number represented in hexadecimal can contain the usual digits,
along with the additional characters ‘a’ through ‘f ’ (sometimes capitalized). Programmers
often prefix such a representation with 0x, so the expression is (0x)?[a-fA-F0-9]+.
Example A C language identifier begins with an ASCII letter or underscore and then can
have arbitrarily many more letters, digits, or underscores: [a-zA-Z_]\w*.
Example Match a user name of between three and twelve letters, digits, underscores, or
periods with [\w\.]{3,12}. Match a password that is at least eight characters long with
.{8,}.

Example For email addresses, \S+@\S+ is an often used extended expression, as a sanity
check.
Example Match the text inside a single set of parentheses with \([^()]*\).
Example We next match a URL, a web address such as
https://hefferon.net/computation. The regex breaks URL’s into a scheme such as
‘http’ along with a colon and two forward slashes, a host such as hefferon.net followed
by a slash, and then a path such as computing (the standard also allows a trailing query
string but this regex does not handle that).

(https?|ftp)://([^\s/?\.#]+\.?){0,3}[^\s/?\.#]+(/[^\s]*/?)?

https://hefferon.net/computation

Example The regex (-|\+)?\d+ matches an integer, positive or negative. The question
mark makes the sign optional. The plus sign makes sure there is at least one digit.
Example A natural number represented in hexadecimal can contain the usual digits,
along with the additional characters ‘a’ through ‘f ’ (sometimes capitalized). Programmers
often prefix such a representation with 0x, so the expression is (0x)?[a-fA-F0-9]+.
Example A C language identifier begins with an ASCII letter or underscore and then can
have arbitrarily many more letters, digits, or underscores: [a-zA-Z_]\w*.
Example Match a user name of between three and twelve letters, digits, underscores, or
periods with [\w\.]{3,12}. Match a password that is at least eight characters long with
.{8,}.
Example For email addresses, \S+@\S+ is an often used extended expression, as a sanity
check.
Example Match the text inside a single set of parentheses with \([^()]*\).
Example We next match a URL, a web address such as
https://hefferon.net/computation. The regex breaks URL’s into a scheme such as
‘http’ along with a colon and two forward slashes, a host such as hefferon.net followed
by a slash, and then a path such as computing (the standard also allows a trailing query
string but this regex does not handle that).

(https?|ftp)://([^\s/?\.#]+\.?){0,3}[^\s/?\.#]+(/[^\s]*/?)?

https://hefferon.net/computation

As to lines, you can also match the start of a line and end of line with the metacharacters
caret ‘^’ and dollar sign ‘$’.
Many programs that use regexes are line-oriented. They often, by default, match the
regex anywhere in the line.
Sometimes, as in Python, there are two modes. One matches the give regex anywhere in
the line, and one specifically requires you to put in the parts such as start of line and end
of line.

Extensions beyond convenience alone
Example The web language HTML uses tags such as boldface text and
<i>italicized text</i>. Matching any one tag is straightforward, for instance
[^<]*.
But for a single expression that matches them all, you would seem to have to do each as a
separate case and then combine cases with a pipe. However, instead modern regexes
allow the system to remember what it finds at the start and look for that again at the end.
Thus, Racket’s regex <([^>]+)>.*</\\1> matches HTML tags like the ones given. Its
second character is an open parenthesis, and the \\1 refers to everything between that
open parenthesis and the matching close parenthesis. (As you might guess from the 1,
you can also have a second match with \\2, etc.)

That is a back reference. It is very convenient, but it gives regexes more power than the
theoretical regular expressions that we studied earlier.

Example This is the language of squares over Σ = {a, b}.
L = {𝜎 ∈ Σ∗

�� 𝜎 = 𝜏⌢𝜏 for some 𝜏 ∈ Σ∗ }
Some members are aabaab, baaabaaa, and aa. The Pumping Lemma shows that the
language of squares is not regular. Describe this language with the regex (.+)\1; note
the back-reference.
Example The regex .?|(..+?)\\1+ matches a unary number if and only if it is a not
prime. The group corresponds to a natural number of characters that are matched. This
group then appears some natural number of times. If there is a match then it is possible
to find a product of two numbers greater than or equal to 2 that match the string.

	Finite State machines
	Nondeterminism
	Regular expressions
	Regular languages
	Languages that are not regular
	Pushdown machines
	Regexes

