Prologue: the definition of computation

Jim Hefferon

University of Vermont

hefferon.net

Turing machines

Introduction: What can be done?
Here is a prototypical mathematical job. We get a linear system.

2x +z=3
x—y—-z=1
3x—-y =4

Finding a single solution that satisfies this system (x,y, z) = (3/2,1/2,0) is okay but we
prefer to find them all, as here.

{(x,y,z)z(%—%z,%—%z,z)|ZER}

And, we are most charmed when we have a procedure that inputs any linear system at all
and returns its complete set of solutions.

Introduction: What can be done?
Here is a prototypical mathematical job. We get a linear system.

2x +z=3
x—y—-z=1
3x—-y =4

Finding a single solution that satisfies this system (x,y, z) = (3/2,1/2,0) is okay but we
prefer to find them all, as here.

{(x,y,z)z(%—%z,%—%z,z)|ZER}

And, we are most charmed when we have a procedure that inputs any linear system at all
and returns its complete set of solutions.

In asking what can be done mathematically we are asking what can be done
systematically, or uniformily. This course studies what can and cannot be done with a
computer.

Some history

In 1928, the famous mathematician D Hilbert and his student W Ackermann proposed
the Entscheidungsproblem. It asks for a definite procedure that decides, from an input
mathematical statement, whether that statement is true or false.

Wanting to know what is true or false requires no explanation. But what is a ‘definite
procedure’?

In mathematics we take Euclid’s development as a paradigm. From the axioms we prove
theorems in a sequence of steps. These steps are such that you can verify each one
typographically, by pushing symbols around without any unexplainable leaps of intuition.
Thus in our mathematical culture a definite procedure is a sequence of fully-specified
steps that go from some input to a result. So Hilbert and Ackermann were asking for
what we today call an algorithm, which you could cast into code and run on a computer.

Thus, a important question in the air was to define what can be mechanically computed.
(Remember that in 1928 there were no computers as we know them today.)

Turing machine

The approach to the definition of mechanical computation that we will follow was given
by A Turing. He described a mechanism that does the computing.

As a prototype he imagined a clerk doing by-hand multiplication with a sheet of paper
that gradually becomes covered with columns of numbers. With that model he gave a
number of conditions that the computer must satisfy.

Turing machine

The approach to the definition of mechanical computation that we will follow was given
by A Turing. He described a mechanism that does the computing.

As a prototype he imagined a clerk doing by-hand multiplication with a sheet of paper
that gradually becomes covered with columns of numbers. With that model he gave a
number of conditions that the computer must satisfy.

» First, it (or he or she) has a memory facility, such as the clerk’s paper, where it can
put information for later retrieval.

Turing machine

The approach to the definition of mechanical computation that we will follow was given
by A Turing. He described a mechanism that does the computing.

As a prototype he imagined a clerk doing by-hand multiplication with a sheet of paper
that gradually becomes covered with columns of numbers. With that model he gave a
number of conditions that the computer must satisfy.

» First, it (or he or she) has a memory facility, such as the clerk’s paper, where it can
put information for later retrieval.

» Second, the computing agent must follow a definite procedure, a precise set of
instructions with no room for creative leaps. Part of what makes the procedure
definite is that the instructions don’t involve random methods, such as counting
clicks from radioactive decay to determine which of two possibilities to perform.
The other thing making the procedure definite is that the agent is discrete —it does
not use continuous methods or analog devices. Thus there is no question about the
precision of operations as there might be when reading results off of a slide rule or
an instrument dial. In line with this, the agent works in a step-by-step fashion. If
needed they could pause between steps, note where they are (“about to carry a 1”),
and pick up again later. We say that at each moment the clerk is in one of a finite set
of possible states, which we denote qo, q1, - . .

» Turing’s third condition arose because he wanted to investigate what is computable
in principle. He therefore imposed no upper bound on the amount of available
memory. More precisely, he imposed no finite upper bound — should a calculation
threaten to run out of storage space then more is provided. This includes imposing
no upper bound on the amount of memory available for inputs or for outputs and no
bound on the amount of extra storage, scratch memory, needed in addition to that
for inputs and outputs. He similarly put no upper bound on the number of
instructions. And, he left unbounded the number of steps that a computation
performs before it finishes.

» Turing’s third condition arose because he wanted to investigate what is computable
in principle. He therefore imposed no upper bound on the amount of available
memory. More precisely, he imposed no finite upper bound — should a calculation
threaten to run out of storage space then more is provided. This includes imposing
no upper bound on the amount of memory available for inputs or for outputs and no
bound on the amount of extra storage, scratch memory, needed in addition to that
for inputs and outputs. He similarly put no upper bound on the number of
instructions. And, he left unbounded the number of steps that a computation
performs before it finishes.

> The final question Turing faced is: how smart is the computing agent? For instance,
can it multiply? We don’t need to include a special facility for multiplication because
we can in principle multiply via repeated addition. We don’t even need addition
because we can repeat the successor operation, the add-one operation. In this way
Turing pared the computing agent down until it is quite basic, quite easy to
understand, until the operations are so elementary that we cannot easily imagine
them further divided, while still keeping that agent powerful enough to do anything
that can in principle be done.

Turing pictured a box containing a mechanism and fitted with a tape.

The tape is the memory, sometimes called the ‘store’. The box can read from it and write
to it, one character at a time, as well as move a read/write head relative to the tape in
either direction. Thus, to multiply, the computing agent can start by reading the two
input multiplicands from the tape (the drawing shows 74 and 72 in binary, separated by
a blank), can use the tape for scratch work, and can halt with the output written on the
tape.

The box is the computing agent, the CPU, sometimes called the ‘control’. The Start
button sets the computation going. When the computation is finished the Halt light
comes on.

While executing a calculation, the mechanism steps from state to state. For instance, an
agent doing multiplication may determine, because of what state it is in now and because
of what it is reading on the tape, that they next need to carry a 1. The agent transitions
to a new state, one whose intuitive meaning is that it is where carries take place.

Consequently, machine steps involve four pieces of information. Call the present state g
and the next state gn. The symbol that the read/write head is presently pointing to is T,.
Finally, the next tape action is T,,. Possible actions are: moving the tape head left or right
without writing, which we denote with T,, = L or T,; = R, or writing a symbol to the tape
without moving the head, which we denote with that symbol, so that T,, = 1 means the
machine will write a 1 to the tape. As to the set of characters that can go on the tape, we
will choose whatever is convenient for the job we are doing. However every tape has
blanks in all but finitely many places and so that must be one of the symbols. (We denote
blank with B when an empty space could cause confusion.)

The four-tuple g5 T, Tnqn is an instruction. For example, the instruction g31Bgs is
executed only if the machine is now in state g3 and is reading a 1 on the tape. If so, the
machine writes a blank to the tape, replacing the 1, and passes to state gs.

Before the formal definition, we first see a couple of examples.

First example computation: the predecessor function

This Turing machine with the tape symbol set >~ = {B, 1} has six instructions.
Ppred = {q0BLg1, 901Rq0, q1BLg2, q11Bq1, q2BRg3, q21Lq2 }

This shows a stretch of tape along with the machine’s state and the position of its
read-write head.

111
90

We adopt the convention that when we press Start the machine is in state go. The
picture above shows the machine reading 1, so instruction qo1Rqo applies. Thus the first
step is that the machine moves its tape head right and stays in state qo.

Here is the machine again

Ppred = {q0BLq1, 901Rq0, q1BLq2, q11Bq1, q2BRqs3, q21Lq2 }

and here are the later steps of the computation. Briefly, the head slides to the right,
blanks out the final 1, and slides back to the start.

Step Configuration Step Configuration
111 11
1 6
do d2
111 11
2
P 4 aQ
111 8 11
3 do 2
111 11
4 d1 ? d3
11
> d1

Now because there is no g31 instruction, the machine halts.

We can think of this as computing the predecessor function

x—1 —-ifx>0

pred(x) = {

0 —else

because if the machine’s initial tape is entirely blank except for n-many consecutive 1’s
and the head points to the first, then at the end the tape will have n — 1-many 1’s (except
for n = 0, where the tape will end with no 1s).

We can think of this as computing the predecessor function

x—1 —-ifx>0

0 —else

pred(x) = {

because if the machine’s initial tape is entirely blank except for n-many consecutive 1’s
and the head points to the first, then at the end the tape will have n — 1-many 1’s (except
for n = 0, where the tape will end with no 1s).

In place of the set of four-tuples

Ppred = {q0BLq1, 901Rqo0, q1BLg2, q11Bq1, q2BRg3, g21Lq2 }

we can also describe this machine with a table or picture it with a graph.

A B 1

q0 B, L B, L B,R
ql D D)Y

92 TR 1.8 L

q3

Second example computation: addition of two numbers

We can think of this machine with tape alphabet X~ = {B, 1} as adding two natural
numbers.
Padd = {q0BBq1, 901Rqo, q1B191, q11192, 92BBgs, q21Lq2,
93BRg3, q31Bq4, q4BRgs, q411q5 }

The input numbers are represented by two strings of 1’s, separated with a blank. Here is
the table and graph for P,4q.

A B 1

qo | Bq1 Rqo -

Z; ;Z; lgz B,B 1,1 B,B 1,B B’R
93 | Rgz Bgs 1.R B, 1 1L B,R

g4 | Rgs 1gs

qs - -

This shows the machine ready to compute 2 + 3.

11 111
9o

Here are the other steps in the computation (the initialization above is step 0).

Step Configuration Step Configuration
) 11 111 111111
do 4 92

11 111 111111
2 8
do 92
11 111 111111
3 d1 ? d3
111111 111111
4 10
d1 d3
111111 11 11111
> 92 q4
111111 11111
6 12
) ds

Some Turing machines don’t halt

A crucial observation: some Turing machines, for at least some starting configurations,
never halt. The machine Piyf100p = {qoBBq0, qo11qo } never halts, regardless of the
input.

p
B.B @ 1.1
g

Definition of a Turing machine

DEFINITION A Turing machine P is a finite set of four-tuple instructions g, Ty Tnqn. In
an instruction, the present state g, and next state g, are elements of a set of states Q.
The input symbol or current symbol T}, is an element of the tape alphabet set %, which
contains at least two members including one called blank (and does not contain L or R).
The action symbol T;, is an element of the action set X U {L,R}.

The set P must be deterministic: different four-tuples cannot begin with the same g, T}.
Thus, over the set of instructions g, Ty Thqn € P, the association of present pair g, Ty with
next pair T,q, defines a function, the transition function or next-state function

A: Qx3— (ZU{LR}) xO0.

We denote a Turing machine with a P because although these machines are hardware,
the things from everyday experience that they are most like are programs.

The action of a machine

We can give a mathematically precise description of how Turing machines act. Thus
for instance we could rigorously prove that the first machine above computes the
predecessor of its input.

A configuration of a Turing machine is a four-tuple (g, s, 7z, 7Tr), where q is a state, a
member of Q, s is a character from the tape alphabet X, and 77, and 7R are strings from X%
including possibly the empty string €. These signify the current state, the character
under the read/write head, and the tape contents to the left and right of the head.

We write C(t) for the machine’s configuration after the ¢-th transition and say that this
is the configuration at step t. We extend that to step 0 by saying that the initial
configuration C(0) is the machine’s configuration before we press Start.

If two configurations are related by being a step apart then we write C(i) F C(i + 1). A
computation is a sequence C(0) + C(1) + C(2) + - --. We abbreviate a sequence of s
with +*. If the computation halts then the sequence has a final configuration C(h) so we
could write a halting computation as C(0) +* C(h).

More details are in the text. The example below gives the idea.

ExampLE This machine decides whether its input is an odd number.

Podds = {90BBq4, q01Bq1, q1BRq2, 92B1q4, q21Bqs3, q3BRqo }
In the computation steps below the machine starts with 111 on the tape and with the
read/write head pointing to the leftmost 1. (Recall that in a configuration
C ={(q. s, 71, TR), the first item is the state, the second is the symbol now being read on
the tape, the third is the tape string to the left of the head and the fourth is the string to
the right of the head.)
(q0,1,&11) + {q1,B,&,11)

F{q2,1,61)

F (g2,B,& 1)

F{q0, 1, ¢ €)

F{q1,B,¢&¢€)

F (q2,B, & €)

F (g4 1,6€)

This is just a slightly different presentation than the tape views that we saw earlier. The
machine now halts because there is no instruction for g, T, = q41.
This machine always ends with the head pointing to either a 1 or a B, and nothing else on

the tape. Above we got a 1 so we interpret it as saying that the original input, 3, is odd.
If instead we got a blank then we would take that to mean that the input is even.

Definition of a computable function

A function is an association of inputs with outputs. For Turing machines the natural
association is to link the string on the tape when the machine starts with the one on the
tape when it stops. The idea is to compute the value of a string to string function like
¢(111) = 11111 as here.

111 11111
90 9h

DEFINITION Let P be a Turing machine with tape alphabet 3. For input ¢ € X% placing
that on an otherwise blank tape and pointing P’s read/write head to ¢’s left-most symbol
is loading that input. If we start P with o loaded and it eventually halts then we denote
the associated output string as ¢p (o). If the machine never halts then ¢ has no
associated output. The function computed by the machine P is the set of associations

o ¢p(0).

DEFINITION For o € ¥ if the value of a Turing machine computation is not defined

on ¢ then we say that the function computed by the machine diverges on that input,
written ¢p(0)T (or ¢p (o) = L). Otherwise we say that it converges, ¢p (o).

Note the difference between the machine P and the function computed by that machine,
$p. For example, the machine Ppeq is a set of four-tuples but the predecessor function is
a set of input-output pairs, which we might denote x +— pred(x). Another example of
the difference is that machines halt or fail to halt, while functions converge or diverge.

Discussion: representations

We will often consider a function that isn’t an association of string input and output, and
describe it as computed by a machine. For this we must impose an interpretation on the
strings. For instance, with the predecessor machine in Example 1.1 we took the

strings to represent natural numbers in unary. The same holds for computations with
non-numbers, such as directed graphs, where we also just fix some encoding of the input
and output strings. (We could worry that our interpretation might be so involved that, as
with a horoscope, the work happens in the interpretation. But we will stick to cases such
as the unary representation of numbers where this is not an issue.) Of course, the same
thing happens on physical computers, where the machine twiddles bitstrings and then we
interpret them as characters in a document or notes in a symphony, or however we like.

When we describe the function computed by a machine, we typically omit the part about
interpreting the strings. We say, “this shows that ¢(3) = 5” rather than, “this shows
that ¢ takes a string representing 3 to a string representing 5.” The details of the
representation are usually not of interest in this chapter (in the fifth chapter we will
count the time or space that they consume).

DEFINITION A computable function, or recursive function, is one computed by some
Turing machine (it may be a total function or partial). A computable set, or recursive set,
is one whose characteristic function is computable. A Turing machine decides a set if it
computes the characteristic function of that set. A relation is computable if it is
computable as a set.

ExampLE The computable functions form a very big collection. All of these are
computable.

flr)=2x filx)y=x* fo(x)=2"
So are these.
x/2 - if x is even

B = 3x+1 -—ifxisodd

fa(x) = the least prime number greater than x

The computable sets are also a big collection. These sets are computable.

So={2n | neN} S1={x | the prime factorization has three distinct primes }

Church’s Thesis

Church’s Thesis

A Church asserted the following, which essentially says that Turing’s characterization of
what can be done by a machine is correct. It explains our spending a whole course
thinking about this model of machines and related ones. We will discuss evidence for it
below.

The set of things that can be computed by a discrete and deterministic mechanism
is the same as the set of things that can be computed by a Turing machine.

(Some authors call this the Church-Turing Thesis. Here we figure that because Turing
has the machine, we can give Church sole possesion of the thesis.)

Evidence

Coverage Everything that people think of as intuitively computable has proven to be
computable on a Turing machine.

Evidence

Coverage Everything that people think of as intuitively computable has proven to be
computable on a Turing machine.
Convergence There have been many models of computation proposed by researchers

and all compute the same set of things, namely the set of things computed by Turing
machines.

Evidence

Coverage Everything that people think of as intuitively computable has proven to be
computable on a Turing machine.

Convergence There have been many models of computation proposed by researchers
and all compute the same set of things, namely the set of things computed by Turing
machines.

Consistency The details of the definition, including the number of tapes or tape heads,
the number of symbols available, the number of states, all don’t change the
collection of things computed. (This includes the condition of determinism.)

Evidence

Coverage Everything that people think of as intuitively computable has proven to be
computable on a Turing machine.
Convergence There have been many models of computation proposed by researchers

and all compute the same set of things, namely the set of things computed by Turing
machines.

Consistency The details of the definition, including the number of tapes or tape heads,
the number of symbols available, the number of states, all don’t change the
collection of things computed. (This includes the condition of determinism.)

Clarity Turing’s analysis is persuasive of itself.

An empirical question?

As yet, there is no persuasive evidence of physically possible systems that allow you to
compute things that a Turing machine cannot compute. (We shall take proposals
involving wormholes, black hole event horizons, etc., as too speculative to be as-yet
persuasive.)

In particular, we expect that quantum computers, should they become practical, will run
faster on some problems. But they are not more capable in principle —the set of things
computed by quantum computers is the same as the set of things computed by Turing
machines.

Church’s Thesis in arguments

Church’s Thesis equates ‘computable’ with ‘computable by a Turing machine’. We will
leverage this in two ways.

1. It gives our results a larger, philosophical, importance. When we produce a result of
the form No Turing machine can ... then we can use Church’s Thesis to interpret it
as No mechanism can . ..

Church’s Thesis in arguments

Church’s Thesis equates ‘computable’ with ‘computable by a Turing machine’. We will
leverage this in two ways.

1. It gives our results a larger, philosophical, importance. When we produce a result of
the form No Turing machine can ... then we can use Church’s Thesis to interpret it
as No mechanism can . ..

2. To prove results about Turing machines we often argue intuitively. For instance,
consider the problem of whether this function is computable: it inputs a number n
and returns 1 when n is a prime, and 0 otherwise. To show that this function can be
computed, we will not exhibit a Turing machine set of four-tuple instructions.
Instead we will argue that the function is intuitively computable, often by giving
some pseudo-code and perhaps some actual code, and then invoke Church’s Thesis.
Working intuitively is potentially hazardous. However, we have so much experience
with computation that our intuition is quite reliable. For us, there is more of a
danger of being overwhelmed by the detail of four-tuples than a danger of being too
hand-wavy about algorithms.

Primitive recursive functions

Definition by recursion

Grade school students learn addition and multiplication as mildly complicated algorithms
(multiplication, for example, involves arranging the digits into a table, doing partial
products from right to left, and then adding). In 1861, H Grassmann produced a more
elegant definition. Here is the formula for addition, plus: N®> — N, which takes as given
the successor map, S(n) =n+ 1.

—-ify=0

x
1 ,Y) =
plus(x, y) {S(plus(x, z)) —ify=8(z)forzeN

ExaMPLE This finds the sum of 3 and 2.

plus(3,2) = S(plus(3,1)) = S(S(plus(3,0))) = S(S(3)) =5

Besides being compact, this has a very interesting feature: ‘plus’ recurs in its own
definition. This is definition by recursion. Whereas the grade school definition of addition
is prescriptive in that it gives a procedure, this recursive definition has the advantage of
being descriptive because it specifies the meaning, the semantics, of the operation.

Multiplication has the same form.

duct(x, 1) 0 —-ify=0
roduct(x,y) =
P v plus(product(x, z),x) -ify =S(z)

ExamMPLE The expansion of product(2, 3) reduces to a sum of three 2’s.
product(2, 3) = plus(product(2, 2), 2)
= plus(plus(product(2, 1), 2), 2)

= plus(plus(plus(product(2, 0), 2), 2), 2)
= plus(plus(plus(0, 2), 2), 2)

Multiplication has the same form.

duct(x, 1) 0 —-ify=0
roduct(x, y) = .

P v plus(product(x, z),x) -ify =S(z)
ExamMPLE The expansion of product(2, 3) reduces to a sum of three 2’s.

product(2, 3) = plus(product(2, 2), 2)
= plus(plus(product(2, 1), 2), 2)
= plus(plus(plus(product(2, 0), 2), 2), 2)
= plus(plus(plus(0, 2), 2), 2)

And exponentiation works the same way.

(x.4) 1 -ify=0
ower(x, y) =
P Y product(power(x, z), x) -ify = S(z)

EXAMPLE

power(3, 2) = product(power(3, 1), 3)
= product(product(power(3,0),3),3) =9

Defining by primitive recursion

DEFINITION A function f is defined by the schema of primitive recursion from the
functions g and h when this holds.

g(x0, ... Xp_1) —-ify=0
Flx0s o X1, 8) = s

h(f (x0, ... Xp_1,2), X0, ... Xp—1,2) —ify=38(z)
The bookkeeping is that the arity of f, the number of inputs, is one more than the arity
of g and one less than the arity of h.

ExampLE The function plus is defined by primitive recursion from g(xp) = xo and
h(w, xo,z) = S(w). The function product is defined by primitive recursion from
g(x0) = 0 and h(w, xg, z) = plus(w, xg). The function power is defined by primitive
recursion from g(xg) = 1 and h(w, xo, z) = product(w, xp).

ExampLE The predecessor function is like an inverse to successor. However, since we use
the natural numbers we can’t give a predecessor of zero, so instead we describe

pred: N — N by: pred(y) equals y — 1 if y > 0 and equals O if y = 0. This definition fits
the primitive recursive schema.

0 -ify=0
pred(y) = o

z —ify=8(2)
The arity bookkeeping is that pred has no x;’s so g is a function of zero-many inputs and
is therefore constant, g() = 0, while h has two inputs, h(a, b) = b (the first input gets
ignored, that is, a is just a dummy variable).

ExamPLE Consider proper subtraction, denoted x = y, described by: if x > ythenx -y
equals x — y and otherwise x - y equals 0. This definition of that function fits the
primitive recursion schema.

X —-ify=0
propersub(x, y) = .
pred(propersub(x,z)) -ify=8(z)

In the terms of Theorem 3.6, g(xo) = xo and h(w, xg, z) = pred(w); the bookkeeping
works since the arity of g is one less than the arity of f, and, because h has dummy
arguments, its arity is one more than the arity of f.

Collection of Primitive Recursive Functions

DerINITION The set of primitive recursive functions consists of those that can be derived
from the initial operations of the zero function Z(x) = Z(xo, ... xx_1) = 0, the successor
function S(¥) = x + 1, and the projection functions Z;(X) = x; where i € {0,...k — 1},
by a finite number of applications of the combining operations of function composition
and primitive recursion.

Function composition covers not just the simple case of two functions f and g whose
composition is defined by f o g (¥) = f(g(X)). It also covers simultaneous substitution,
where from f(xo, ..., x,) and ho(Y0,0, ---> Y0,mo)> - - -» and hp (Yn0, -, Ynm,,),

we get f(ho(Y0,0, - Yo,mg)> - An(Yn,0, ---» Yn,m,,)), Which is a function with

(mop+1) +---+ (my + 1)-many inputs.

The collection of primitive recursive functions is very large. It includes addition, proper
subtraction, multiplication, integer division, exponentiation, the equality Boolean
function, the remainder function, the sum of a bounded number of terms, the product of
a bounded number of terms, and just about every function that comes to mind.

General Recursive Functions

Ackermann’s function

Every primitive recursive function is intuitively mechanically computable. What about
the converse: is every mechanically computable function primitive recursive? Here we
will answer ‘no’.

Recall that the addition operation is repeated successor, that multiplication is repeated
addition, and that exponentiation is repeated multiplication.

x+y=8(8(---S(x))) X y=x+x+ - +x xIY=x-x---x
——— — S—————
y many Y many Yy many

This is a compelling pattern.

The pattern is especially striking when we express these functions using the schema of
primitive recursion. For that, start by defining #¢ to be the successor function, Ho = S.

X -ify=0

lus(x,y) = Hi(x,y) =
plus(x, y) 1(x,y) {Ho(x,H1(x,y—1)) — otherwise

duct(x,y) = Ha(x,y) = | ~ify=0
roduct(x,y) = Ha(x,y) =
P v 20y Hi1(x,Ha(x,y — 1)) - otherwise

(xy) = Ha(x,) = { ~ify=0
ower(x, y) = x,y) =
P Y sy Ho(x,H3(x,y — 1)) - otherwise

The pattern shows in the ‘otherwise’ lines. Each one satisfies that
Hn(x,y) = Hn-1(x, Hn(x,y = 1)).

Because of this pattern we call each #,, the level n function, so that successor is

level 0, addition is the level 1 operation, multiplication is the level 2 operation, and
exponentiation is level 3. The definition below takes n as a parameter, writing #(n, x, y)
in place of H,(x, y), to get all of the levels into one formula.

DEFINITION This is the hyperoperation H: N3 — N.

y+1 -ifn=0

x —ifn=1andy=0
H(n,x,y) =40 —ifn=2andy=0

1 —ifn>2andy=0

H(n—1,x,H(n,x,y — 1)) - otherwise

The hyperoperation is an Ackermann’s function.

LEMMA Ho(x,y) =y+1, Hi(xy) =x+y, Ha(x,y) =x -y, H3(x,y) = xY.

Pr. The level 0 statement Ho(x,y) = y + 1 is in the definition of H.

We prove the level 1 statement H1(x,y) = x + y by induction on y. For the y = 0 base
step, the definition is that 7(1, x, 0) = x, which equals x + 0 = x + y. For the inductive
step, assume that the statement holds fory =0, ..., y = k and consider the y =k + 1
case. The definition is 1 (x, k + 1) = Ho(x, H1(x, k)). Apply the inductive hypothesis to
get Ho(x, x + k). By the prior paragraph this equals x + k + 1 = x + y.

The other two, Hs and H3, are Exercise 4.15. 1

Our interest in the H operation is that it is intuitively computable but not primitive
recursive.

THEOREM The hyperoperation H is not primitive recursive.

(This is proved in an Extra section.)

REMARK At first glance it could appear that many of the arguments for Church’s Thesis
apply to the set of primitive recursive functions. However this theorem, proved by
Ackermann, shows that there are functions that are intuitively mechnically computable
but which are not primitive recursive. So we need more than the schema of primitive
recursion.

[recursion

DEFINITION Suppose that g: N"*1 _; N is total, so that for every input tuple there is an

output number. Then f: N” — N is defined from g by minimization or p-recursion,
written f(X) = py [g(X,y) = 0], if £() is the the least number y such that g(%, y) = 0.

This is unbounded search: we have in mind that g is mechanically computable and we
calculate g(¥,0), then g(X, 1), etc., waiting until one of them gives the output 0. If that
ever happens, so that g(X, n) = 0 for some least n, then f(X) = n. If it never happens that
the output is 0 then f(¥X) is undefined.

[recursion

DEFINITION Suppose that g: N"*1 _; N is total, so that for every input tuple there is an
output number. Then f: N” — N is defined from g by minimization or p-recursion,
written f(X) = py [g(X,y) = 0], if £() is the the least number y such that g(%, y) = 0.

This is unbounded search: we have in mind that g is mechanically computable and we
calculate g(¥,0), then g(X, 1), etc., waiting until one of them gives the output 0. If that
ever happens, so that g(X, n) = 0 for some least n, then f(X) = n. If it never happens that
the output is 0 then f(¥X) is undefined.

ExampLE Euler noticed in 1772 that the polynomial p(y) = y? + y + 41 initially seems to
output only primes.

y|lo 1 2 3 4 5 6 7 8 9
p(y) [41 43 47 53 61 71 83 97 113 131

We could test whether this ever fails by doing an unbounded search for non-primes. This
function tests for the primality of a quadratic polynomial’s output.

1 —if xoy2 + x1Y + x2 is prime

g(x0.x1,%x2,4) = 9(%,y) = {O — otherwise

Then the search is f(¥) = py [g(%,y) = 0]. (Note that £(1,1,41) = 40.)

ExampPLE Goldbach’s conjecture is that every even number can be written as the sum of
at most two primes. Here are the first few instances: 2 =2,4=2+2,6=3+3,

8 =5+ 3,10 = 7 + 3. No one knows if it is true. A natural attack is to search for a
counterexample. With this auxillary function

i —the numbers i and n — i are both prime, and i < n — i
gb-check(n) = .
0 - otherwise

we get a version of the definition’s g (here X is empty).

1 - if gb-check(2y) # 0
0 - otherwise

gb-g(y) {

The unbounded search is gb-f() = py | gb-g(y) = 0].

ExampPLE Goldbach’s conjecture is that every even number can be written as the sum of
at most two primes. Here are the first few instances: 2 =2,4=2+2,6=3+3,

8 =5+ 3,10 = 7 + 3. No one knows if it is true. A natural attack is to search for a
counterexample. With this auxillary function

i —the numbers i and n — i are both prime, and i < n — i
gb-check(n) = .
0 - otherwise

we get a version of the definition’s g (here X is empty).

1 - if gb-check(2y) # 0
0 - otherwise

gb-g(y) {
The unbounded search is gb-f() = py | gb-g(y) = 0].

ExaMPLE A composite number n such that b = b (mod n) for all b is a Carmichael
number. The first one is 561. This Boolean function is primitive recursive.

1 -if nis a Carmichael number
C(n) = .
0 - otherwise

Here we define the x-th Carmichael number F: N — N by p-recursion.

561 -ifx=0
F(x) = .
uy [y >F(x—-1)and1-C(y) = 0] — otherwise

DEFINITION A function is general recursive or partial recursive, or y-recursive, or just
recursive, if it can be derived from the initial operations of the zero function Z(X) = 0,
the successor function S(x) = x + 1, and the projection functions

Zi(xo, ..., Xi ... Xj—1) = x; by a finite number of applications of function composition, the
schema of primitive recursion, and minimization.

It is beyond our scope, but we could prove that the collection of general recursive
functions is the same set as the collection of functions computed by some Turing
machine, which we call the ‘computable functions’.

(Some authors define the computable functions as the recursive functions, in contrast
with our using Turing machines. Such a development has the advantage of going straight
to functions without having to do representations. But it has the disadvantage of losing
the evident connection with what can be mechanically computed that comes with
Turing’s approach.)

	Turing machines
	Church's Thesis
	Primitive recursive functions
	General Recursive Functions

