
Background

Jim Hefferon

University of Vermont
hefferon.net

Cardinality

Finite sets have the same size iff there is a correspondence
One-to-one?

No Yes

Onto?

No

Yes

Lemma For a function with a finite domain, the number of elements in its domain is
greater than or equal to the number of elements in its range. If the function is one-to-one
then its domain has the same number of elements as its range, while if it is not
one-to-one then its domain has more elements than its range. Consequently, two finite
sets have the same number of elements if and only if they correspond, that is, if and only
if there is a function from one to the other that is a correspondence.

Cardinality definition
Lemma The relation between two sets of ‘there is a correspondence from one to the
other’ is an equivalence relation.
Definition Two sets have the same cardinality or are equinumerous, denoted
|𝑆0 | = |𝑆1 |, if there is a correspondence between them.

Example These have the same cardinality: (1) |𝐴| = |𝐵 | where
𝐴 = {𝑥 ∈ R

�� 0 ≤ 𝑥 < 1} and 𝐵 = {𝑥 ∈ R
�� 1 ≤ 𝑥 < 5} (2) |𝐶 | = |𝐷 | where

𝐶 = {𝑥 ∈ N
�� 0 ≤ 𝑥 < 10} and 𝐷 = {𝑥 ∈ N

�� 1 ≤ 𝑥 < 11}. Further, (3) if
𝐼 = {𝑥 ∈ R

�� 0 < 𝑥 < 1} then |𝐼 | = |R| and (4) if 𝑆 = {𝑥 ∈ N
�� 𝑥 is a perfect square}

then |𝑆 | = |N|.
Definition A set is finite if it has the same cardinality as {0, 1, ... 𝑛 } for some 𝑛 ∈ N, or
if it is empty. Otherwise it is infinite.
Definition A set with the same cardinality as the natural numbers is countably infinite.
A set that is either finite or countably infinite is countable. If a set is the range of a
function whose domain is the natural numbers then we say the function enumerates, or
is an enumeration of, that set.

Cardinality definition
Lemma The relation between two sets of ‘there is a correspondence from one to the
other’ is an equivalence relation.
Definition Two sets have the same cardinality or are equinumerous, denoted
|𝑆0 | = |𝑆1 |, if there is a correspondence between them.

Example These have the same cardinality: (1) |𝐴| = |𝐵 | where
𝐴 = {𝑥 ∈ R

�� 0 ≤ 𝑥 < 1} and 𝐵 = {𝑥 ∈ R
�� 1 ≤ 𝑥 < 5} (2) |𝐶 | = |𝐷 | where

𝐶 = {𝑥 ∈ N
�� 0 ≤ 𝑥 < 10} and 𝐷 = {𝑥 ∈ N

�� 1 ≤ 𝑥 < 11}. Further, (3) if
𝐼 = {𝑥 ∈ R

�� 0 < 𝑥 < 1} then |𝐼 | = |R| and (4) if 𝑆 = {𝑥 ∈ N
�� 𝑥 is a perfect square}

then |𝑆 | = |N|.

Definition A set is finite if it has the same cardinality as {0, 1, ... 𝑛 } for some 𝑛 ∈ N, or
if it is empty. Otherwise it is infinite.
Definition A set with the same cardinality as the natural numbers is countably infinite.
A set that is either finite or countably infinite is countable. If a set is the range of a
function whose domain is the natural numbers then we say the function enumerates, or
is an enumeration of, that set.

Cardinality definition
Lemma The relation between two sets of ‘there is a correspondence from one to the
other’ is an equivalence relation.
Definition Two sets have the same cardinality or are equinumerous, denoted
|𝑆0 | = |𝑆1 |, if there is a correspondence between them.

Example These have the same cardinality: (1) |𝐴| = |𝐵 | where
𝐴 = {𝑥 ∈ R

�� 0 ≤ 𝑥 < 1} and 𝐵 = {𝑥 ∈ R
�� 1 ≤ 𝑥 < 5} (2) |𝐶 | = |𝐷 | where

𝐶 = {𝑥 ∈ N
�� 0 ≤ 𝑥 < 10} and 𝐷 = {𝑥 ∈ N

�� 1 ≤ 𝑥 < 11}. Further, (3) if
𝐼 = {𝑥 ∈ R

�� 0 < 𝑥 < 1} then |𝐼 | = |R| and (4) if 𝑆 = {𝑥 ∈ N
�� 𝑥 is a perfect square}

then |𝑆 | = |N|.
Definition A set is finite if it has the same cardinality as {0, 1, ... 𝑛 } for some 𝑛 ∈ N, or
if it is empty. Otherwise it is infinite.
Definition A set with the same cardinality as the natural numbers is countably infinite.
A set that is either finite or countably infinite is countable. If a set is the range of a
function whose domain is the natural numbers then we say the function enumerates, or
is an enumeration of, that set.

Example The set {𝑛2
�� 𝑛 ∈ N} is countably infinite. It is enumerated by the function

𝑓 : N → N given by 𝑓 (𝑥) = 𝑥2. Note that this enumeration is effective.
Example The set N − {0, 1, 2} = {3, 4, 5, 6, 7, ... } is countably infinite. The function
𝑓 (𝑥) = 𝑥 + 3 closes the gap.

𝑛 0 1 2 3 4 5 6 ...
𝑓 (𝑛) 3 4 5 6 7 8 9 ...

This function is clearly one-to-one and onto, as well as computable.
Example The set of prime numbers 𝑃 is countable. There is a function 𝑝 : N → 𝑃 where
𝑝 (𝑛) is the 𝑛-th prime, so that 𝑝 (0) = 2, 𝑝 (1) = 3, etc.
Example The set of integers Z = { ... ,−2,−1, 0, 1, 2, ... } is countable. The natural
correspondence alternates between positive and negative numbers.

𝑛 ∈ N 0 1 2 3 4 5 6 ...
𝑓 (𝑛) ∈ Z 0 +1 −1 +2 −2 +3 −3 ...

Cross product
Example If 𝑁2 = {0, 1} × N then |𝑁2 | = |N|.

〈0, 0〉 〈1, 0〉
〈0, 1〉 〈1, 1〉
〈0, 2〉 〈1, 2〉
〈0, 3〉 〈1, 3〉
...

...

The picture above shows 𝑁2 as two N’s. Nonetheless we can enumerate it.

𝑛 ∈ N 0 1 2 3 4 5 ...
⟨𝑖, 𝑗⟩ ∈ 𝑆 ⟨0, 0⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨1, 1⟩ ⟨0, 2⟩ ⟨1, 2⟩ ...

The map from the table’s top row to the bottom is a pairing function. Its inverse, from
bottom to top, is an unpairing function.
Example If 𝑁3 = {0, 1, 2} × N then |𝑁3 | = |N|. For any finite 𝑘, if
𝑁𝑘 = {0, 1, ... 𝑘 − 1} × N then |𝑁𝑘 | = |N|.
Lemma The cross product of two finite sets is finite, and therefore countable. The cross
product of a finite set and a countably infinite set, or of a countably infinite set and a
finite set, is countably infinite.

Cross product
Example If 𝑁2 = {0, 1} × N then |𝑁2 | = |N|.

〈0, 0〉 〈1, 0〉
〈0, 1〉 〈1, 1〉
〈0, 2〉 〈1, 2〉
〈0, 3〉 〈1, 3〉
...

...

The picture above shows 𝑁2 as two N’s. Nonetheless we can enumerate it.
𝑛 ∈ N 0 1 2 3 4 5 ...

⟨𝑖, 𝑗⟩ ∈ 𝑆 ⟨0, 0⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨1, 1⟩ ⟨0, 2⟩ ⟨1, 2⟩ ...

The map from the table’s top row to the bottom is a pairing function. Its inverse, from
bottom to top, is an unpairing function.
Example If 𝑁3 = {0, 1, 2} × N then |𝑁3 | = |N|. For any finite 𝑘, if
𝑁𝑘 = {0, 1, ... 𝑘 − 1} × N then |𝑁𝑘 | = |N|.
Lemma The cross product of two finite sets is finite, and therefore countable. The cross
product of a finite set and a countably infinite set, or of a countably infinite set and a
finite set, is countably infinite.

Cantor’s correspondence

Cantor’s correspondence
Next is to enumerate an array that is unbounded in two dimensions.

〈0, 0〉 〈1, 0〉 〈2, 0〉 〈3, 0〉
〈0, 1〉 〈1, 1〉 〈2, 1〉 〈3, 1〉
〈0, 2〉 〈1, 2〉 〈2, 2〉 〈3, 2〉
〈0, 3〉 〈1, 3〉 〈2, 3〉 〈3, 3〉

...

...

...

...
...

...

𝑛 ∈ N 0 1 2 3 4 5 6 . . .
⟨𝑥,𝑦⟩ ∈ N2 ⟨0, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 2⟩ ⟨1, 1⟩ ⟨2, 0⟩ ⟨0, 3⟩ . . .

Definition Cantor’s correspondence cantor : N2 → N or unpairing function, is the
above correspondence. Its inverse cantor−1 : N → N2 is Cantor’s pairing function. (A
notation for cantor(𝑥,𝑦) common elsewhere is ⟨𝑥,𝑦⟩.)
Lemma The cross product N × N is countable, for instance under Cantor’s
correspondence cantor : N2 → N. Further, the sets N3 = N × N × N, and N4, . . . are all
countable.
Corollary The cross product of finitely many countable sets is countable.

Cantor’s correspondence
Next is to enumerate an array that is unbounded in two dimensions.

〈0, 0〉 〈1, 0〉 〈2, 0〉 〈3, 0〉
〈0, 1〉 〈1, 1〉 〈2, 1〉 〈3, 1〉
〈0, 2〉 〈1, 2〉 〈2, 2〉 〈3, 2〉
〈0, 3〉 〈1, 3〉 〈2, 3〉 〈3, 3〉

...

...

...

...
...

...

𝑛 ∈ N 0 1 2 3 4 5 6 . . .
⟨𝑥,𝑦⟩ ∈ N2 ⟨0, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 2⟩ ⟨1, 1⟩ ⟨2, 0⟩ ⟨0, 3⟩ . . .

Definition Cantor’s correspondence cantor : N2 → N or unpairing function, is the
above correspondence. Its inverse cantor−1 : N → N2 is Cantor’s pairing function. (A
notation for cantor(𝑥,𝑦) common elsewhere is ⟨𝑥,𝑦⟩.)

Lemma The cross product N × N is countable, for instance under Cantor’s
correspondence cantor : N2 → N. Further, the sets N3 = N × N × N, and N4, . . . are all
countable.
Corollary The cross product of finitely many countable sets is countable.

Cantor’s correspondence
Next is to enumerate an array that is unbounded in two dimensions.

〈0, 0〉 〈1, 0〉 〈2, 0〉 〈3, 0〉
〈0, 1〉 〈1, 1〉 〈2, 1〉 〈3, 1〉
〈0, 2〉 〈1, 2〉 〈2, 2〉 〈3, 2〉
〈0, 3〉 〈1, 3〉 〈2, 3〉 〈3, 3〉

...

...

...

...
...

...

𝑛 ∈ N 0 1 2 3 4 5 6 . . .
⟨𝑥,𝑦⟩ ∈ N2 ⟨0, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 2⟩ ⟨1, 1⟩ ⟨2, 0⟩ ⟨0, 3⟩ . . .

Definition Cantor’s correspondence cantor : N2 → N or unpairing function, is the
above correspondence. Its inverse cantor−1 : N → N2 is Cantor’s pairing function. (A
notation for cantor(𝑥,𝑦) common elsewhere is ⟨𝑥,𝑦⟩.)
Lemma The cross product N × N is countable, for instance under Cantor’s
correspondence cantor : N2 → N. Further, the sets N3 = N × N × N, and N4, . . . are all
countable.
Corollary The cross product of finitely many countable sets is countable.

Counting Turing machines
Each Turing machine instruction is a four-tuple, a member of 𝑄 × Σ × (Σ ∪ {L, R}) ×𝑄 ,
where 𝑄 is the set of states and Σ is the tape alphabet. The results of this section imply
that we can enumerate the set of instructions, so that there is an instruction that
corresponds to 0, one corresponding to 1, etc. This enumeration is effective— there is a
program that takes in a natural number and outputs the corresponding instruction, as
well as a program that takes in an instruction and outputs the corresponding number.
With that, we can effectively number the Turing machines. The exact numbering that we
use doesn’t matter much as long as it is has the properties in the definition below.
But for illustration here is one way: starting with a Turing machine P, use the prior
paragraph to convert each of its instructions to a number, giving a set {𝑖0, 𝑖1, ... 𝑖𝑛 }. Then
define the number 𝑒 associated with P to be the one that when written in binary has 1 in
bits 𝑖0, . . . 𝑖𝑛 , that is, 𝑒 = 2𝑖0 + 2𝑖1 + · · · + 2𝑖𝑛 . This association is effective. Its inverse is
also effective: given 𝑒 ∈ N, represent it as 𝑒 = 2𝑗0 + · · · + 2𝑗𝑘 and the set of instructions
corresponding to the numbers 𝑗0, . . . 𝑗𝑘 is the desired Turing machine. (Except that we
must first check that the instruction set is deterministic, that no two of the instructions
begin with the same 𝑞𝑝𝑇𝑝 . We can check this effectively and if it is not true then let the
machine associated with 𝑒 be empty, P = { }.)

Definition A numbering is a function that assigns to each Turing machine a natural
number. A numbering is acceptable if it is effective: (1) there is a program that takes as
input the set of instructions and gives as output the associated number, (2) the set of
numbers for which there is an associated machine is computable, and (3) there is an
effective inverse that takes as input a natural number and gives as output the associated
machine.

We fix some acceptable numbering that we will use for the rest of the course.

Lemma (Padding lemma) Every computable function has infinitely many indices: if 𝑓 is
computable then there are infinitely many distinct 𝑒𝑖 ∈ N with 𝑓 = 𝜙𝑒0 = 𝜙𝑒1 = · · · . We
can effectively produce a list of such indices.

Pf. Let 𝑓 = 𝜙𝑒 . Let 𝑞 𝑗 be the highest-numbered state in P𝑒 . For each 𝑘 ∈ N+ consider
the Turing machine obtained from P𝑒 by adding the instruction 𝑞 𝑗+𝑘BB𝑞 𝑗+𝑘 , This gives
an effective sequence of Turing machines P𝑒1 , P𝑒2 , . . . with distinct indices, all having
the same behavior, 𝜙𝑒𝑘 = 𝜙𝑒 = 𝑓.

Definition A numbering is a function that assigns to each Turing machine a natural
number. A numbering is acceptable if it is effective: (1) there is a program that takes as
input the set of instructions and gives as output the associated number, (2) the set of
numbers for which there is an associated machine is computable, and (3) there is an
effective inverse that takes as input a natural number and gives as output the associated
machine.

We fix some acceptable numbering that we will use for the rest of the course.
Lemma (Padding lemma) Every computable function has infinitely many indices: if 𝑓 is
computable then there are infinitely many distinct 𝑒𝑖 ∈ N with 𝑓 = 𝜙𝑒0 = 𝜙𝑒1 = · · · . We
can effectively produce a list of such indices.

Pf. Let 𝑓 = 𝜙𝑒 . Let 𝑞 𝑗 be the highest-numbered state in P𝑒 . For each 𝑘 ∈ N+ consider
the Turing machine obtained from P𝑒 by adding the instruction 𝑞 𝑗+𝑘BB𝑞 𝑗+𝑘 , This gives
an effective sequence of Turing machines P𝑒1 , P𝑒2 , . . . with distinct indices, all having
the same behavior, 𝜙𝑒𝑘 = 𝜙𝑒 = 𝑓.

A way to informally think about numbering
Turing machines are like programs. Imagine that you write a program P and save it to
disc. It lives on the hard drive as a bitstring. Think of that bitstring as a number, 𝑒,
written in binary. In this analogy, the program and the number correspond. In both
directions the association is effective: from the source code in your editor the system
derives its bit string representation, and from the bit string representation on the disc the
system can recover the program’s source.

(def (f x y)

.

.

.

1000010 . . .

m

This is only an analogy and it isn’t perfect—one problem is that leading 0’s in the bit
string cause ambiguity—but it can helpin thinking about numbering. A Turing
machine’s index number 𝑒 is a name, a way to refer to that machine. That reference is
effective, meaning that there is a program that goes from the Turing machine source to
the index and a program that goes from the index to the source.

Diagonalization

There are sets that cannot be counted
Theorem There is no onto map 𝑓 : N → R. Hence, the set of reals is not countable.

Before the proof, an example.

𝑛 Decimal expansion of 𝑓 (𝑛)
0 42 . 3 1 2 7 7 0 4 ...
1 2 . 0 1 0 0 0 0 0 ...
2 1 . 4 1 4 1 5 9 2 ...
3 −20 . 9 1 9 5 9 1 9 ...
4 0 . 1 0 1 0 0 1 0 ...
5 −0 . 6 2 5 5 4 1 8 ...
...

...

We will produce a number 𝑧 ∈ R that does not equal any of the 𝑓 (𝑛)’s.

Ignore what is to the left of the decimal point. To its right go down the diagonal, taking
the digits 3, 1, 4, 5, 0, 1 . . . Construct the desired 𝑧 by making its first decimal place
something other than 3, making its second decimal place something other than 1, etc.
Specifically, if the diagonal digit is a 1 then 𝑧 gets a 2 in that decimal place and
otherwise 𝑧 gets a 1 there. Thus, in this example 𝑧 = 0.121112 ...

There are sets that cannot be counted
Theorem There is no onto map 𝑓 : N → R. Hence, the set of reals is not countable.

Before the proof, an example.

𝑛 Decimal expansion of 𝑓 (𝑛)
0 42 . 3 1 2 7 7 0 4 ...
1 2 . 0 1 0 0 0 0 0 ...
2 1 . 4 1 4 1 5 9 2 ...
3 −20 . 9 1 9 5 9 1 9 ...
4 0 . 1 0 1 0 0 1 0 ...
5 −0 . 6 2 5 5 4 1 8 ...
...

...

We will produce a number 𝑧 ∈ R that does not equal any of the 𝑓 (𝑛)’s.
Ignore what is to the left of the decimal point. To its right go down the diagonal, taking
the digits 3, 1, 4, 5, 0, 1 . . . Construct the desired 𝑧 by making its first decimal place
something other than 3, making its second decimal place something other than 1, etc.
Specifically, if the diagonal digit is a 1 then 𝑧 gets a 2 in that decimal place and
otherwise 𝑧 gets a 1 there. Thus, in this example 𝑧 = 0.121112 ...

Theorem There is no onto map 𝑓 : N → R. Hence, the set of reals is not countable.

Pf. We will show that no map 𝑓 : N → R is onto.
Denote the 𝑖-th decimal digit of 𝑓 (𝑛) as 𝑓 (𝑛) [𝑖] (if 𝑓 (𝑛) is a number with two decimal
representations then use the one ending in 0’s). Let 𝑔 be the map on the decimal digits
{0, ... , 9} given by: 𝑔(𝑗) = 2 if 𝑗 is 1 and 𝑔(𝑗) = 1 otherwise.
Now let 𝑧 be the real number that has 0 to the left of its decimal point, and whose 𝑖-th
decimal digit is 𝑔(𝑓 (𝑖) [𝑖]). Then for all 𝑖, 𝑧 ≠ 𝑓 (𝑖) because 𝑧 [𝑖] ≠ 𝑓 (𝑖) [𝑖]. So 𝑓 is not
onto.

Uncountable sets
Definition A set that is infinite but not countable is uncountable.
Example There are many uncountable sets. We can adjust the argument from the prior
slide to show that there is no onto function from N to 𝑆 where 𝑆 = {𝑥 ∈ R

�� 𝑥 > 5}, or
𝑆 = [√3 .. 10) = {𝑥 ∈ R

��√3 ≤ 𝑥 < 10}.

Hierarchy of infinities
Definition The set 𝑆 has cardinality less than or equal to that of the set 𝑇 , denoted
|𝑆 | ≤ |𝑇 |, if there is a one-to-one function from 𝑆 to 𝑇 .
Example For finite sets it just means that the number of elements in 𝑆 is less than or
equal to the number of elements in 𝑇 . An example is 𝑆 = {10, 11, 12} and
𝑇 = {0, 1, 2, 3}. The function 𝑓 : 𝑆 → 𝑇 given by 10 ↦→ 0, and 11 ↦→ 1, and 12 ↦→ 2 is
one-to-one and so |𝑆 | ≤ |𝑇 |.
Example Let 𝑆 = {0, 2, 4, ... } be the even numbers. The inclusion map 𝑓 : 𝑆 → N given
by 𝑠 ↦→ 𝑠 is one-to-one. So |𝑆 | ≤ |N|.
Example Similarly, |N| ≤ |R| via the inclusion map 𝑓 (𝑥) = 𝑥 . Since R is uncountable,
this less-than relation between cardinalities is strict.
Example Let 𝑆 = [0 .. 2) and 𝑇 = [10 .. 16) be intervals of real numbers. The function
𝑓 : R → R given by 𝑓 (𝑥) = 3𝑥 + 10 is one-to-one, so |𝑆 | ≤ |𝑇 |.
(Also one-to-one is the function 𝑔 : R → R given by 𝑔(𝑦) = (𝑦 − 10)/6 and so we also
have |𝑇 | ≤ |𝑆 |. A result that we cover in the exercises says that if there is a one-to-one
function both ways then the two sets correspond, so |𝑇 | = |𝑆 |.)

Cantor’s Theorem
For the next result, recall that a set’s characteristic function 1𝑆 is the Boolean function
determining membership: 1𝑆 (𝑠) = 𝑇 if 𝑠 ∈ 𝑆 and 1𝑆 (𝑠) = 𝐹 if 𝑠 ∉ 𝑆 . (We sometimes
instead use the bits 1 for 𝑇 and 0 for 𝐹 .)
Theorem (Cantor’s Theorem) A set’s cardinality is strictly less than that of its power
set.

Before the proof, an example. The harder half is showing that no map from 𝑆 to P(𝑆) is
onto. For example, consider the set 𝑆 = {a, b, c} and this function 𝑓 : 𝑆 → P(𝑆).

a
𝑓↦−→ {b, c} b

𝑓↦−→ {b} c
𝑓↦−→ {a, b, c} (∗)

Below, the first row lists the values of the characteristic function 1𝑓 (a) on the inputs a, b,
and c. The second row lists the values for 1𝑓 (b) . And, the third row lists 1𝑓 (c) .

𝑠 ∈ 𝑆 𝑓 (𝑠) 1𝑓 (𝑠) (a) 1𝑓 (𝑠) (b) 1𝑓 (𝑠) (c)
a {b, c} 𝐹 𝑇 𝑇
b {b} 𝐹 𝑇 𝐹
c {a, b, c} 𝑇 𝑇 𝑇

We show that 𝑓 is not onto by producing a member of P(𝑆) that is not any of the three
sets in (∗). For that, take the table’s diagonal 𝐹𝑇𝑇 and flip the values to get 𝑇𝐹𝐹. That
describes the characteristic function of the set 𝑅 = {a}.

Cantor’s Theorem
For the next result, recall that a set’s characteristic function 1𝑆 is the Boolean function
determining membership: 1𝑆 (𝑠) = 𝑇 if 𝑠 ∈ 𝑆 and 1𝑆 (𝑠) = 𝐹 if 𝑠 ∉ 𝑆 . (We sometimes
instead use the bits 1 for 𝑇 and 0 for 𝐹 .)
Theorem (Cantor’s Theorem) A set’s cardinality is strictly less than that of its power
set.

Before the proof, an example. The harder half is showing that no map from 𝑆 to P(𝑆) is
onto. For example, consider the set 𝑆 = {a, b, c} and this function 𝑓 : 𝑆 → P(𝑆).

a
𝑓↦−→ {b, c} b

𝑓↦−→ {b} c
𝑓↦−→ {a, b, c} (∗)

Below, the first row lists the values of the characteristic function 1𝑓 (a) on the inputs a, b,
and c. The second row lists the values for 1𝑓 (b) . And, the third row lists 1𝑓 (c) .

𝑠 ∈ 𝑆 𝑓 (𝑠) 1𝑓 (𝑠) (a) 1𝑓 (𝑠) (b) 1𝑓 (𝑠) (c)
a {b, c} 𝐹 𝑇 𝑇
b {b} 𝐹 𝑇 𝐹
c {a, b, c} 𝑇 𝑇 𝑇

We show that 𝑓 is not onto by producing a member of P(𝑆) that is not any of the three
sets in (∗). For that, take the table’s diagonal 𝐹𝑇𝑇 and flip the values to get 𝑇𝐹𝐹. That
describes the characteristic function of the set 𝑅 = {a}.

Pf. First, |𝑆 | ≤ |P(𝑆) | because the inclusion map 𝜄 : 𝑆 → P(𝑆) given by 𝜄 (𝑠) = {𝑠} is
one-to-one. For the second half we will show that there is no corespondence, that no map
from a set to its power set is onto. Fix 𝑓 : 𝑆 → P(𝑆) and consider this element of P(𝑆).

𝑅 = {𝑠
�� 𝑠 ∉ 𝑓 (𝑠) }

We will demonstrate that no member of the domain maps to 𝑅 and thus 𝑓 is not onto.
Suppose that there exists 𝑠 ∈ 𝑆 such that 𝑓 (𝑠) = 𝑅. Consider whether 𝑠 is an element
of 𝑅. We have that 𝑠 ∈ 𝑅 if and only if 𝑠 ∈ {𝑠

�� 𝑠 ∉ 𝑓 (𝑠) }. By the definition of
membership, that holds if and only if 𝑠 ∉ 𝑓 (𝑠), which holds if and only if 𝑠 ∉ 𝑅. The
contradiction means that no such 𝑠 exists.

Diagonalization depends on changing the entries. Before we leave this argument note
where the changing happens, where the bits get flipped, namely in the definition of 𝑅.
Example The collection containing all subsets of N

C = {∅, ... {1, 2, 6}, ... {0, 1, 4, 9, ... }, ... }
has a larger cardinality than does the set N.

The functions not computed by any machine
Corollary The cardinality of the set N is strictly less than the cardinality of the set of
functions 𝑓 : N → N.

Pf. Let the set of functions be 𝐹. There is a one-to-one map from P(N) to 𝐹, namely the
one that associates each subset 𝑆 ⊆ N with its characteristic function, 1𝑆 : N → N.
Therefore |N| < |P(N) | ≤ |𝐹 |.

Turing machines compute functions from N to N. There are uncountably many such
functions, but only countably many Turing machines. Consequently, there are function
that are not computed by any Turing machine.
This is like the child’s game of Musical Chairs. In the game there are more children than
chairs and so some child is left without a chair. Here, there are more functions from N
to N than there are Turing machines and similarly there must be a function without a
machine to compute it.
In the light of Church’s Thesis we interpret this to say that there are jobs that no
computer can do.
We started the course by asking “What can be done?” We now have part of the
answer: not everything.

The functions not computed by any machine
Corollary The cardinality of the set N is strictly less than the cardinality of the set of
functions 𝑓 : N → N.

Pf. Let the set of functions be 𝐹. There is a one-to-one map from P(N) to 𝐹, namely the
one that associates each subset 𝑆 ⊆ N with its characteristic function, 1𝑆 : N → N.
Therefore |N| < |P(N) | ≤ |𝐹 |.

Turing machines compute functions from N to N. There are uncountably many such
functions, but only countably many Turing machines. Consequently, there are function
that are not computed by any Turing machine.
This is like the child’s game of Musical Chairs. In the game there are more children than
chairs and so some child is left without a chair. Here, there are more functions from N
to N than there are Turing machines and similarly there must be a function without a
machine to compute it.

In the light of Church’s Thesis we interpret this to say that there are jobs that no
computer can do.
We started the course by asking “What can be done?” We now have part of the
answer: not everything.

The functions not computed by any machine
Corollary The cardinality of the set N is strictly less than the cardinality of the set of
functions 𝑓 : N → N.

Pf. Let the set of functions be 𝐹. There is a one-to-one map from P(N) to 𝐹, namely the
one that associates each subset 𝑆 ⊆ N with its characteristic function, 1𝑆 : N → N.
Therefore |N| < |P(N) | ≤ |𝐹 |.

Turing machines compute functions from N to N. There are uncountably many such
functions, but only countably many Turing machines. Consequently, there are function
that are not computed by any Turing machine.
This is like the child’s game of Musical Chairs. In the game there are more children than
chairs and so some child is left without a chair. Here, there are more functions from N
to N than there are Turing machines and similarly there must be a function without a
machine to compute it.
In the light of Church’s Thesis we interpret this to say that there are jobs that no
computer can do.
We started the course by asking “What can be done?” We now have part of the
answer: not everything.

Universality

Universal Turing machine
Theorem (Turing, 1936) There is a Turing machine that when given the inputs 𝑒
and 𝑥 will have the same output behavior as does P𝑒 on input 𝑥 .

This machine will fail to halt if P𝑒 fails to halt on 𝑥 and otherwise will halt and yield the
matching output.

This machine is in a sense an all-powerful Turing machine, UP. It is a Universal Turing
Machine in that this one device can be made to have any desired computable behavior.
So we don’t need infinitely many different Turing machines, we just need this one.
▶ A universal machine UP is like an interpreter, or like an operating system.
▶ This converts from doing jobs in hardware to doing them in software.
▶ The universal machine does not get as input a Turing machine, it gets the index of a

Turing machine, which is computationally equivalent to a representation of that
machine.

▶ Yes, we could feed UP its own index.

Universal Turing machine
Theorem (Turing, 1936) There is a Turing machine that when given the inputs 𝑒
and 𝑥 will have the same output behavior as does P𝑒 on input 𝑥 .

This machine will fail to halt if P𝑒 fails to halt on 𝑥 and otherwise will halt and yield the
matching output.
This machine is in a sense an all-powerful Turing machine, UP. It is a Universal Turing
Machine in that this one device can be made to have any desired computable behavior.
So we don’t need infinitely many different Turing machines, we just need this one.
▶ A universal machine UP is like an interpreter, or like an operating system.
▶ This converts from doing jobs in hardware to doing them in software.
▶ The universal machine does not get as input a Turing machine, it gets the index of a

Turing machine, which is computationally equivalent to a representation of that
machine.

▶ Yes, we could feed UP its own index.

Parametrization
Partial evaluation is the freezing of some of a machine’s inputs. An example is to start
with this two-input function.
(define (power base exponent) ; Def i s a bit s i l l y because

(expt base exponent)) ; expt does the same and i s bui l t in

Get a family of functions by parametrizing the exponent.
(define (identity_fcn base)

(power base 1))

(define (square_fcn base)
(power base 2))

(define (cube_fcn base)
(power base 3))

Freezing variables
On the left is a three input program. By Church’s Thesis there is a Turing machine with
this behavior; let the index of that machine be 𝑒.

Start
Read x0Read x1Read x2

Do something
Output something

End

Start
x0 = 5x1 = 7
Read x2

Do something
Output something

End
On the right we have frozen the first two inputs. The s-m-n Theorem, which we are about
to see, says that we can do this uniformly, that there is a program which takes in 𝑒, 5,
and 7 and outputs the index of the Turing machine on the right.
Further, the s-m-n Theorem says that a single program works in all
freeze-two-inputs-and-leave-one-as-is situations. We can write 𝑠2,1 for the computable
function that does this. We usually just call it 𝑠.
In short, where 𝑒 is the index of the Turing machine outlined on the left, the index of the
machine on the right is 𝑠 (𝑒, 5, 7).

The s-m-n Theorem
Universality says that there is a computable function 𝑈 : N2 → N such that
𝑈 (𝑒, 𝑥) = 𝜙𝑒 (𝑥). There, the letter 𝑒 travels from the function’s argument to an index. In
the next result we go from the argument to being part of the index.
Theorem (s-m-n theorem, or Parameter theorem) For every𝑚,𝑛 ∈ N there is a
computable total function 𝑠𝑚,𝑛 : N1+𝑚 → N such that for an𝑚 + 𝑛-ary function
𝜙𝑒 (𝑥0, ... 𝑥𝑚−1, 𝑥𝑚, ... 𝑥𝑚+𝑛−1), freezing the initial𝑚 variables at 𝑎0, ... 𝑎𝑚−1 ∈ N gives
the 𝑛-ary computable function 𝜙𝑠 (𝑒,𝑎0,...𝑎𝑚−1) (𝑥𝑚, ... 𝑥𝑚+𝑛−1).

Pf. We will produce the function 𝑠 to satisfy three requirements: it must be effective, it
must input an index 𝑒 and an𝑚-tuple 𝑎0, ... 𝑎𝑚−1, and it must output the index of
a machine P̂ that, when given the input 𝑥𝑚, ... 𝑥𝑚+𝑛−1, will return the value
𝜙𝑒 (𝑎0, ... 𝑎𝑚−1, 𝑥𝑚, ... 𝑥𝑚+𝑛−1), or fail to halt if that function diverges.
The idea is that the machine that computes 𝑠 will construct the instructions for P̂. We
can get from the instruction set to the index using Cantor’s encoding, so with that we will
be done.
Below on the left is the flowchart for the machine that computes the function 𝑠. In its
third box it creates the set of four-tuple instructions shown on the right, which make the
machine P̂. The machine on the left needs 𝑎0, ... 𝑎𝑚−1 for the right side’s second, third,
and fourth boxes, and it needs 𝑒 for the fifth box.

The s-m-n Theorem
Universality says that there is a computable function 𝑈 : N2 → N such that
𝑈 (𝑒, 𝑥) = 𝜙𝑒 (𝑥). There, the letter 𝑒 travels from the function’s argument to an index. In
the next result we go from the argument to being part of the index.
Theorem (s-m-n theorem, or Parameter theorem) For every𝑚,𝑛 ∈ N there is a
computable total function 𝑠𝑚,𝑛 : N1+𝑚 → N such that for an𝑚 + 𝑛-ary function
𝜙𝑒 (𝑥0, ... 𝑥𝑚−1, 𝑥𝑚, ... 𝑥𝑚+𝑛−1), freezing the initial𝑚 variables at 𝑎0, ... 𝑎𝑚−1 ∈ N gives
the 𝑛-ary computable function 𝜙𝑠 (𝑒,𝑎0,...𝑎𝑚−1) (𝑥𝑚, ... 𝑥𝑚+𝑛−1).
Pf. We will produce the function 𝑠 to satisfy three requirements: it must be effective, it
must input an index 𝑒 and an𝑚-tuple 𝑎0, ... 𝑎𝑚−1, and it must output the index of
a machine P̂ that, when given the input 𝑥𝑚, ... 𝑥𝑚+𝑛−1, will return the value
𝜙𝑒 (𝑎0, ... 𝑎𝑚−1, 𝑥𝑚, ... 𝑥𝑚+𝑛−1), or fail to halt if that function diverges.
The idea is that the machine that computes 𝑠 will construct the instructions for P̂. We
can get from the instruction set to the index using Cantor’s encoding, so with that we will
be done.
Below on the left is the flowchart for the machine that computes the function 𝑠. In its
third box it creates the set of four-tuple instructions shown on the right, which make the
machine P̂. The machine on the left needs 𝑎0, ... 𝑎𝑚−1 for the right side’s second, third,
and fourth boxes, and it needs 𝑒 for the fifth box.

Start
Read 4, 00, ... , 0<−1

Create instructions for %̂
Return the index ofthat instruction set

End

Start
Move left 00 + · · · + 0<−1 +< cells

Put 00 , . . ., 0<−1 on the tapeseparated by blanks
Move I/O head to the start of 00

Simulate %4
End

The Turing machine P̂ does not first read its inputs 𝑥𝑚, ... 𝑥𝑚+𝑛−1. Instead, it first moves
left and writes 𝑎0, ... 𝑎𝑚−1 on the tape, in unary and separated by blanks, and with a
blank between 𝑎𝑚−1 and 𝑥𝑚 . (Recall that the 𝑎𝑖 are parameters, not variables. They are
fixed. They are, so to speak, hard-coded into P̂, which is how it knows what to write.)
Then using universality, 𝑃 simulates Turing machine 𝑃𝑒 and lets it run on the entire list
of inputs now on the tape, 𝑎0, ... 𝑎𝑚−1, 𝑥𝑚, ... 𝑥𝑚+𝑛−1.

The s-m-n Theorem gives a uniform family of functions
Recall again the power routine.

Start
Read baseRead exponent

z = base**exponent
Print z
End

Suppose that sketch describes the Turing machine with index 𝑒. Looking at the different
machines indexed by 𝑠 (𝑒, 𝑥) gives a family of routines parametrized by the exponent.

Start
Read base
z = base**0
Print z
End

Start
Read base
z = base**1
Print z
End

Start
Read base
z = base**2
Print z
End

. . .

Start
Read base
z = base**G
Print z
End

...

Unsolvability

The Halting problem: motivation
We have shown that there are some functions that are not mechanically computable. But
to do this we used Cantor’s Theorem that says the function exists but doesn’t construct it.
In this subject we prefer to construct things. So we will now go through the proof of
Cantor’s Theorem and effectivize it.

On the left is the table from the discussion leading to Cantor’s Theorem.

Function

Input
0 1 2 3 4 5 6 ...

𝜙0 3 1 2 7 7 0 4 ...
𝜙1 0 5 0 0 0 0 0 ...
𝜙2 1 4 1 5 9 2 6 ...
𝜙3 9 1 9 1 9 1 9 ...
𝜙4 1 0 1 0 0 1 0 ...
𝜙5 6 2 5 5 4 1 8 ...
...

...

Start
Read 4

Compute table entryfor index 4 , input 4
Print result + 1

End
Consider the diagonalization flowchart. All the boxes except the middle one are trivial.
For the middle, use universality to simulate Turing machine 𝑒 running input 𝑒.
We seem to have produced a program whose output isn’t on the list of all program
outputs. That’s obviously impossible. Where is the flaw in the reasoning?

The Halting problem: motivation
We have shown that there are some functions that are not mechanically computable. But
to do this we used Cantor’s Theorem that says the function exists but doesn’t construct it.
In this subject we prefer to construct things. So we will now go through the proof of
Cantor’s Theorem and effectivize it.
On the left is the table from the discussion leading to Cantor’s Theorem.

Function

Input
0 1 2 3 4 5 6 ...

𝜙0 3 1 2 7 7 0 4 ...
𝜙1 0 5 0 0 0 0 0 ...
𝜙2 1 4 1 5 9 2 6 ...
𝜙3 9 1 9 1 9 1 9 ...
𝜙4 1 0 1 0 0 1 0 ...
𝜙5 6 2 5 5 4 1 8 ...
...

...

Start
Read 4

Compute table entryfor index 4 , input 4
Print result + 1

End
Consider the diagonalization flowchart. All the boxes except the middle one are trivial.
For the middle, use universality to simulate Turing machine 𝑒 running input 𝑒.

We seem to have produced a program whose output isn’t on the list of all program
outputs. That’s obviously impossible. Where is the flaw in the reasoning?

The Halting problem: motivation
We have shown that there are some functions that are not mechanically computable. But
to do this we used Cantor’s Theorem that says the function exists but doesn’t construct it.
In this subject we prefer to construct things. So we will now go through the proof of
Cantor’s Theorem and effectivize it.
On the left is the table from the discussion leading to Cantor’s Theorem.

Function

Input
0 1 2 3 4 5 6 ...

𝜙0 3 1 2 7 7 0 4 ...
𝜙1 0 5 0 0 0 0 0 ...
𝜙2 1 4 1 5 9 2 6 ...
𝜙3 9 1 9 1 9 1 9 ...
𝜙4 1 0 1 0 0 1 0 ...
𝜙5 6 2 5 5 4 1 8 ...
...

...

Start
Read 4

Compute table entryfor index 4 , input 4
Print result + 1

End
Consider the diagonalization flowchart. All the boxes except the middle one are trivial.
For the middle, use universality to simulate Turing machine 𝑒 running input 𝑒.
We seem to have produced a program whose output isn’t on the list of all program
outputs. That’s obviously impossible. Where is the flaw in the reasoning?

The Halting problem: definition
Problem (Halting problem) Given 𝑒 ∈ N, determine whether 𝜙𝑒 (𝑒)↓, that is, whether
Turing machine P𝑒 halts on input 𝑒.
Definition The Halting problem set is 𝐾 = {𝑒 ∈ N

�� 𝜙𝑒 (𝑒)↓}.

Theorem The Halting problem is unsolvable by any Turing machine.

Pf. Assume otherwise, that there exists a Turing machine with this behavior.

1𝐾 (𝑒) = 𝐾 (𝑒) = halt_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑒)↓
0 – if 𝜙𝑒 (𝑒)↑

Then the function below is also mechanically computable. The flowchart illustrates how
𝑓 is constructed; it uses the above function in its decision box. (In the top case the
particular output value 42 doesn’t matter, all that matters is that 𝑓 converges.)

𝑓 (𝑒) =
{
42 – if 𝜙𝑒 (𝑒)↑
↑ – if 𝜙𝑒 (𝑒)↓ Y N

Start
Read 4

 (4) = 0?Print 42 Infinite loop
End

The Halting problem: definition
Problem (Halting problem) Given 𝑒 ∈ N, determine whether 𝜙𝑒 (𝑒)↓, that is, whether
Turing machine P𝑒 halts on input 𝑒.
Definition The Halting problem set is 𝐾 = {𝑒 ∈ N

�� 𝜙𝑒 (𝑒)↓}.
Theorem The Halting problem is unsolvable by any Turing machine.

Pf. Assume otherwise, that there exists a Turing machine with this behavior.

1𝐾 (𝑒) = 𝐾 (𝑒) = halt_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑒)↓
0 – if 𝜙𝑒 (𝑒)↑

Then the function below is also mechanically computable. The flowchart illustrates how
𝑓 is constructed; it uses the above function in its decision box. (In the top case the
particular output value 42 doesn’t matter, all that matters is that 𝑓 converges.)

𝑓 (𝑒) =
{
42 – if 𝜙𝑒 (𝑒)↑
↑ – if 𝜙𝑒 (𝑒)↓ Y N

Start
Read 4

 (4) = 0?Print 42 Infinite loop
End

Since this is mechanically computable, it has a Turing machine index. Let that index
be 𝑒0, so that 𝑓 (𝑥) = 𝜙𝑒0 (𝑥) for all inputs 𝑥 .
Now consider 𝑓 (𝑒0) = 𝜙𝑒0 (𝑒0) (that is, feed the machine P𝑒0 its own index). If it
diverges then the first clause in the definition of 𝑓 means that 𝑓 (𝑒0)↓, which contradicts
the assumption of divergence. If it converges then 𝑓 ’s second clause means that 𝑓 (𝑒0)↑,
also a contradiction. Since assuming that halt_decider is mechanically computable
leads to a contradiction, that function is not mechanically computable.

Showing other problems are unsolvable by relating them to the Halting
problem
Example Consider this problem: given 𝑖 ∈ N, determine whether Turing machine 𝑖 halts
on input 1. We are asking whether this function is computable.

halts_on_one_decider(𝑖) =
{
1 – if 𝜙𝑖 (1)↓
0 – otherwise

We will show that if it were mechanically computable then we could solve the Halting
problem.

Consider the machines sketched here.
Start

Read G, ~
Run PG on G
Print 42
End

Start
Read ~

Run PG on G
Print 42
End

On the right, 𝑥 is hard-coded. That machine halts on any input if and only if it gets
through the middle box (the output 42 is not important; we just like to have both input
and output). In particular, it halts on input 𝑦 = 1 if and only if 𝜙𝑥 (𝑥)↓.

Showing other problems are unsolvable by relating them to the Halting
problem
Example Consider this problem: given 𝑖 ∈ N, determine whether Turing machine 𝑖 halts
on input 1. We are asking whether this function is computable.

halts_on_one_decider(𝑖) =
{
1 – if 𝜙𝑖 (1)↓
0 – otherwise

We will show that if it were mechanically computable then we could solve the Halting
problem.
Consider the machines sketched here.

Start
Read G, ~

Run PG on G
Print 42
End

Start
Read ~

Run PG on G
Print 42
End

On the right, 𝑥 is hard-coded. That machine halts on any input if and only if it gets
through the middle box (the output 42 is not important; we just like to have both input
and output). In particular, it halts on input 𝑦 = 1 if and only if 𝜙𝑥 (𝑥)↓.

So we can turn the ‘does 𝜙𝑥 (𝑥)↓?’ questions into questions that halts_on_one_decider
can answer. The proof involves recognizing that we can switch uniformly to questions of
the second kind.
For that proof, here are the flowcharts again. On the left is a sketch of a single machine.
We can write it as a program, using universality for the third box, so by Church’s Thesis
there is a Turing machine with this behavior. Let that machine’s index be 𝑒0.

Start
Read G, ~

Run PG on G
Print 42
End

Start
Read ~

Run PG on G
Print 42
End

Then the s-m-n Theorem gives what’s on the right, the family of machines, P𝑠 (𝑒0,𝑥) . We
have already observed that 𝜙𝑥 (𝑥)↓ if and only if halts_on_one_decider(𝑠 (𝑒0, 𝑥)) = 1.
So if we could mechanically check whether a machine halts on 1 then we could
mechanically solve the Halting problem. We can’t solve the Halting problem, so
halts_on_one_decider is not a mechanically computable function.

Similar examples
Each of these is unsolvable. For each, show that by using the Halting problem.

1. The problem of determining whether a given Turing machine ever outputs a 19.

outputs_nineteen_decider(𝑖) =
{
1 – if there is 𝑛 such that 𝜙𝑖 (𝑛) = 19
0 – otherwise

2. The problem of determining whether a given Turing machine gives as output the
square of its input.

square_decider(𝑖) =
{
1 – if 𝜙𝑖 (𝑛) = 𝑛2 for all n
0 – otherwise

Discussion: the Halting problem is unsolvable
▶ Inherent in the nature of mechanical computation, necessary to avoid contradiction,

is that some computations fail to halt.

▶ “Unsolvable” means unsolvable by a Turing machine. Below is a perfectly good
function that solves the Halting problem but it isn’t mechanically computable—no
Turing machine has this input/output behavior.

halt_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑒)↓
0 – if 𝜙𝑒 (𝑒)↑

▶ Unsolvability of the Halting problem does not mean that for no program can we tell
if that program halts. The program on the left below halts, for all inputs. Nor does it
mean that for no program can we tell if the program does not halt. The program on
the right does not halt, for all inputs.

(define (print−zero)
(read)
(display 0))

(define (unbounded−growth)
(define (grow x)

(grow (+ 1 x)))

(read) ; wait for user input
(grow 0))

Instead, the unsolvability of the Halting Problem says that there is no single program
that, for all input 𝑒, correctly computes in a finite time whether P𝑒 halts on 𝑒.

Discussion: the Halting problem is unsolvable
▶ Inherent in the nature of mechanical computation, necessary to avoid contradiction,

is that some computations fail to halt.
▶ “Unsolvable” means unsolvable by a Turing machine. Below is a perfectly good

function that solves the Halting problem but it isn’t mechanically computable—no
Turing machine has this input/output behavior.

halt_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑒)↓
0 – if 𝜙𝑒 (𝑒)↑

▶ Unsolvability of the Halting problem does not mean that for no program can we tell
if that program halts. The program on the left below halts, for all inputs. Nor does it
mean that for no program can we tell if the program does not halt. The program on
the right does not halt, for all inputs.

(define (print−zero)
(read)
(display 0))

(define (unbounded−growth)
(define (grow x)

(grow (+ 1 x)))

(read) ; wait for user input
(grow 0))

Instead, the unsolvability of the Halting Problem says that there is no single program
that, for all input 𝑒, correctly computes in a finite time whether P𝑒 halts on 𝑒.

Discussion: the Halting problem is unsolvable
▶ Inherent in the nature of mechanical computation, necessary to avoid contradiction,

is that some computations fail to halt.
▶ “Unsolvable” means unsolvable by a Turing machine. Below is a perfectly good

function that solves the Halting problem but it isn’t mechanically computable—no
Turing machine has this input/output behavior.

halt_decider(𝑒) =
{
1 – if 𝜙𝑒 (𝑒)↓
0 – if 𝜙𝑒 (𝑒)↑

▶ Unsolvability of the Halting problem does not mean that for no program can we tell
if that program halts. The program on the left below halts, for all inputs. Nor does it
mean that for no program can we tell if the program does not halt. The program on
the right does not halt, for all inputs.

(define (print−zero)
(read)
(display 0))

(define (unbounded−growth)
(define (grow x)

(grow (+ 1 x)))

(read) ; wait for user input
(grow 0))

Instead, the unsolvability of the Halting Problem says that there is no single program
that, for all input 𝑒, correctly computes in a finite time whether P𝑒 halts on 𝑒.

Discussion continued
▶ Unsolvability of the Halting Problem says that there is no single program that, for

all 𝑒, correctly computes in a finite time whether P𝑒 halts on input 𝑒. The “finite
time” qualifier is there because we could think to use a universal Turing machine to
simulate P𝑒 on 𝑒, but if that machine failed to halt then we would not find out in a
finite time.
The “single program” qualifier is a little subtler. For any index 𝑒, either P𝑒 halts on 𝑒
or it does not. That is, for any 𝑒 one of these two programs gives the right answer.

(define (print−no)
(display 0))

(define (print−yes)
(display 1))

Thus, the unsolvability of the Halting Problem is about the non-existence of a single
program that works across all indices. It is about uniformity, or rather, the
impossibility of uniformity.

Rice’s Theorem

Rice’s Theorem
Definition Two computable functions have the same behavior, 𝜙𝑒 ≃𝜙𝑒 , if they converge
on the same inputs 𝑥 ∈ N and when they do converge, they have the same outputs.
Definition A set I of natural numbers is an index set when for all 𝑒, 𝑒 ∈ N, if 𝑒 ∈ I and
𝜙𝑒 ≃ 𝜙𝑒 then also 𝑒 ∈ I.
Example These are index sets: {𝑒 ∈ N

�� 𝜙𝑒 (𝑥) = 9}, and
{𝑒 ∈ N

�� 𝜙𝑒 (𝑥) = 2𝑥 or 𝜙𝑒 (𝑥) = 𝑥 + 6}, and (3) {𝑒 ∈ N
�� 𝜙𝑒 (1)↓}.

Theorem (Rice’s theorem) Every index set that is not trivial, that is not empty and
not all of N, is not computable.

Pf. Let I be an index set. Choose an 𝑒 ∈ N so that 𝜙𝑒 (𝑦)↑ for all 𝑦. Then either 𝑒 ∈ I
or 𝑒 ∉ I. We shall show that in the second case I is not computable. The first case is
similar and is Exercise 6.33.
So assume 𝑒 ∉ I. Since I is not empty there is an index 𝑒 ∈ I. Because I is an index set,
𝜙𝑒 ; 𝜙𝑒 . Thus there is an input 𝑦 such that 𝜙𝑒 (𝑦)↓.
Consider the flowchart on the left below. Note that 𝑒 is not an input, it is hard-coded into
the source. By Church’s Thesis there is a Turing machine with that behavior, let it be P𝑒0 .
Apply the s-m-n theorem to parametrize 𝑥 , resulting in the uniformly computable family
of functions 𝜙𝑠 (𝑒0,𝑥) whose computation is outlined on the right.

Start
Read G, ~

Run PG on G
Run P4̂ on ~

End

Start
Read ~

Run PG on G
Run P4̂ on ~

End
We’ve constructed the machine on the right so that if 𝜙𝑥 (𝑥)↑ then 𝜙𝑠 (𝑒0,𝑥) ≃ 𝜙𝑒 and thus
𝑠 (𝑒0, 𝑥) ∉ I. Further, if 𝜙𝑥 (𝑥)↓ then 𝜙𝑠 (𝑒0,𝑥) ≃ 𝜙𝑒 and thus 𝑠 (𝑒0, 𝑥) ∈ I. It follows
that if I were mechanically computable, so that we could effectively check whether
𝑠 (𝑒0, 𝑥) ∈ I, then we could solve the Halting problem.

Similar examples
Show each of these is unsolvable using Rice’s Theorem.

1. The problem of determining whether a given Turing machine halts on input 1.

I0 = {𝑖
�� P𝑖 halts on input 1}

2. The problem of determining whether a given Turing machine ever outputs a 19.

I1 = {𝑖
�� there is an 𝑥 so that P𝑖 halts on 𝑥 and outputs 19}

3. The problem of determining whether a given Turing machine gives as output the
square of its input.

Computably enumerable sets

Recall also that a set of natural numbers is computable, or decidable, if its characteristic
function is computable.
Definition A set of natural numbers is computably enumerable if it is effectively
listable, that is, if it is the range of a total computable function, or is the empty set.
Alternate terms are recursively enumerable (or c.e., or r.e.), or semicomputable or
semidecidable.

The ‘enumerable’ comes from the image of a computable function generating the set
elements as a stream of numbers.

𝜙𝑒 (0), 𝜙𝑒 (1), 𝜙𝑒 (2), ...
Example Some computably enumerable sets are {1, 3, 5}, and {2𝑛

�� 𝑛 ∈ N}, and
{𝑦

�� there is an 𝑥 so that 𝑦 = 𝜙19 (𝑥) }, and {𝑥
�� 𝜙10 (𝑥)↓}.

The contrast between computable and computably enumerable is that a set 𝑆
is computable if there is a Turing machine that decides membership, that inputs
a number 𝑥 and decides either ‘yes’ or ‘no’ whether 𝑥 ∈ 𝑆 . But with computably
enumerable, given some 𝑥 we can set up a machine to monitor the number stream and if
𝑥 appear then this machine decides ‘yes’. However this machine need not ever discover
‘no’. Restated, a set is computably enumerable if there is a Turing machine that
recognizes members, while a set is computable if there is a Turing machine that
recognizes both members and nonmembers.

Lemma The following are equivalent for a set of natural numbers. (1) It is computably
enumerable, that is, either it is empty or it is the range of a total computable function.
(2) It is the domain of a partial computable function. (3) It is the range of a partial
computable function.
Definition 𝑊𝑒 = {𝑥

�� 𝜙𝑒 (𝑥)↓}

Lemma If a set is computable then it is computably enumerable. A set is computable if
and only if both it and its complement are computably enumerable.
Corollary The Halting problem set 𝐾 is computably enumerable. Its complement 𝐾c is
not.

Part of our interest in these sets is philosophical. By Church’s Thesis we can think that, in
a sense, the collection of computable sets consists of the only sets that we will ever fully
know. With that thinking, sets that are semidecidable but not decidable are at the limits
of our knowledge, where we can determine membership but not nonmembership.

Lemma The following are equivalent for a set of natural numbers. (1) It is computably
enumerable, that is, either it is empty or it is the range of a total computable function.
(2) It is the domain of a partial computable function. (3) It is the range of a partial
computable function.
Definition 𝑊𝑒 = {𝑥

�� 𝜙𝑒 (𝑥)↓}
Lemma If a set is computable then it is computably enumerable. A set is computable if
and only if both it and its complement are computably enumerable.
Corollary The Halting problem set 𝐾 is computably enumerable. Its complement 𝐾c is
not.

Part of our interest in these sets is philosophical. By Church’s Thesis we can think that, in
a sense, the collection of computable sets consists of the only sets that we will ever fully
know. With that thinking, sets that are semidecidable but not decidable are at the limits
of our knowledge, where we can determine membership but not nonmembership.

Lemma The following are equivalent for a set of natural numbers. (1) It is computably
enumerable, that is, either it is empty or it is the range of a total computable function.
(2) It is the domain of a partial computable function. (3) It is the range of a partial
computable function.
Definition 𝑊𝑒 = {𝑥

�� 𝜙𝑒 (𝑥)↓}
Lemma If a set is computable then it is computably enumerable. A set is computable if
and only if both it and its complement are computably enumerable.
Corollary The Halting problem set 𝐾 is computably enumerable. Its complement 𝐾c is
not.

Part of our interest in these sets is philosophical. By Church’s Thesis we can think that, in
a sense, the collection of computable sets consists of the only sets that we will ever fully
know. With that thinking, sets that are semidecidable but not decidable are at the limits
of our knowledge, where we can determine membership but not nonmembership.

Fixed point theorem

Sequences of computable functions
So far we have studied individual computable functions 𝜙 . We next consider sequences of
them.

𝜙𝑖0 , 𝜙𝑖1 , 𝜙𝑖2 , 𝜙𝑖3 , ...

There, the indices seem to be any old sequence of numbers. But in this subject it is most
natural for this sequence to be effectively computed, for the sequence to be the output of
some computable function, 𝑖0 = 𝜙𝑒 (0), 𝑖1 = 𝜙𝑒 (1), ... That gives us this sequence, for
some 𝑒.

𝜙𝜙𝑒 (0) , 𝜙𝜙𝑒 (1) , 𝜙𝜙𝑒 (2) , 𝜙𝜙𝑒 (3) , ...

To compute 𝜙𝜙𝑒 (𝑖) (𝑥), first compute 𝜙𝑒 (𝑖) = 𝑤 and then use that value 𝑤 to compute
𝜙𝑤 (𝑥). Thus, if 𝜙𝑒 (𝑖) diverges then 𝜙𝜙𝑒 (𝑖) (𝑥) also diverges.
Example The squaring function 𝜙𝑒0 (𝑥) = 𝑥2 gives this sequence of computable functions

𝜙0, 𝜙1, 𝜙4, 𝜙9, ...

and the doubler function 𝜙𝑒1 (𝑥) = 2𝑥 gives this sequence.

𝜙0, 𝜙2, 𝜙4, 𝜙6, ...

There are countably many computable functions 𝜙𝑒 so this table that lists every
computable sequence ⟨𝜙𝜙𝑒 (𝑛)

�� 𝑛 ∈ N ⟩ of computable functions.

Sequence term
𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3 . . .

Sequence

𝑒 = 0 𝜙𝜙0 (0) 𝜙𝜙0 (1) 𝜙𝜙0 (2) 𝜙𝜙0 (3) . . .
𝑒 = 1 𝜙𝜙1 (0) 𝜙𝜙1 (1) 𝜙𝜙1 (2) 𝜙𝜙1 (3) . . .
𝑒 = 2 𝜙𝜙2 (0) 𝜙𝜙2 (1) 𝜙𝜙2 (2) 𝜙𝜙2 (3) . . .
𝑒 = 3 𝜙𝜙3 (0) 𝜙𝜙3 (1) 𝜙𝜙3 (2) 𝜙𝜙3 (3)
...

...
...

What happens when we diagonalize?

When diagonalization fails
Recall our first example of diagonalization, the proof that the set of real numbers is not
countable. We assumed that there is an 𝑓 : N → R and considered its inputs and
outputs, as illustrated in this table.

𝑛 𝑓 (𝑛) ’s decimal expansion
0 42 . 3 1 2 7 7 0 4 ...
1 2 . 0 1 0 0 0 0 0 ...
2 1 . 4 1 4 1 5 9 2 ...
3 −20 . 9 1 9 5 9 1 9 ...
...

...

Let row 𝑛’s decimal representation be 𝑑𝑛 = 𝑑.𝑑𝑛,0𝑑𝑛,1𝑑𝑛,2 ... Go down the diagonal to the
right of the decimal point to get the sequence of digits ⟨𝑑0,0, 𝑑1,1, 𝑑2,2, ...⟩, which above is
⟨3, 1, 4, 5, ...⟩. Using that sequence, construct a number 𝑧 = 0.𝑧0𝑧1𝑧2 ... by making its
𝑛-th decimal place be something other than 𝑑𝑛,𝑛 . In our earlier example we took a digit
transformation 𝑡 given by 𝑡 (𝑑𝑛,𝑛) = 2 if 𝑑𝑛,𝑛 = 1, and 𝑡 (𝑑𝑛,𝑛) = 1 otherwise, so that the
table above yields 𝑧 = 0.1211 ... Then the diagonalization argument culminates in
verifying that 𝑧 is not any of the rows.

What if the transformation is such that the diagonal is a row, 𝑧 = 𝑓 (𝑛0)? Then find where
the diagonal crosses that row. That array member is unchanged by the transformation,
𝑑𝑛0,𝑛0 = 𝑡 (𝑑𝑛0,𝑛0). Conclusion: if diagonalization fails then the transformation has a
fixed point.

When diagonalization fails
Recall our first example of diagonalization, the proof that the set of real numbers is not
countable. We assumed that there is an 𝑓 : N → R and considered its inputs and
outputs, as illustrated in this table.

𝑛 𝑓 (𝑛) ’s decimal expansion
0 42 . 3 1 2 7 7 0 4 ...
1 2 . 0 1 0 0 0 0 0 ...
2 1 . 4 1 4 1 5 9 2 ...
3 −20 . 9 1 9 5 9 1 9 ...
...

...

Let row 𝑛’s decimal representation be 𝑑𝑛 = 𝑑.𝑑𝑛,0𝑑𝑛,1𝑑𝑛,2 ... Go down the diagonal to the
right of the decimal point to get the sequence of digits ⟨𝑑0,0, 𝑑1,1, 𝑑2,2, ...⟩, which above is
⟨3, 1, 4, 5, ...⟩. Using that sequence, construct a number 𝑧 = 0.𝑧0𝑧1𝑧2 ... by making its
𝑛-th decimal place be something other than 𝑑𝑛,𝑛 . In our earlier example we took a digit
transformation 𝑡 given by 𝑡 (𝑑𝑛,𝑛) = 2 if 𝑑𝑛,𝑛 = 1, and 𝑡 (𝑑𝑛,𝑛) = 1 otherwise, so that the
table above yields 𝑧 = 0.1211 ... Then the diagonalization argument culminates in
verifying that 𝑧 is not any of the rows.
What if the transformation is such that the diagonal is a row, 𝑧 = 𝑓 (𝑛0)? Then find where
the diagonal crosses that row. That array member is unchanged by the transformation,
𝑑𝑛0,𝑛0 = 𝑡 (𝑑𝑛0,𝑛0). Conclusion: if diagonalization fails then the transformation has a
fixed point.

We can apply that insight to the table of all computable sequences of computable
functions.

Sequence term
𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3 . . .

Sequence

𝑒 = 0 𝜙𝜙0 (0) 𝜙𝜙0 (1) 𝜙𝜙0 (2) 𝜙𝜙0 (3) . . .
𝑒 = 1 𝜙𝜙1 (0) 𝜙𝜙1 (1) 𝜙𝜙1 (2) 𝜙𝜙1 (3) . . .
𝑒 = 2 𝜙𝜙2 (0) 𝜙𝜙2 (1) 𝜙𝜙2 (2) 𝜙𝜙2 (3) . . .
𝑒 = 3 𝜙𝜙3 (0) 𝜙𝜙3 (1) 𝜙𝜙3 (2) 𝜙𝜙3 (3)
...

...
...

The natural transformation is this, where 𝑓 is a computable function.

𝜙𝑥
𝑡𝑓↦−→ 𝜙 𝑓 (𝑥)

We next argue that under this transformation, diagonalization fails. Thus, the
transformation 𝑡𝑓 has a fixed point.

TheoremFor any total computable function 𝑓 there is a number 𝑘 such that 𝜙𝑘 = 𝜙 𝑓 (𝑘) .

Pf. The array diagonal is 𝜙𝜙0 (0) , 𝜙𝜙1 (1) , 𝜙𝜙2 (2) ... The flowchart on the left below is a
sketch of a function 𝑓 (𝑛, 𝑥) = 𝜙𝜙𝑛 (𝑛) (𝑥). Church’s Thesis says that some Turing machine
computes this function; let that machine have index 𝑒0. Apply the s-m-n theorem to
parametrize 𝑛, giving the right chart, which describes the family of machines. The 𝑛-th
member of that family, 𝜙𝑠 (𝑒0,𝑛) , computes the 𝑛-th function on the diagonal of the above
array.

Start
Read=, G

Run P= on=
With the result F ,run PF on input G

End

Start
Read G

Run P= on=
With the result F ,run PF on input G

End

𝑑𝑛 (𝑥) =
{
𝜙𝜙𝑛 (𝑛) (𝑥) – if 𝜙𝑛 (𝑛)↓
↑ – otherwise

TheoremFor any total computable function 𝑓 there is a number 𝑘 such that 𝜙𝑘 = 𝜙 𝑓 (𝑘) .

Pf. The array diagonal is 𝜙𝜙0 (0) , 𝜙𝜙1 (1) , 𝜙𝜙2 (2) ... The flowchart on the left below is a
sketch of a function 𝑓 (𝑛, 𝑥) = 𝜙𝜙𝑛 (𝑛) (𝑥). Church’s Thesis says that some Turing machine
computes this function; let that machine have index 𝑒0. Apply the s-m-n theorem to
parametrize 𝑛, giving the right chart, which describes the family of machines. The 𝑛-th
member of that family, 𝜙𝑠 (𝑒0,𝑛) , computes the 𝑛-th function on the diagonal of the above
array.

Start
Read=, G

Run P= on=
With the result F ,run PF on input G

End

Start
Read G

Run P= on=
With the result F ,run PF on input G

End

𝑑𝑛 (𝑥) =
{
𝜙𝜙𝑛 (𝑛) (𝑥) – if 𝜙𝑛 (𝑛)↓
↑ – otherwise

The index 𝑒0 is fixed, so 𝑠 (𝑒0, 𝑛) is a function of one variable. Let 𝑔(𝑛) = 𝑠 (𝑒0, 𝑛), so that
the diagonal functions are 𝜙𝑔 (𝑛) . This function 𝑔 is computable and total.
Under 𝑡𝑓 those functions are transformed to 𝜙 𝑓𝑔 (0) , 𝜙 𝑓𝑔 (1) , 𝜙 𝑓𝑔 (2) , ... The composition
𝑓 ◦ 𝑔 is computable and total since 𝑓 is specified as total.

𝑡𝑓 (𝑑𝑛) (𝑥) =
{
𝜙 𝑓 𝜙𝑛 (𝑛) (𝑥) – if 𝜙𝑛 (𝑛)↓
↑ – otherwise

Start
Read G

Run P= on=
With the resultF , run P5 (F) on G

End
As the flowchart underlines, 𝜙 𝑓𝑔 (0) , 𝜙 𝑓𝑔 (1) , 𝜙 𝑓𝑔 (2) , ... is a computable sequence of
computable functions. Hence it is one of the table’s rows. Let it be row 𝑣 , making
𝜙 𝑓𝑔 (𝑚) = 𝜙𝜙𝑣 (𝑚) for all𝑚. Consider where the diagonal sequence 𝜙𝑔 (𝑛) intersects that
row: 𝜙𝑔 (𝑣) = 𝜙𝜙𝑣 (𝑣) = 𝜙 𝑓𝑔 (𝑣) . The fixed point for 𝑓 is 𝑘 = 𝑔(𝑣).

Corollary There is an index 𝑒 so that 𝜙𝑒 = 𝜙𝑒+1.

Pf. The function 𝑓 (𝑥) = 𝑥 + 1 is computable and total. So there is an 𝑒 ∈ N such that
𝜙𝑒 = 𝜙 𝑓 (𝑒) .

This does not say that P𝑒 = P𝑒+1. It says that the two Turing machines have the same
input/output behavior, that 𝜙𝑒 = 𝜙𝑒+1.

The Fixed Point theorem is very strange. Our numbering of Turing machines does not
seem to have anything to do with the behavior of the machines. Nonetheless, under the
mild assumption that our numbering is acceptable there must be adjacent machines with
the same behavior.

Corollary There is an index 𝑒 so that 𝜙𝑒 = 𝜙𝑒+1.

Pf. The function 𝑓 (𝑥) = 𝑥 + 1 is computable and total. So there is an 𝑒 ∈ N such that
𝜙𝑒 = 𝜙 𝑓 (𝑒) .

This does not say that P𝑒 = P𝑒+1. It says that the two Turing machines have the same
input/output behavior, that 𝜙𝑒 = 𝜙𝑒+1.

The Fixed Point theorem is very strange. Our numbering of Turing machines does not
seem to have anything to do with the behavior of the machines. Nonetheless, under the
mild assumption that our numbering is acceptable there must be adjacent machines with
the same behavior.

Corollary There is an index 𝑒 such that P𝑒 halts only on 𝑒.

Pf. Consider the program described by the flowchart on the left. By Church’s Thesis it
can be done with a Turing machine, P𝑒0 . Parametrize to get the program on the right,
P𝑠 (𝑒0,𝑚) .

Y N

Start
Read G,<
G =<?

Print 42 Loop
End

Y N

Start
Read G
G =<?

Print 42 Loop
End

𝜙𝑠 (𝑒𝑜 ,𝑚) (𝑥) =
{
42 – if 𝑥 =𝑚

↑ – otherwise

Since 𝑒0 is fixed (it is the index of the machine on the left), 𝑠 (𝑒0, 𝑥) is a total computable
function of one variable, 𝑓 (𝑚) = 𝑠 (𝑒0,𝑚), where the associated Turing machine halts
only on input𝑚. That function has a fixed point, 𝜙 𝑓 (𝑒) = 𝜙𝑒 , and the associated Turing
machine P𝑒 halts only on 𝑒.

Again, this interaction between numbering and behavior is very strange. It is also quite
interesting. Think of the index number as the computable function’s name, so that this is
an interaction between its name and how it acts. In particular, the machine P𝑒 of this
example halts only on its name, 𝑒.

Corollary There is an index 𝑒 such that P𝑒 halts only on 𝑒.

Pf. Consider the program described by the flowchart on the left. By Church’s Thesis it
can be done with a Turing machine, P𝑒0 . Parametrize to get the program on the right,
P𝑠 (𝑒0,𝑚) .

Y N

Start
Read G,<
G =<?

Print 42 Loop
End

Y N

Start
Read G
G =<?

Print 42 Loop
End

𝜙𝑠 (𝑒𝑜 ,𝑚) (𝑥) =
{
42 – if 𝑥 =𝑚

↑ – otherwise

Since 𝑒0 is fixed (it is the index of the machine on the left), 𝑠 (𝑒0, 𝑥) is a total computable
function of one variable, 𝑓 (𝑚) = 𝑠 (𝑒0,𝑚), where the associated Turing machine halts
only on input𝑚. That function has a fixed point, 𝜙 𝑓 (𝑒) = 𝜙𝑒 , and the associated Turing
machine P𝑒 halts only on 𝑒.
Again, this interaction between numbering and behavior is very strange. It is also quite
interesting. Think of the index number as the computable function’s name, so that this is
an interaction between its name and how it acts. In particular, the machine P𝑒 of this
example halts only on its name, 𝑒.

	Cardinality
	Cantor's correspondence
	Diagonalization
	Universality
	Unsolvability
	Rice's Theorem
	Computably enumerable sets
	Fixed point theorem

