
Computational complexity

Jim Hefferon

University of Vermont
hefferon.net

Review of Big-O

Definitions
Definition A complexity function 𝑓 is one that inputs real number arguments and
outputs real number values, and (1) has an unbounded domain, so that there is a
number 𝑁 ∈ R+ such that 𝑥 ≥ 𝑁 implies that 𝑓 (𝑥) is defined, and (2) is eventually
nonnegative, so that there is a number 𝑀 ∈ R+ so that 𝑥 ≥ 𝑀 implies that 𝑓 (𝑥) ≥ 0.
Definition Let 𝑔 be a complexity function. Then Big O of 𝑔, O(𝑔), is the set of
complexity functions 𝑓 satisfying that there are constants 𝑁,𝐶 ∈ R+ so that if 𝑥 ≥ 𝑁
then both 𝑔(𝑥) and 𝑓 (𝑥) are defined and 𝐶 · 𝑔(𝑥) ≥ 𝑓 (𝑥). We say that 𝑓 is O(𝑔), or that
𝑓 ∈ O(𝑔), or that 𝑓 is of order at most 𝑔, or that 𝑓 = O(𝑔).
Think of ‘𝑓 is O(𝑔)’ as meaning that 𝑓 ’s order of growth is less than or equal to 𝑔’s.

Points:
▶ Although Turing machines are discrete devices, we find that functions with real

number inputs and outputs are suitable. (The term ‘complexity function’ is not
standard but we will find it convenient.)

▶ We use the letter ‘O’ because this is about the order of growth.
▶ The ‘𝑓 = O(𝑔)’ notation is awkward but standard. The notation ‘𝑓 ∈ O(𝑔)’ is better

but not as common.

Definitions
Definition A complexity function 𝑓 is one that inputs real number arguments and
outputs real number values, and (1) has an unbounded domain, so that there is a
number 𝑁 ∈ R+ such that 𝑥 ≥ 𝑁 implies that 𝑓 (𝑥) is defined, and (2) is eventually
nonnegative, so that there is a number 𝑀 ∈ R+ so that 𝑥 ≥ 𝑀 implies that 𝑓 (𝑥) ≥ 0.
Definition Let 𝑔 be a complexity function. Then Big O of 𝑔, O(𝑔), is the set of
complexity functions 𝑓 satisfying that there are constants 𝑁,𝐶 ∈ R+ so that if 𝑥 ≥ 𝑁
then both 𝑔(𝑥) and 𝑓 (𝑥) are defined and 𝐶 · 𝑔(𝑥) ≥ 𝑓 (𝑥). We say that 𝑓 is O(𝑔), or that
𝑓 ∈ O(𝑔), or that 𝑓 is of order at most 𝑔, or that 𝑓 = O(𝑔).
Think of ‘𝑓 is O(𝑔)’ as meaning that 𝑓 ’s order of growth is less than or equal to 𝑔’s.

Points:
▶ Although Turing machines are discrete devices, we find that functions with real

number inputs and outputs are suitable. (The term ‘complexity function’ is not
standard but we will find it convenient.)

▶ We use the letter ‘O’ because this is about the order of growth.
▶ The ‘𝑓 = O(𝑔)’ notation is awkward but standard. The notation ‘𝑓 ∈ O(𝑔)’ is better

but not as common.

O compares orders of growth
For both of these 𝑓 is O(𝑔), that is, 𝑓 ’s growth rate is less than or equal to 𝑔’s rate.

0

50

0 1 2 3 4 5

6(G) = 3G2

5 (G) = 3G + 10
0

50

100

0 1 2 3 4 5

6(G) = 3G2

5 (G) = 4G2

▶ On the left, 𝑓 is O(𝑔) despite that 𝑔(𝑥) < 𝑓 (𝑥) for small 𝑥 ’s. As 𝑥 goes to infinity, 𝑔
races ahead of 𝑓. So 𝑓 ’s order of growth is strictly less than 𝑔’s.

▶ On the right, 𝑓 is O(𝑔) despite that 𝑔(𝑥) < 𝑓 (𝑥) for all 𝑥 > 0. As 𝑥 goes to infinity
the two functions track together, so 𝑓 ’s order of growth is less than or equal to 𝑔’s.

Properties of Big-O
Lemma (Algebraic properties) Let these be complexity functions. (1) If 𝑓 is O(𝑔)
then for any constant 𝑎 ∈ R+, the function 𝑎 · 𝑓 is O(𝑔). (2) If 𝑓0 is O(𝑔0) and 𝑓1 is O(𝑔1)
then the sum 𝑓0 + 𝑓1 is O(𝑔) where 𝑔(𝑥) = max(𝑔0 (𝑥), 𝑔1 (𝑥)). So if both 𝑓0 and 𝑓1 are
O(𝑔) then 𝑓0 + 𝑓1 is also O(𝑔). (3) If 𝑓0 is O(𝑔0) and 𝑓1 is O(𝑔1) then the product 𝑓0 𝑓1 is
O(𝑔0𝑔1).

Definition Complexity functions 𝑓 and 𝑔 have equivalent growth rates or the same
order of growth if 𝑓 is O(𝑔) and also 𝑔 is O(𝑓). We say that 𝑓 is Θ(𝑔) (read ‘𝑓 is
Big-Theta of 𝑔’), or, what is the same thing, that 𝑔 is Θ(𝑓).
Lemma The Big-O relation is reflexive, so 𝑓 is O(𝑓). It is also transitive, so that if 𝑓
is O(𝑔) and 𝑔 is O(ℎ) then 𝑓 is O(ℎ). Thus having equivalent growth rates, which forces
symmetry, is an equivalence relation between functions.

Below, the beans enclose the complexity functions. Slower growing functions are at the
bottom. On the left the shaded area contains all of the functions in O(𝑔), with the set
Θ(𝑔) at the top. On the right the sketch adds O(𝑓) for some 𝑓 in O(𝑔).

Properties of Big-O
Lemma (Algebraic properties) Let these be complexity functions. (1) If 𝑓 is O(𝑔)
then for any constant 𝑎 ∈ R+, the function 𝑎 · 𝑓 is O(𝑔). (2) If 𝑓0 is O(𝑔0) and 𝑓1 is O(𝑔1)
then the sum 𝑓0 + 𝑓1 is O(𝑔) where 𝑔(𝑥) = max(𝑔0 (𝑥), 𝑔1 (𝑥)). So if both 𝑓0 and 𝑓1 are
O(𝑔) then 𝑓0 + 𝑓1 is also O(𝑔). (3) If 𝑓0 is O(𝑔0) and 𝑓1 is O(𝑔1) then the product 𝑓0 𝑓1 is
O(𝑔0𝑔1).
Definition Complexity functions 𝑓 and 𝑔 have equivalent growth rates or the same
order of growth if 𝑓 is O(𝑔) and also 𝑔 is O(𝑓). We say that 𝑓 is Θ(𝑔) (read ‘𝑓 is
Big-Theta of 𝑔’), or, what is the same thing, that 𝑔 is Θ(𝑓).
Lemma The Big-O relation is reflexive, so 𝑓 is O(𝑓). It is also transitive, so that if 𝑓
is O(𝑔) and 𝑔 is O(ℎ) then 𝑓 is O(ℎ). Thus having equivalent growth rates, which forces
symmetry, is an equivalence relation between functions.

Below, the beans enclose the complexity functions. Slower growing functions are at the
bottom. On the left the shaded area contains all of the functions in O(𝑔), with the set
Θ(𝑔) at the top. On the right the sketch adds O(𝑓) for some 𝑓 in O(𝑔).

Computing Big-O
For many familiar functions the next result is a convenient way to compute orders of
growth.
Theorem Let 𝑓 , 𝑔 be complexity functions. Suppose that lim𝑥→∞ 𝑓 (𝑥)/𝑔(𝑥) exists and
equals 𝐿, which is a member of R ∪ {∞}. (1) If 𝐿 = 0 then 𝑔 grows faster than 𝑓, that
is, 𝑓 is O(𝑔) but 𝑔 is not O(𝑓). (2) If 𝐿 = ∞ then 𝑓 grows faster than 𝑔, so that 𝑔 is O(𝑓)
but 𝑓 is not O(𝑔). (3) If 𝐿 is between 0 and ∞ then the two functions have something
like the same growth rates, so that 𝑓 is Θ(𝑔) and 𝑔 is Θ(𝑓).

To compute the limits we often apply this theorem from Calculus.
Theorem (L’Hôpital’s Rule) Let 𝑓 and 𝑔 be complexity functions such that both
𝑓 (𝑥) → ∞ and 𝑔(𝑥) → ∞ as 𝑥 → ∞, and such that both are differentiable for large
enough inputs. If lim𝑥→∞ 𝑓 ′ (𝑥)/𝑔′ (𝑥) exists and equals 𝐿 ∈ R ∪ {∞} then
lim𝑥→∞ 𝑓 (𝑥)/𝑔(𝑥) also exists and also equals 𝐿.
Example Consider 𝑓 (𝑥) = 3𝑥2 − 2𝑥 + 4 and 𝑔(𝑥) = (1/2)𝑥5 − 6. Take derivatives twice
and apply the theorem above to conclude that 𝑓 is O(𝑔) but 𝑔 is not O(𝑓).

lim
𝑥→∞

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→∞
3𝑥2 − 2𝑥 + 4
(1/2)𝑥5 − 6 = lim

𝑥→∞
6𝑥 − 2
(5/2)𝑥4 = lim

𝑥→∞
6

10𝑥3 = 0

Computing Big-O
For many familiar functions the next result is a convenient way to compute orders of
growth.
Theorem Let 𝑓 , 𝑔 be complexity functions. Suppose that lim𝑥→∞ 𝑓 (𝑥)/𝑔(𝑥) exists and
equals 𝐿, which is a member of R ∪ {∞}. (1) If 𝐿 = 0 then 𝑔 grows faster than 𝑓, that
is, 𝑓 is O(𝑔) but 𝑔 is not O(𝑓). (2) If 𝐿 = ∞ then 𝑓 grows faster than 𝑔, so that 𝑔 is O(𝑓)
but 𝑓 is not O(𝑔). (3) If 𝐿 is between 0 and ∞ then the two functions have something
like the same growth rates, so that 𝑓 is Θ(𝑔) and 𝑔 is Θ(𝑓).
To compute the limits we often apply this theorem from Calculus.
Theorem (L’Hôpital’s Rule) Let 𝑓 and 𝑔 be complexity functions such that both
𝑓 (𝑥) → ∞ and 𝑔(𝑥) → ∞ as 𝑥 → ∞, and such that both are differentiable for large
enough inputs. If lim𝑥→∞ 𝑓 ′ (𝑥)/𝑔′ (𝑥) exists and equals 𝐿 ∈ R ∪ {∞} then
lim𝑥→∞ 𝑓 (𝑥)/𝑔(𝑥) also exists and also equals 𝐿.
Example Consider 𝑓 (𝑥) = 3𝑥2 − 2𝑥 + 4 and 𝑔(𝑥) = (1/2)𝑥5 − 6. Take derivatives twice
and apply the theorem above to conclude that 𝑓 is O(𝑔) but 𝑔 is not O(𝑓).

lim
𝑥→∞

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→∞
3𝑥2 − 2𝑥 + 4
(1/2)𝑥5 − 6 = lim

𝑥→∞
6𝑥 − 2
(5/2)𝑥4 = lim

𝑥→∞
6

10𝑥3 = 0

The Order of Growth Hierarchy
Lemma Logarithmic functions grow more slowly than polynomial functions: if
𝑓 (𝑥) = log𝑏 (𝑥) for some base 𝑏 and 𝑔(𝑥) = 𝑎𝑚𝑥𝑚 + · · · + 𝑎0 then 𝑓 is O(𝑔) but 𝑔 is not
O(𝑓). Polynomial functions grow more slowly than exponential functions: where
ℎ(𝑥) = 𝑏𝑥 for some base 𝑏 > 1 then then 𝑔 is O(ℎ) but ℎ is not O(𝑔).
Example Where 𝑔 is the polynomial function 𝑔(𝑥) = 𝑥2, this shows that 𝑓 (𝑥) = lg(𝑥) is
O(𝑔).

lim
𝑥→∞

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→∞
1/(𝑥 · ln(2))

2𝑥 = lim
𝑥→∞

1
𝑥2 · 2 ln(2) = 0

Example This shows that the polynomial 𝑔(𝑥) = 𝑥2 is O(ℎ) where ℎ is the exponential
ℎ(𝑥) = 2𝑥 .

lim
𝑥→∞

𝑔(𝑥)
ℎ(𝑥) = lim

𝑥→∞
𝑥2

2𝑥 = lim
𝑥→∞

2𝑥
2𝑥 · ln(2) = lim

𝑥→∞
2

2𝑥 · ln(2)2 = 0

Some orders of growth appear often in practice. Here they are in ascending order, so
O(𝑓) is listed earlier than O(𝑔) if 𝑓 is O(𝑔) but 𝑔 is not O(𝑓).

Order Name Examples
O (1) Bounded 𝑓 (𝑛) = 15
O (lg(lg(𝑛))) Double logarithmic 𝑓 (𝑛) = ln(ln(𝑛))
O (lg(𝑛)) Logarithmic 𝑓0 (𝑛) = ln(𝑛) , 𝑓1 (𝑛) = lg(𝑛3)
O
((lg(𝑛))𝑐) Polylogarithmic 𝑓 (𝑛) = (lg(𝑛))3

O (𝑛) Linear 𝑓 (𝑛) = 3𝑛 + 4
O (𝑛 lg(𝑛)) Log-linear 𝑓0 (𝑛) = 5𝑛 lg(𝑛) + 𝑛, 𝑓1 (𝑛) = lg(𝑛!)
O (𝑛2) Polynomial (quadratic) 𝑓 (𝑛) = 5𝑛2 + 2𝑛 + 12
O (𝑛3) Polynomial (cubic) 𝑓 (𝑛) = 2𝑛3 + 12𝑛2 + 5
...

O (2poly(lg(𝑛))) Quasipolynomial 𝑓0 (𝑛) = 2(lg(𝑛))2+3 lg(𝑛), 𝑓1 (𝑛) = 𝑛lg(𝑛)
...

O (2𝑛) Exponential 𝑓 (𝑛) = 10 · 2𝑛
O (3𝑛) Exponential 𝑓 (𝑛) = 6 · 3𝑛 + 𝑛2
...

O (𝑛!) Factorial 𝑓 (𝑛) = 5 · 𝑛! + 𝑛15 − 7
O (𝑛𝑛) –No standard name– 𝑓 (𝑛) = 2 · 𝑛𝑛 + 3 · 2𝑛

Cobham’s thesis
We often split that hierarchy between the polynomial and exponential functions.
A modern computer runs at about 10 GHz, 10 000 million ticks per second, and there are
about 3.16× 107 seconds in a year. The chart shows how long a job will take if we use an
algorithm that runs in time lg𝑛, or time 𝑛, etc., on inputs of various sizes. Inside the
table the times are in years.

𝑛 = 1 𝑛 = 10 𝑛 = 50 𝑛 = 100
lg𝑛 – 1.05 × 10−17 1.79 × 10−17 2.11 × 10−17
𝑛 3.17 × 10−18 3.17 × 10−17 1.58 × 10−16 3.17 × 10−16

𝑛 lg𝑛 – 1.05 × 10−16 8.94 × 10−16 2.11 × 10−15
𝑛2 3.17 × 10−18 3.17 × 10−16 7.92 × 10−15 3.17 × 10−14
𝑛3 3.17 × 10−18 3.17 × 10−15 3.96 × 10−13 3.17 × 10−12
2𝑛 6.34 × 10−18 3.24 × 10−15 3.57 × 10−3 4.02 × 1012

In the 𝑛 = 100 column, between the first few rows the relative change is an order of
magnitude but the absolute times are small. Then we get to the final row. That’s not a
typo— the last entry really is on order of 1012 years. It is huge— the universe is
14 × 109 years old so this computation, even with input size of only 100, would take
longer than the age of the universe.
Cobham’s thesis is that the tractable problems— those that are at least conceivably
solvable in practice—are the ones for which there is an algorithm whose resource
consumption is O(𝑝) for some polynomial 𝑝.

Cobham’s thesis
We often split that hierarchy between the polynomial and exponential functions.
A modern computer runs at about 10 GHz, 10 000 million ticks per second, and there are
about 3.16× 107 seconds in a year. The chart shows how long a job will take if we use an
algorithm that runs in time lg𝑛, or time 𝑛, etc., on inputs of various sizes. Inside the
table the times are in years.

𝑛 = 1 𝑛 = 10 𝑛 = 50 𝑛 = 100
lg𝑛 – 1.05 × 10−17 1.79 × 10−17 2.11 × 10−17
𝑛 3.17 × 10−18 3.17 × 10−17 1.58 × 10−16 3.17 × 10−16

𝑛 lg𝑛 – 1.05 × 10−16 8.94 × 10−16 2.11 × 10−15
𝑛2 3.17 × 10−18 3.17 × 10−16 7.92 × 10−15 3.17 × 10−14
𝑛3 3.17 × 10−18 3.17 × 10−15 3.96 × 10−13 3.17 × 10−12
2𝑛 6.34 × 10−18 3.24 × 10−15 3.57 × 10−3 4.02 × 1012

In the 𝑛 = 100 column, between the first few rows the relative change is an order of
magnitude but the absolute times are small. Then we get to the final row. That’s not a
typo— the last entry really is on order of 1012 years. It is huge— the universe is
14 × 109 years old so this computation, even with input size of only 100, would take
longer than the age of the universe.

Cobham’s thesis is that the tractable problems— those that are at least conceivably
solvable in practice—are the ones for which there is an algorithm whose resource
consumption is O(𝑝) for some polynomial 𝑝.

Cobham’s thesis
We often split that hierarchy between the polynomial and exponential functions.
A modern computer runs at about 10 GHz, 10 000 million ticks per second, and there are
about 3.16× 107 seconds in a year. The chart shows how long a job will take if we use an
algorithm that runs in time lg𝑛, or time 𝑛, etc., on inputs of various sizes. Inside the
table the times are in years.

𝑛 = 1 𝑛 = 10 𝑛 = 50 𝑛 = 100
lg𝑛 – 1.05 × 10−17 1.79 × 10−17 2.11 × 10−17
𝑛 3.17 × 10−18 3.17 × 10−17 1.58 × 10−16 3.17 × 10−16

𝑛 lg𝑛 – 1.05 × 10−16 8.94 × 10−16 2.11 × 10−15
𝑛2 3.17 × 10−18 3.17 × 10−16 7.92 × 10−15 3.17 × 10−14
𝑛3 3.17 × 10−18 3.17 × 10−15 3.96 × 10−13 3.17 × 10−12
2𝑛 6.34 × 10−18 3.24 × 10−15 3.57 × 10−3 4.02 × 1012

In the 𝑛 = 100 column, between the first few rows the relative change is an order of
magnitude but the absolute times are small. Then we get to the final row. That’s not a
typo— the last entry really is on order of 1012 years. It is huge— the universe is
14 × 109 years old so this computation, even with input size of only 100, would take
longer than the age of the universe.
Cobham’s thesis is that the tractable problems— those that are at least conceivably
solvable in practice—are the ones for which there is an algorithm whose resource
consumption is O(𝑝) for some polynomial 𝑝.

Problems drive development

Problems
We shall list a number of problems that are typical of the kind that researchers in this
subject work on. All of the problems here are very well known.
Problem (Hamiltonian Circuit) Given a graph, decide if it contains a cyclic path that
includes each vertex once and only once.
Example The graph on the left has a Hamiltonian circuit. The one on the right does not.

E0

E1

E2

E3

E4

E5

E0

E1

E2

E3

E4

On the left we can easily trace out a Hamiltonian circuit. On the right although we can
visit each vertex once and only once, we cannot get back to the start to make a circuit.
For, all edges connect a vertex on the left with one on the right and there are more
vertices on the left than the right. To make a circuit we’d have to visit two left vertices in
a row, but the cross-side arrangement of edges doesn’t allow that.

Knight’s tour
A special case is the Knight’s Tour problem, to use a chess knight to make a circuit of the
squares on the board. (Recall that a knight moves three squares at a time, with the first
two squares in one direction and then the third one perpendicular to that direction.)

This is the solution given by L Euler. In graph terms, there are sixty four vertices,
representing the board squares. An edge goes between two vertices if they are connected
by a single knight move. Knight’s Tour asks for a Hamiltonian circuit of that graph.

Traveling Salesman
If the graph’s edges have weights then we can look for the Hamiltonian circuit of least
total weight.
Problem (Traveling Salesman) Given a weighted undirected graph, where we call the
vertices 𝑆 = {𝑐0, ... 𝑐𝑘−1 } ‘cities’ and we call the edge weight 𝑑 (𝑐𝑖 , 𝑐 𝑗) ∈ N+ for 𝑖 ≠ 𝑗 the
‘distance’ between the cities, find the shortest-distance circuit that visits every city and
returns back to the start.

As stated this is an optimization problem, but we can recast it as a decision problem.
Introduce a threshold bound 𝐵 ∈ N and change the problem to ‘decide if there is a circuit
of length less than 𝐵’. If we have an algorithm to solve that decision problem then we can
use it to find the length of the shortest circuit by first deciding if there is a trip bounded
in length by 𝐵 = 1, then deciding if there is a trip bounded in length by 𝐵 = 2, etc.

Traveling Salesman
If the graph’s edges have weights then we can look for the Hamiltonian circuit of least
total weight.
Problem (Traveling Salesman) Given a weighted undirected graph, where we call the
vertices 𝑆 = {𝑐0, ... 𝑐𝑘−1 } ‘cities’ and we call the edge weight 𝑑 (𝑐𝑖 , 𝑐 𝑗) ∈ N+ for 𝑖 ≠ 𝑗 the
‘distance’ between the cities, find the shortest-distance circuit that visits every city and
returns back to the start.

As stated this is an optimization problem, but we can recast it as a decision problem.
Introduce a threshold bound 𝐵 ∈ N and change the problem to ‘decide if there is a circuit
of length less than 𝐵’. If we have an algorithm to solve that decision problem then we can
use it to find the length of the shortest circuit by first deciding if there is a trip bounded
in length by 𝐵 = 1, then deciding if there is a trip bounded in length by 𝐵 = 2, etc.

Euler Circuit
Problem (Euler Circuit) Given a graph, find a circuit that traverses each edge once and
only once, or find that no such circuit exists.

A

B

C

D

The Euler Circuit problem and the Hamiltonian Circuit problem seem much alike. In the
one we try to traverse each edge while in the other we try to visit each vertex. Perhaps it
is a surprise then that we know of a fast algorithm to solve the first problem but we know
of no fast algorithm to solve the second.

Shortest path
Problem (Shortest Path) Given a weighted graph and two vertices, find the least-weight
path between them, or find that no path exists.

9

14

15

24

5

30
18

20

44

11

16

2
19

6

6

E0

E1

E2

E3

E4

E5

E6

E7

Between 𝑣0 and 𝑣7 this is the shortest path.

𝑣0 → 𝑣2 → 𝑣5 → 𝑣4 → 𝑣7

Graph Colorability
Problem (Graph Colorability) Given a graph and a number 𝑘 ∈ N, decide whether the
graph is 𝑘-colorable, whether we can partition its vertices into 𝑘-many sets,
N = C0 ∪ · · · ∪ C𝑘−1, such that no two same-set vertices are connected.
Example A marina rents boats. Today there are eight reservations, modelled here as
eight vertices. If reservations have overlapping times then we connect the vertices. Can
we cover with four boats?

E0 E1 E2 E3

E4 E5 E6 E7

Problem (Chromatic Number) Given a graph, find the smallest number 𝑘 ∈ N such that
the graph is 𝑘-colorable.
Example Sudoku ask you to construct a 9-coloring of a graph, given a partial 9-coloring.
The graph has vertex for each cell, so there are 81 vertices. As for edges, there is an edge
between the distinct vertices if and only if their cells are in the same column, or row, or
the same 3 × 3 grid.

Graph Colorability
Problem (Graph Colorability) Given a graph and a number 𝑘 ∈ N, decide whether the
graph is 𝑘-colorable, whether we can partition its vertices into 𝑘-many sets,
N = C0 ∪ · · · ∪ C𝑘−1, such that no two same-set vertices are connected.
Example A marina rents boats. Today there are eight reservations, modelled here as
eight vertices. If reservations have overlapping times then we connect the vertices. Can
we cover with four boats? Yes.

E0 E1 E2 E3

E4 E5 E6 E7

Problem (Chromatic Number) Given a graph, find the smallest number 𝑘 ∈ N such that
the graph is 𝑘-colorable.
Example Sudoku ask you to construct a 9-coloring of a graph, given a partial 9-coloring.
The graph has vertex for each cell, so there are 81 vertices. As for edges, there is an edge
between the distinct vertices if and only if their cells are in the same column, or row, or
the same 3 × 3 grid.

Graph Colorability
Problem (Graph Colorability) Given a graph and a number 𝑘 ∈ N, decide whether the
graph is 𝑘-colorable, whether we can partition its vertices into 𝑘-many sets,
N = C0 ∪ · · · ∪ C𝑘−1, such that no two same-set vertices are connected.
Example A marina rents boats. Today there are eight reservations, modelled here as
eight vertices. If reservations have overlapping times then we connect the vertices. Can
we cover with four boats? Yes.

E0 E1 E2 E3

E4 E5 E6 E7

Problem (Chromatic Number) Given a graph, find the smallest number 𝑘 ∈ N such that
the graph is 𝑘-colorable.
Example Sudoku ask you to construct a 9-coloring of a graph, given a partial 9-coloring.
The graph has vertex for each cell, so there are 81 vertices. As for edges, there is an edge
between the distinct vertices if and only if their cells are in the same column, or row, or
the same 3 × 3 grid.

Satisfiability
Problem (Satisfiability, SAT) Decide if a given Boolean expression is satisfiable.
Problem (3-Satisfiability, 3-SAT) Given a propositional logic formula in Conjunctive
Normal form in which each clause has at most three variables, decide if it is satisfiable.
Example Is (𝑃 ∨𝑄 ∨𝑅) ∧ (¬𝑃 ∨¬𝑄 ∨𝑅) ∧ (𝑃 ∨¬𝑄 ∨¬𝑅) ∧ (¬𝑃 ∨𝑄 ∨¬𝑅) satisfiable?

𝑃 𝑄 𝑅 𝑃 ∨𝑄 ∨ 𝑅 ¬𝑃 ∨ ¬𝑄 ∨ 𝑅 𝑃 ∨ ¬𝑄 ∨ ¬𝑅 ¬𝑃 ∨𝑄 ∨ ¬𝑅 𝜑
𝐹 𝐹 𝐹
𝐹 𝐹 𝑇
𝐹 𝑇 𝐹
𝐹 𝑇 𝑇

𝑇 𝐹 𝐹
𝑇 𝐹 𝑇
𝑇 𝑇 𝐹
𝑇 𝑇 𝑇

Satisfiability
Problem (Satisfiability, SAT) Decide if a given Boolean expression is satisfiable.
Problem (3-Satisfiability, 3-SAT) Given a propositional logic formula in Conjunctive
Normal form in which each clause has at most three variables, decide if it is satisfiable.
Example Is (𝑃 ∨𝑄 ∨𝑅) ∧ (¬𝑃 ∨¬𝑄 ∨𝑅) ∧ (𝑃 ∨¬𝑄 ∨¬𝑅) ∧ (¬𝑃 ∨𝑄 ∨¬𝑅) satisfiable?

𝑃 𝑄 𝑅 𝑃 ∨𝑄 ∨ 𝑅 ¬𝑃 ∨ ¬𝑄 ∨ 𝑅 𝑃 ∨ ¬𝑄 ∨ ¬𝑅 ¬𝑃 ∨𝑄 ∨ ¬𝑅 𝜑
𝐹 𝐹 𝐹 𝐹 𝑇 𝑇 𝑇 𝐹
𝐹 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝐹 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇
𝐹 𝑇 𝑇 𝑇 𝑇 𝐹 𝑇 𝐹

𝑇 𝐹 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝐹 𝐹
𝑇 𝑇 𝐹 𝑇 𝐹 𝑇 𝑇 𝐹
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇

Problems: graphs
Problem (Vertex-to-Vertex Path) Given a graph and two vertices, find if the second is
reachable from the first.

(This problem is often known as 𝑠𝑡 -conn.)
Problem (Minimum Spanning Tree) Given a weighted undirected graph, find a subgraph
containing all the vertices of the original graph such that its edges have a minimum total.
Problem (Vertex Cover) Given a graph and a bound 𝐵 ∈ N, decide if the graph has a
size 𝐵 set of vertices, 𝐶, such that for any edge, at least one of its ends is a member of 𝐶.
Problem (Clique) Given a graph and a bound 𝐵 ∈ N, decide if the graph has a size 𝐵 set
vertices such that any two are connected.
Problem (Max Cut) A graph cut partitions the vertices into two disjoint subsets. The cut
set contains the edges with a vertex in each subset. The Max Cut problem is to find the
partition with the largest cut set.

Problems: combinatorics
Problem (Three Dimensional Matching) Let the sets 𝑋,𝑌, 𝑍 all have the same number
of elements, 𝑛. Given as input a set 𝑀 ⊆ 𝑋 × 𝑌 × 𝑍 , decide if there is a matching, a set
𝑀̂ ⊆ 𝑀 containing 𝑛 elements such that no two of the triples in 𝑀̂ agree on their first
coordinates, or their second or third coordinates either.
Problem (Subset Sum) Given a multiset of natural numbers 𝑆 = {𝑛0, ... 𝑛𝑘−1 } and a
target 𝑇 ∈ N, decide if a subset of 𝑆 sums to the target.
Problem (Knapsack) Given a finite multiset 𝑆 whose elements 𝑠 have a natural number
weight 𝑤 (𝑠) and value 𝑣 (𝑠), and also given a weight bound 𝐵 and a value target 𝑇, find a
subset 𝑆 ⊆ 𝑆 whose elements have a total weight less than or equal to the bound and
total value greater than or equal to the target.
Problem (Partition) Given a finite multiset 𝐴 such that each element has an associated
natural number size 𝑠 (𝑎), decide if the set splits into two, 𝐴 and 𝐴 −𝐴, so that the total
of the sizes is the same, ∑𝑎∈𝐴 𝑠 (𝑎) =

∑
𝑎∉𝐴 𝑠 (𝑎).

Problems: linear programming
Problem (Linear Progamming) Optimize a linear function
𝐹 (𝑥0, ... 𝑥𝑛) = 𝑐0𝑥0 + · · · + 𝑐𝑛𝑥𝑛 subject to linear constraints, ones of the form
𝑎𝑖,0𝑥0 + · · · + 𝑎𝑖,𝑛𝑥𝑛 ≤ 𝑏𝑖 or 𝑎𝑖,0𝑥0 + · · · + 𝑎𝑖,𝑛𝑥𝑛 ≥ 𝑏𝑖 .
Example Maximize 𝐹 (𝑥0, 𝑥1) = 𝑥0 + 2𝑥1 subject to 4𝑥0 + 3𝑥1 ≤ 24, 𝑥1 ≤ 4, 𝑥0 ≥ 0 and
𝑥1 ≥ 0. The shaded region has the points that satisfy all the inequalities; these are said
to be ‘feasible’ points.

G1

G0

� = 2
� = 4
� = 6
� = 8

5

5
G1

The level lines of 𝐹 indicate that the maximum is at (𝑥0, 𝑥1) = (3, 4).

Problems: games
Problem (Crossword) Given an 𝑛 × 𝑛 grid and a set of 2𝑛-many strings, each of
length 𝑛, decide if the words can be packed into the grid.
Problem (Fifteen Game) Given an 𝑛 × 𝑛 grid holding tiles numbered 1, . . . 𝑛2 − 1, and
a blank, find the minimum number of moves that will put the tile numbers into ascending
order. A move consists of switching a tile with an adjacent blank.

Problems: divisibility
Problem (Divisor) Given a number 𝑛 ∈ N, find a nontrivial divisor.
Problem (Prime Factorization) Given a number 𝑛 ∈ N, produce its decomposition into a
product of primes.
Problem (Primality) Given a number 𝑛 ∈ N, determine if it is prime; that is, decide if
there are no numbers 𝑎 that divide 𝑛 and such that 1 < 𝑎 < 𝑛.

For many years the consensus among experts was that Primality was probably quite hard.
After all, for centuries many very smart people had worked on the question and none of
them had produced a fast test. But in 2002 M Agrawal, N Kayal, and N Saxena proved
that primality testing can be done in time polynomial in the number of digits of the
number. At this point refinments of their technique run in O(𝑛6).

Nitin Saxena (b 1981), Neeraj Kayal (b 1979), Manindra Agrawal (b 1966)

Problems: divisibility
Problem (Divisor) Given a number 𝑛 ∈ N, find a nontrivial divisor.
Problem (Prime Factorization) Given a number 𝑛 ∈ N, produce its decomposition into a
product of primes.
Problem (Primality) Given a number 𝑛 ∈ N, determine if it is prime; that is, decide if
there are no numbers 𝑎 that divide 𝑛 and such that 1 < 𝑎 < 𝑛.

For many years the consensus among experts was that Primality was probably quite hard.
After all, for centuries many very smart people had worked on the question and none of
them had produced a fast test. But in 2002 M Agrawal, N Kayal, and N Saxena proved
that primality testing can be done in time polynomial in the number of digits of the
number. At this point refinments of their technique run in O(𝑛6).

Nitin Saxena (b 1981), Neeraj Kayal (b 1979), Manindra Agrawal (b 1966)

Reflections on problems

Problems, algorithms, and programs
▶ A problem is a job, a task. It is a usually uniform family of tasks, with an unbounded

number of instances. For a sense of ‘family’, contrast the general Shortest Path
problem with that of finding the shortest path between Los Angeles and New York.
The first is a family while the second is an instance. We are more likely to talk about
the family, both because any conclusion about the first subsumes the second and
also because the first feels more natural. We are focused on problems that can be
solved with a mechanism, although we continue to be interested to learn that a
problem cannot be solved mechanically at all.

▶ An algorithm is an effective way to solve a problem. An algorithm is not a program,
although it should be described in a way that is detailed enough that implementing
it is routine for an experienced professional. The description should be complete
enough to analyze its Big O behavior.
One subtle point about algorithms is that while they are abstractions, they are
nonetheless based on a computing model. An algorithm that is based on a Turing
machine model for adding one to an input would be very different than an
algorithm to do the same task on a model that is like an everyday computer.

▶ A program is an implementation of an algorithm, expressed in a formal computer
language and often designed to be executed on a specific computing platform.

Other models of computation
Besides the Turing machine, another model that is widely used in this context is the
Random Access machine (RAM). Whereas a Turing machine cell stores only a single
symbol, so that big numbers need multiple cells, on a RAM model machine each register
holds an entire integer. And whereas to get to a cell a Turing machine may spend lots of
steps traversing the tape, the RAM model gets each register’s contents in a single step.

Representations
We shall assume that for our algorithms all of the inputs and outputs are in some
reasonably efficient bitstring representation.
Thus, we shall understand “given two numbers 𝑛0, 𝑛1 ∈ N” to mean ‘given the bitstring
representation of two numbers’. And we shall take “let G be a graph” to mean ‘given a
reasonably efficient representation of a graph G’.
Having noted it, we will from now on generally ignore it.

Types of problems
▶ A function problem asks that the algorithm have a single output for each input.

▶ A search problem asks for an algorithm that, while there may be many solutions in
the search space, will stop when it has found any one.

▶ An optimization problem asks for an algorithm that gives a solution that is best
according to some metric.

▶ A decision problem asks for an algorithm with a ‘Yes’ or ‘No’ answer. (So it is a
Boolean function. But is important enough to list on its own, instead of subsumed as
a function problem.)

▶ Often a decision problem is expressed as a language recognition problem, where we
are given some language and asked for an algorithm to decide if its input is a
member of that language.

The last is the one that we will work with most often.

Types of problems
▶ A function problem asks that the algorithm have a single output for each input.
▶ A search problem asks for an algorithm that, while there may be many solutions in

the search space, will stop when it has found any one.

▶ An optimization problem asks for an algorithm that gives a solution that is best
according to some metric.

▶ A decision problem asks for an algorithm with a ‘Yes’ or ‘No’ answer. (So it is a
Boolean function. But is important enough to list on its own, instead of subsumed as
a function problem.)

▶ Often a decision problem is expressed as a language recognition problem, where we
are given some language and asked for an algorithm to decide if its input is a
member of that language.

The last is the one that we will work with most often.

Types of problems
▶ A function problem asks that the algorithm have a single output for each input.
▶ A search problem asks for an algorithm that, while there may be many solutions in

the search space, will stop when it has found any one.
▶ An optimization problem asks for an algorithm that gives a solution that is best

according to some metric.

▶ A decision problem asks for an algorithm with a ‘Yes’ or ‘No’ answer. (So it is a
Boolean function. But is important enough to list on its own, instead of subsumed as
a function problem.)

▶ Often a decision problem is expressed as a language recognition problem, where we
are given some language and asked for an algorithm to decide if its input is a
member of that language.

The last is the one that we will work with most often.

Types of problems
▶ A function problem asks that the algorithm have a single output for each input.
▶ A search problem asks for an algorithm that, while there may be many solutions in

the search space, will stop when it has found any one.
▶ An optimization problem asks for an algorithm that gives a solution that is best

according to some metric.
▶ A decision problem asks for an algorithm with a ‘Yes’ or ‘No’ answer. (So it is a

Boolean function. But is important enough to list on its own, instead of subsumed as
a function problem.)

▶ Often a decision problem is expressed as a language recognition problem, where we
are given some language and asked for an algorithm to decide if its input is a
member of that language.

The last is the one that we will work with most often.

Types of problems
▶ A function problem asks that the algorithm have a single output for each input.
▶ A search problem asks for an algorithm that, while there may be many solutions in

the search space, will stop when it has found any one.
▶ An optimization problem asks for an algorithm that gives a solution that is best

according to some metric.
▶ A decision problem asks for an algorithm with a ‘Yes’ or ‘No’ answer. (So it is a

Boolean function. But is important enough to list on its own, instead of subsumed as
a function problem.)

▶ Often a decision problem is expressed as a language recognition problem, where we
are given some language and asked for an algorithm to decide if its input is a
member of that language.

The last is the one that we will work with most often.

Problems
In this chapter, problem usually means a decision problem for a language. If we get a
problem that isn’t a language decision problem then we will often recast it as one.
Example Subset Sum inputs a set 𝑆 of numbers and a target number 𝑇 , and then
decides whether a subset of 𝑆 adds to the target. We can recast it as the problem of
deciding membership in this language.

L = { ⟨𝑆,𝑇 ⟩
�� A subset of 𝑆 adds to 𝑇 }

Restating the problem as this language leaves it essentially unchanged. Instead of
asserting ‘there is a subset of 𝑆 = {19, 21, 52, 106} that adds to 𝑇 = 40’ we may say
‘⟨𝑆,𝑇 ⟩ ∈ L’.
Example Consider Vertex-to-Vertex Path, where the input is a graph and two vertices in
the graph and the problem is to decide if there is a path between the two. We recast it as
the decision problem for this language.

L = { ⟨G, 𝑣, 𝑣⟩
�� there is a path in G between the vertices 𝑣 and 𝑣 }

Example To recast Shortest Path, introduce a bound 𝐵 ∈ N parameter.
L𝐵 = { ⟨G, 𝑣, 𝑣⟩

�� there is a path between the vertices of length bounded by 𝐵 }
To find the length of the shortest path, see if there is a 𝐵 = 1 path, then see if there is a
𝐵 = 2 path, etc.

Classes
Definition A complexity class is a collection of languages.

The term ‘complexity’ is there because these collections are often associated with some
resource specification, so that for instance one class is the collection of languages that are
accepted by a Turing machine in quadratic time.
Another example is that we might consider all language decision problems for which
there is an algorithm that runs in space O(𝑛). Still another is the set of languages where
the decision problem for the language’s complement has an algorithm that runs in
polynomial time.

Complexity classes

P
Definition A language decision problem L is a member of the class P if there is an
algorithm to decide membership in L that on a deterministic Turing machine runs in
polynomial time.

Here are some languages whose decision problems are in P: (1) the language of
correct sums, L1 = { ⟨𝑎, 𝑏, 𝑐⟩ ∈ N3 �� 𝑎 + 𝑏 = 𝑐 }, (2) the language of sorted strings,
L2 = {𝜎 ∈ {a, ... z}∗

�� 𝜎 is in alphabetical order}, (3) the language of correct matrix
multiplications, L3 = { ⟨𝐴, 𝐵,𝐶⟩

�� the matrices are such that 𝐴𝐵 = 𝐶 }, (4) the language
of primes, L4 = {1𝑘

�� 𝑘 is prime}, (5) the language of nodes with five neighbors,
L5 = { ⟨G, 𝑣⟩

�� vertex 𝑣 in G has exactly five neighbors}.

Here, the bean encloses all all decision problems L ⊆ B∗. Problems with slower-growing
solution algorithms are at the bottom. Shaded is the class P. This class contains
problems for which there is a solution algorithm that is O(1), problems for which there is
an algorithm that is O(lg𝑛), problems with an algorithm that is O(𝑛), etc.

P

P
Definition A language decision problem L is a member of the class P if there is an
algorithm to decide membership in L that on a deterministic Turing machine runs in
polynomial time.

Here are some languages whose decision problems are in P: (1) the language of
correct sums, L1 = { ⟨𝑎, 𝑏, 𝑐⟩ ∈ N3 �� 𝑎 + 𝑏 = 𝑐 }, (2) the language of sorted strings,
L2 = {𝜎 ∈ {a, ... z}∗

�� 𝜎 is in alphabetical order}, (3) the language of correct matrix
multiplications, L3 = { ⟨𝐴, 𝐵,𝐶⟩

�� the matrices are such that 𝐴𝐵 = 𝐶 }, (4) the language
of primes, L4 = {1𝑘

�� 𝑘 is prime}, (5) the language of nodes with five neighbors,
L5 = { ⟨G, 𝑣⟩

�� vertex 𝑣 in G has exactly five neighbors}.
Here, the bean encloses all all decision problems L ⊆ B∗. Problems with slower-growing
solution algorithms are at the bottom. Shaded is the class P. This class contains
problems for which there is a solution algorithm that is O(1), problems for which there is
an algorithm that is O(lg𝑛), problems with an algorithm that is O(𝑛), etc.

P

Effect of the model of computation
Different models of computation work at different speeds. In particular, our experience
working with Turing machines leads us to perceive that they are slow; does the machine
we standardize on affect how we classify problems?
Close analysis shows that Turing machines are slower than other natural models by no
more than a factor of 𝑛2 or 𝑛3. (We take a model to be ‘natural’ if it was not invented just
to be a counterexample to this.) Thus if we have a problem for which there is a O(𝑛)
algorithm on another model then when translated to a Turing machine algorithm it may
be O(𝑛4). Under this scenario, a problem that falls in the class P with one natural model,
including Turing machines, also falls there using other natural models.

Remark There is a possible counterexample to the contention about there being an
at-most polytime delay between natural models of physically-realizable devices. Under
the Quantum Computing model there are several problems with polytime solutions,
including integer factorization, for which we do not know of any polytime solution in a
natural non-quantum model. Whether quantum computers will ever be practical physical
devices is not at this moment perfectly clear but scientists and engineers are making
great progress. (Also, conceivably there are polytime solutions for these problems on
Turing machines.)

Effect of the model of computation
Different models of computation work at different speeds. In particular, our experience
working with Turing machines leads us to perceive that they are slow; does the machine
we standardize on affect how we classify problems?
Close analysis shows that Turing machines are slower than other natural models by no
more than a factor of 𝑛2 or 𝑛3. (We take a model to be ‘natural’ if it was not invented just
to be a counterexample to this.) Thus if we have a problem for which there is a O(𝑛)
algorithm on another model then when translated to a Turing machine algorithm it may
be O(𝑛4). Under this scenario, a problem that falls in the class P with one natural model,
including Turing machines, also falls there using other natural models.
Remark There is a possible counterexample to the contention about there being an
at-most polytime delay between natural models of physically-realizable devices. Under
the Quantum Computing model there are several problems with polytime solutions,
including integer factorization, for which we do not know of any polytime solution in a
natural non-quantum model. Whether quantum computers will ever be practical physical
devices is not at this moment perfectly clear but scientists and engineers are making
great progress. (Also, conceivably there are polytime solutions for these problems on
Turing machines.)

Naturalness of the class P
We will talk a lot about P so we will take a moment to reflect on why.
▶ Cobham’s Thesis asserts that problems for which there is a polytime solution form a

very important class in practice.
▶ As just mentioned, if a problem is in P based on any familiar model including Turing

machines, RAM, and Racket programs, then it is in P for all of them.
▶ We’d like that if two things, 𝑓 and 𝑔, are easy to compute then a simple combination

of the two is also easy.
More precisely, fix two total functions 𝑓 , 𝑔 : N → N and consider these.

L𝑓 = { str(⟨𝑛, 𝑓 (𝑛)⟩) ∈ B∗ × B∗
�� 𝑛 ∈ N}

L𝑔 = { str(⟨𝑛,𝑔(𝑛)⟩) ∈ B∗ × B∗
�� 𝑛 ∈ N}

(Recall that str(...) means that we represent the argument reasonably efficiently as a
bitstring.) With that recasting of functions as languages, P is closed under function
addition, scalar multiplication by an integer, subtraction, multiplication, and
composition. It is also closed under language concatenation and the Kleene star
operator. It is the smallest nontrivial class with these appealing properties.

Nondeterministic polynomial time

Nondeterminism
Recall from the chapter on Finite State machines that a machine is nondeterminstic if
from a present configuration and input it may pass to a next configuration where
the number of next states is zero, or one, or more than one. This contrasts with a
deterministic machine where the number of next states is always exactly one.
Definition A nondeterministic Turing machine P is a finite set of instructions
𝑞𝑝𝑇𝑝𝑇𝑛𝑞𝑛 ∈ 𝑄 × Σ × (Σ ∪ {L, R}) ×𝑄 , where𝑄 is a finite set of states and Σ is a finite set
of tape alphabet characters, which contains at least two members, including blank, and
does not contain the characters L or R. Some of the states, 𝐹 ⊆ 𝑄 , are accepting states.
The association of the present state and tape character with what happens next is given
by the transition function, Δ : 𝑄 × Σ → P((Σ ∪ {L, R}) ×𝑄).

0 0
q0

0 0

q1⊢

1 0

q2

⊢

0 1
q3⊢

0

q1
⊢

1 0

q2
⊢

0 0
q3

⊢

1 0

q2
⊢ · · ·

Recall also that we have two mental models of how these devices operate. In the first, the
machine is unboundedly parallel—when it is called on to go to multiple states, it forks a
child process for each one. That is, the machine’s computation history is a tree and it
simultaneously computes all branches.
In the second model, the machine guesses which next state to follow, or is told which
next state to follow by a demon, and then it deterministically computes a check of that
branch of the computation tree.

Described in the language of the first model, we say that an input string is accepted if
one of the branches on the tree is an accepting branch, and it does not accept the input if
no branch ends in an accepting state. In terms of the second model, this means that the
input is accepted if there is a sequences of guesses that the machine could make, or a
sequence of branching hints that the demon could produce, that the machine can verify
leads to an accepting state.
These two models are equivalent in that for a given nondeterministic machine they yield
the same collection of accepted strings.

Recall also that we have two mental models of how these devices operate. In the first, the
machine is unboundedly parallel—when it is called on to go to multiple states, it forks a
child process for each one. That is, the machine’s computation history is a tree and it
simultaneously computes all branches.
In the second model, the machine guesses which next state to follow, or is told which
next state to follow by a demon, and then it deterministically computes a check of that
branch of the computation tree.
Described in the language of the first model, we say that an input string is accepted if
one of the branches on the tree is an accepting branch, and it does not accept the input if
no branch ends in an accepting state. In terms of the second model, this means that the
input is accepted if there is a sequences of guesses that the machine could make, or a
sequence of branching hints that the demon could produce, that the machine can verify
leads to an accepting state.
These two models are equivalent in that for a given nondeterministic machine they yield
the same collection of accepted strings.

Language decider
The description on the prior slide raises two points. First, once some branch accepts
the input we might as well stop the computation, so we can take that accepting
computations always halt. Second, “no branch ends” seemingly could mean that in a
non-accepting computation some branches do not accept because their computation fails
to halt. But we are using these machines as language deciders and we shall want
to time them, including how long they take to not accept. So we will only define
language-deciding when all branches halt.
Definition Let P be a nondeterministic Turing machine such that every branch in the
computation tree, every sequence of valid transitions from the starting configuration, is
finite. Then P accepts an input string if at least one branch ends in an accepting state
and otherwise rejects it. The machine decides a language L when for every input
string 𝜎 , if 𝜎 ∈ L then P accepts it while if 𝜎 ∉ L then P rejects it.

Because we require that every branch halts, we can determine in a finite time that the
machine rejects the input.

Lemma For Turing machines, deterministic and nondeterministic machines decide the
same languages.

Pf. One direction is easy. A deterministic Turing machine is a special case of a
nondeterministic one. So if a deterministic machine decides a language then a
nondeterministic one does also.
Conversely, let the nondeterministic Turing machine P decide the language L. Consider
a deterministic machine Q that does a breadth-first search of P ’s computation tree. We
will show that it decides the same language. Fix an input 𝜎 . If P accepts 𝜎 then the
search done by Q will eventually find that node in the computation tree and then Q
accepts 𝜎 . If P does not accept 𝜎 then every branch in its computation tree halts in a
state that is not accepting. There is a longest such branch by König’s lemma. So the
breadth-first search will eventually exhaust all branches and then Q rejects 𝜎 .

Speed
Is this propositional logic expression satisfiable?

𝐸 = (𝑃 ∨𝑄) ∧ (𝑃 ∨ ¬𝑄) ∧ (¬𝑃 ∨𝑄) ∧ (¬𝑃 ∨ ¬𝑄 ∨ ¬𝑅) ∧ (𝑄 ∨ 𝑅) (∗)
The natural approach is to compute a truth table. The table below shows that it is
satisfiable, because the 𝑇𝑇𝐹 row ends in a 𝑇 .

𝑃 𝑄 𝑅 𝑃 ∨𝑄 𝑃 ∨ ¬𝑄 ¬𝑃 ∨𝑄 ¬𝑃 ∨ ¬𝑄 ∨ ¬𝑅 𝑄 ∨ 𝑅 (∗)
𝐹 𝐹 𝐹 𝐹 𝑇 𝑇 𝑇 𝐹 𝐹
𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝐹
𝐹 𝑇 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇 𝐹
𝐹 𝑇 𝑇 𝑇 𝐹 𝑇 𝑇 𝑇 𝐹

𝑇 𝐹 𝐹 𝑇 𝑇 𝐹 𝑇 𝐹 𝐹
𝑇 𝐹 𝑇 𝑇 𝑇 𝐹 𝑇 𝑇 𝐹
𝑇 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝐹 𝑇 𝐹

As to runtime, the number of table rows grows exponentially: it is 2 raised to the number
of input variables. Going through the rows one at a time would be very slow.
Each line of the truth table is easy; the issue is that there are lots of lines. This situation
is perfectly suited for a machine that is unboundedly parallel. For each line we could fork
a child process. Each of these children is done quickly, certainly in polytime, and if they
are working in parallel then the whole thing is polytime. If at the end any child is holding
a 𝑇 then the expression as a whole is satisfiable. That is, while a serial machine appears
to require exponential time, a nondeterministic machine does this job in polytime.

Speed
Is this propositional logic expression satisfiable?

𝐸 = (𝑃 ∨𝑄) ∧ (𝑃 ∨ ¬𝑄) ∧ (¬𝑃 ∨𝑄) ∧ (¬𝑃 ∨ ¬𝑄 ∨ ¬𝑅) ∧ (𝑄 ∨ 𝑅) (∗)
The natural approach is to compute a truth table. The table below shows that it is
satisfiable, because the 𝑇𝑇𝐹 row ends in a 𝑇 .

𝑃 𝑄 𝑅 𝑃 ∨𝑄 𝑃 ∨ ¬𝑄 ¬𝑃 ∨𝑄 ¬𝑃 ∨ ¬𝑄 ∨ ¬𝑅 𝑄 ∨ 𝑅 (∗)
𝐹 𝐹 𝐹 𝐹 𝑇 𝑇 𝑇 𝐹 𝐹
𝐹 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝐹
𝐹 𝑇 𝐹 𝑇 𝐹 𝑇 𝑇 𝑇 𝐹
𝐹 𝑇 𝑇 𝑇 𝐹 𝑇 𝑇 𝑇 𝐹

𝑇 𝐹 𝐹 𝑇 𝑇 𝐹 𝑇 𝐹 𝐹
𝑇 𝐹 𝑇 𝑇 𝑇 𝐹 𝑇 𝑇 𝐹
𝑇 𝑇 𝐹 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝐹 𝑇 𝐹

As to runtime, the number of table rows grows exponentially: it is 2 raised to the number
of input variables. Going through the rows one at a time would be very slow.
Each line of the truth table is easy; the issue is that there are lots of lines. This situation
is perfectly suited for a machine that is unboundedly parallel. For each line we could fork
a child process. Each of these children is done quickly, certainly in polytime, and if they
are working in parallel then the whole thing is polytime. If at the end any child is holding
a 𝑇 then the expression as a whole is satisfiable. That is, while a serial machine appears
to require exponential time, a nondeterministic machine does this job in polytime.

NP
Definition The complexity class NP is the set of languages for which there is a
nondeterministic Turing machine decider P that runs in polytime, meaning that there is
a polynomial 𝑝 such that on input 𝜎 , all branches of P ’s computation halt in time 𝑝 (|𝜎 |).
The following is immediate because a deterministic Turing machine is a special case of a
nondeterministic one.
Lemma P ⊆ NP

We will have much more to say about this later but in short, we don’t know whether the
two sets are equal. On the left below NP is shown as a strict superset of P while on the
right the two are shown as equal. (In all of these bean diagrams, problems with faster
solution algorithms are nearer the bottom.)

PNP

versus

P=NP

NP
Definition The complexity class NP is the set of languages for which there is a
nondeterministic Turing machine decider P that runs in polytime, meaning that there is
a polynomial 𝑝 such that on input 𝜎 , all branches of P ’s computation halt in time 𝑝 (|𝜎 |).
The following is immediate because a deterministic Turing machine is a special case of a
nondeterministic one.
Lemma P ⊆ NP

We will have much more to say about this later but in short, we don’t know whether the
two sets are equal. On the left below NP is shown as a strict superset of P while on the
right the two are shown as equal. (In all of these bean diagrams, problems with faster
solution algorithms are nearer the bottom.)

PNP

versus

P=NP

Verifiers
Mathematical presentations often introduce an idea with a definition that is natural or
conceputally clear and then follow it with a result giving a characterization that is more
convenient for working on problems. The next lemma is an example; to show that a
problem is in NP we almost always apply it, not the definition.
Definition A verifier for a language L is a deterministic Turing machine V that inputs
⟨𝜎,𝜔⟩ ∈ B2 and is such that 𝜎 ∈ L if and only if there exists an 𝜔 so that V accepts
⟨𝜎,𝜔⟩. The string 𝜔 is called the witness or certificate.
Lemma A language is in NP if and only if it has a verifier that runs in time polynomial in
|𝜎 |. That is, L ∈ NP if and only if there is a polynomial 𝑝 and a deterministic Turing
machine V that halts on all inputs ⟨𝜎,𝜔⟩ in 𝑝 (|𝜎 |) time, and is such that 𝜎 ∈ L exactly
when there is a witness 𝜔 where V accepts ⟨𝜎,𝜔⟩.

(The proof will follow some examples.) The definition says
‘there exists’ a witness 𝜔 . This formalizes the mental model
of the machine guessing, or of a demon providing the answer.
Consider the satisfiability example above. Imagine the demon
whispering, “Psst! Look at the 𝜔 = TTF line.” We can then
deterministically verify that hint, quickly.

Verifiers
Mathematical presentations often introduce an idea with a definition that is natural or
conceputally clear and then follow it with a result giving a characterization that is more
convenient for working on problems. The next lemma is an example; to show that a
problem is in NP we almost always apply it, not the definition.
Definition A verifier for a language L is a deterministic Turing machine V that inputs
⟨𝜎,𝜔⟩ ∈ B2 and is such that 𝜎 ∈ L if and only if there exists an 𝜔 so that V accepts
⟨𝜎,𝜔⟩. The string 𝜔 is called the witness or certificate.
Lemma A language is in NP if and only if it has a verifier that runs in time polynomial in
|𝜎 |. That is, L ∈ NP if and only if there is a polynomial 𝑝 and a deterministic Turing
machine V that halts on all inputs ⟨𝜎,𝜔⟩ in 𝑝 (|𝜎 |) time, and is such that 𝜎 ∈ L exactly
when there is a witness 𝜔 where V accepts ⟨𝜎,𝜔⟩.
(The proof will follow some examples.) The definition says
‘there exists’ a witness 𝜔 . This formalizes the mental model
of the machine guessing, or of a demon providing the answer.
Consider the satisfiability example above. Imagine the demon
whispering, “Psst! Look at the 𝜔 = TTF line.” We can then
deterministically verify that hint, quickly.

Example: Satisfiability is in NP
Our touchstone is the Satisfiability problem. Using the lemma to show that this problem
is in NP requires that we produce a deterministic Turing machine verifier. In the
flowchart below the first input 𝜎 is a Boolean expression while the second, the 𝜔 , is a
string that V interprets as describing a line of 𝜎 ’s truth table.

Y N

Start
Readf ,l

Compute linel off ’s truth table
It gives) ?

Accept Reject
If a candidate expression 𝜎 is satisfiable then there is a suitable witness, a line from the
truth table, so that V can check that the named line gives a result of 𝑇 . As an example,
for the expression (∗) from above, take 𝜔 = TTF. Clearly the verifier can do the checking
in polytime. On the other hand, if a candidate 𝜎 is not satisfiable, for example with the
expression 𝜎 = 𝑃 ∧ ¬𝑃 , then no 𝜔 will cause V to accept.

Comments on the verifier definition and lemma
▶ The most striking thing about the definition is that it says that ‘there exists’ a

witness 𝜔 but it does not say where the witness comes from. A person with a
computational mindset may well ask, “but how will we calculate the 𝜔 ’s?” The point
is not how to find them. The point is whether there exists a deterministic Turing
machine V that can leverage a given hint 𝜔 to verify in polytime that 𝜎 ∈ L. That is,
we don’t find the 𝜔 ’s, we just use them.

▶ Second, if 𝜎 ∉ L then the definition does not require a witness to that. Instead,
what’s required is that from among all possible strings 𝜔 there is none such that the
verifier accepts ⟨𝜎,𝜔⟩.

Comments on the verifier definition and lemma
▶ The most striking thing about the definition is that it says that ‘there exists’ a

witness 𝜔 but it does not say where the witness comes from. A person with a
computational mindset may well ask, “but how will we calculate the 𝜔 ’s?” The point
is not how to find them. The point is whether there exists a deterministic Turing
machine V that can leverage a given hint 𝜔 to verify in polytime that 𝜎 ∈ L. That is,
we don’t find the 𝜔 ’s, we just use them.

▶ Second, if 𝜎 ∉ L then the definition does not require a witness to that. Instead,
what’s required is that from among all possible strings 𝜔 there is none such that the
verifier accepts ⟨𝜎,𝜔⟩.

▶ The third comment relates to this asymmetry. Imagine that a demon hands you
some papers and claims that they contain an unbeatable strategy for chess.
Verifying requires stepping through the responses to each move, and responses to
the responses, etc., so there is lots of branching. To prove that the strategy is
unbeatable we appear to have to check all of the branches, not just find one good
one. It seems that a deterministic verifier must take exponential time. That would
make the demon’s papers, in a sense, useless. So this chess strategy is not like the
problems that we have been considering.
Thus, the lemma explains something about the class NP: while P contains problems
where we can find the answer in polytime, NP contains the problems whose answers
are useful in that we can at least verify them in polytime.
Also reflecting this asymmetry, it is not clear that L ∈ NP implies that its
complement Lc is a member of NP. Consider Satsifiability. If a propositional logic
expression 𝜎 is satisfiable then a witness to that is a pointer to a line of the truth
table. But for non-satisfiability there is no natural witness; instead, the natural thing
is to check all lines. As far as we know today, verifying that a Boolean formula is not
satisfiable takes more than polytime. Consequently, where the complexity class
co-NP contains the complements of languages from NP, we suspect that
NP ≠ co-NP.

▶ Finally, the lemma requires that the runtime of the verifier is polynomial in |𝜎 |, not
polynomial in the length of its input, ⟨𝜎,𝜔⟩. If it said the latter then we could check
the chess strategy just by using a witness that is exponentially long, which
consequently makes ⟨𝜎,𝜔⟩ exponentially long. Also observe that because V runs in
time polynomial in |𝜎 |, for the verifier to accept there must exist a witness whose
length is at most polynomial in |𝜎 |, because with 𝜔 ’s that are too long the verifier
cannot even input them before its runtime bound expires.

Example The Hamiltonian Path problem is like the Hamiltonian Circuit problem except
that instead of requiring that the starting vertex equals the ending one, it inputs two
vertices. It is the problem of determining membership in this set.

L = { ⟨G, 𝑣, 𝑣⟩
�� path in G between 𝑣 and 𝑣 visits every vertex exactly once}

We will show that this problem is in the class NP. We must produce a deterministic
Turing machine verifier V. It is sketched below. It takes as input ⟨𝜎,𝜔⟩, where the
candidate for membership in L is 𝜎 = ⟨G, 𝑣, 𝑣⟩. The verifier interprets the witness to be a
path, 𝜔 = ⟨𝑣, 𝑣1, ... 𝑣⟩.

Y N

Start
Readf ,l

Check thatl is a path in f ’s graph
All vertices visited once?

Accept Reject
If there is a Hamiltonian path then there exists a witness 𝜔 , and so there is input that V
will accept. Clearly, if given acceptable input then V runs in polytime. On the other
hand, if 𝜎 has no Hamiltonian path then for no 𝜔 will V be able to verify that 𝜔 is such a
path, and thus it will not accept any input pair starting with 𝜎 .

Example Vertex-to-Vertex Path takes as input a graph and two vertices and the triple is
in the language if there is a path between the vertices.

L = { ⟨G, 𝑣, 𝑣⟩
�� there is a path in G from 𝑣 to 𝑣 }

This problem is in NP. For the witness 𝜔 , use the path. We can write a verifier V that
accepts a triple 𝜎 = ⟨G, 𝑣, 𝑣⟩ along with a witness path 𝜔 , and tries to verify that the path
lies in the graph between the two vertices. If there is such a path then there is a pair
⟨𝜎,𝜔⟩ that V can accept. If there is no such path then there is no such pair. Clearly
verification is fast, polytime.

Example Linear programming optimizes some linear function
𝑓 (𝑥0, ... 𝑥𝑛−1) = 𝑎0𝑥0 + · · · + 𝑎𝑛−1𝑥𝑛−1, called the objective function, subject to a list 𝐶
of constraints of the form 𝑏𝑖,0𝑥0 + · · · + 𝑏𝑖,𝑛−1𝑥𝑛−1 ≤ 𝑑𝑖 and 𝑥𝑖 ≥ 0. To make this a
language decision problem, recast it using a parameter lower bound 𝐵.
L𝐵 = { ⟨𝑓 ,𝐶⟩

�� some ⟨𝑥0, ... 𝑥𝑛−1⟩ satisfies the constraints 𝐶 and 𝑓 (𝑥0, ... 𝑥𝑛−1) ≥ 𝐵 }
We can write a verifier V that takes in a pair ⟨𝜎,𝜔⟩, where 𝜎 is a pair ⟨𝑓 ,𝐶⟩ and 𝜔 is a
tuple, ⟨𝑥0, ... 𝑥𝑛−1⟩, and where the verifier checks whether the tuple satisfies the
constraints and also makes the objective function larger than 𝐵. If there is such a
sequence then V can verify it, in polytime. If there is no such sequence then V can never
accept its input.
Example 3-Coloring takes a graph as input and decides if it can be colored with at most
3 colors. For 𝜔 use a purported 3-coloring. The machine V can verify that 𝜔 actually is a
3-coloring in time polynomial in the size of the graph.

Example Vertex-to-Vertex Path takes as input a graph and two vertices and the triple is
in the language if there is a path between the vertices.

L = { ⟨G, 𝑣, 𝑣⟩
�� there is a path in G from 𝑣 to 𝑣 }

This problem is in NP. For the witness 𝜔 , use the path. We can write a verifier V that
accepts a triple 𝜎 = ⟨G, 𝑣, 𝑣⟩ along with a witness path 𝜔 , and tries to verify that the path
lies in the graph between the two vertices. If there is such a path then there is a pair
⟨𝜎,𝜔⟩ that V can accept. If there is no such path then there is no such pair. Clearly
verification is fast, polytime.
Example Linear programming optimizes some linear function
𝑓 (𝑥0, ... 𝑥𝑛−1) = 𝑎0𝑥0 + · · · + 𝑎𝑛−1𝑥𝑛−1, called the objective function, subject to a list 𝐶
of constraints of the form 𝑏𝑖,0𝑥0 + · · · + 𝑏𝑖,𝑛−1𝑥𝑛−1 ≤ 𝑑𝑖 and 𝑥𝑖 ≥ 0. To make this a
language decision problem, recast it using a parameter lower bound 𝐵.
L𝐵 = { ⟨𝑓 ,𝐶⟩

�� some ⟨𝑥0, ... 𝑥𝑛−1⟩ satisfies the constraints 𝐶 and 𝑓 (𝑥0, ... 𝑥𝑛−1) ≥ 𝐵 }
We can write a verifier V that takes in a pair ⟨𝜎,𝜔⟩, where 𝜎 is a pair ⟨𝑓 ,𝐶⟩ and 𝜔 is a
tuple, ⟨𝑥0, ... 𝑥𝑛−1⟩, and where the verifier checks whether the tuple satisfies the
constraints and also makes the objective function larger than 𝐵. If there is such a
sequence then V can verify it, in polytime. If there is no such sequence then V can never
accept its input.

Example 3-Coloring takes a graph as input and decides if it can be colored with at most
3 colors. For 𝜔 use a purported 3-coloring. The machine V can verify that 𝜔 actually is a
3-coloring in time polynomial in the size of the graph.

Example Vertex-to-Vertex Path takes as input a graph and two vertices and the triple is
in the language if there is a path between the vertices.

L = { ⟨G, 𝑣, 𝑣⟩
�� there is a path in G from 𝑣 to 𝑣 }

This problem is in NP. For the witness 𝜔 , use the path. We can write a verifier V that
accepts a triple 𝜎 = ⟨G, 𝑣, 𝑣⟩ along with a witness path 𝜔 , and tries to verify that the path
lies in the graph between the two vertices. If there is such a path then there is a pair
⟨𝜎,𝜔⟩ that V can accept. If there is no such path then there is no such pair. Clearly
verification is fast, polytime.
Example Linear programming optimizes some linear function
𝑓 (𝑥0, ... 𝑥𝑛−1) = 𝑎0𝑥0 + · · · + 𝑎𝑛−1𝑥𝑛−1, called the objective function, subject to a list 𝐶
of constraints of the form 𝑏𝑖,0𝑥0 + · · · + 𝑏𝑖,𝑛−1𝑥𝑛−1 ≤ 𝑑𝑖 and 𝑥𝑖 ≥ 0. To make this a
language decision problem, recast it using a parameter lower bound 𝐵.
L𝐵 = { ⟨𝑓 ,𝐶⟩

�� some ⟨𝑥0, ... 𝑥𝑛−1⟩ satisfies the constraints 𝐶 and 𝑓 (𝑥0, ... 𝑥𝑛−1) ≥ 𝐵 }
We can write a verifier V that takes in a pair ⟨𝜎,𝜔⟩, where 𝜎 is a pair ⟨𝑓 ,𝐶⟩ and 𝜔 is a
tuple, ⟨𝑥0, ... 𝑥𝑛−1⟩, and where the verifier checks whether the tuple satisfies the
constraints and also makes the objective function larger than 𝐵. If there is such a
sequence then V can verify it, in polytime. If there is no such sequence then V can never
accept its input.
Example 3-Coloring takes a graph as input and decides if it can be colored with at most
3 colors. For 𝜔 use a purported 3-coloring. The machine V can verify that 𝜔 actually is a
3-coloring in time polynomial in the size of the graph.

Proof of the lemma
Here is the statement of the lemma again.
Lemma A language is in NP if and only if it has a verifier that runs in time polynomial in
|𝜎 |. That is, L ∈ NP if and only if there is a polynomial 𝑝 and a deterministic Turing
machine V that halts on all inputs ⟨𝜎,𝜔⟩ in 𝑝 (|𝜎 |) time, and is such that 𝜎 ∈ L exactly
when there is a witness 𝜔 where V accepts ⟨𝜎,𝜔⟩.
Pf Suppose first that the language L is accepted by a nondeterministic Turing
machine P in polytime. We will construct a deterministic verifier V that runs in polytime.
Let 𝑝 : N → N be the polynomial such that for any input 𝜎 ∈ L, the machine P has an
accepting branch of length at most 𝑝 (|𝜎 |). Use that branch to make a witness to 𝜎 ’s
acceptance, for instance as in the sequence 𝜔 = ⟨3, 2 ...⟩ meaning, “At the first node take
the third child, then take the second child of that, etc.” Restated, P has a finite number
of states 𝑘 so we can represent the accepting branch of its computation tree with a
sequence 𝜔 of at most 𝑝 (|𝜎 |) many numbers, each less than 𝑘. In total, 𝜔 ’s length is
polynomial in |𝜎 |. With this 𝜔 , a deterministic machine V can verify P ’s acceptance of 𝜎 ,
in polynomial time.

For the converse suppose that the language L is accepted by a verifier V̂ that runs in time
bounded by a polynomial 𝑞. We will construct a nondeterministic Turing machine P̂ that
in polytime accepts an input bitstring 𝜏 if and only if 𝜏 ∈ L.
The key is that P̂ is nondeterministic. Given a candidate 𝜏 for membership in the
language, (1) have P̂ nondeterminstically produce a witness 𝜔̂ of length less than 𝑞(|𝜏 |),
(2) have P̂ then run ⟨𝜏, 𝜔̂⟩ through V̂, and (3) if the verifier accepts its input then P̂
accepts 𝜏 , while if V does not accept then P̂ rejects 𝜏 .
We must check that P̂ accepts 𝜏 if and only if 𝜏 ∈ L. A nondeterministic machine accepts
a string if there exists a branch that accepts the string, and rejects the string if every
branch rejects it. Suppose first that 𝜏 ∈ L. Because V̂ is a verifier, in this case there exists
a witness 𝜔̂ (of length less than 𝑞(|𝜏 |)) that will result in V̂ accepting ⟨𝜏, 𝜔̂⟩, so there is a
way for the prior paragraph to result in acceptance of 𝜏 , and so P̂ accepts 𝜏 . Conversely,
suppose that 𝜏 ∉ L. By the definition of a verifier, no witness 𝜔̂ will result in V̂ accepting
⟨𝜏, 𝜔̂⟩, and thus P̂ rejects 𝜏 .

Problem reduction

Introduction
When we studied incomputability we considered a sense in which some problems are
harder than others. Recall the Halts on Three problem to decide membership in the set
𝑆 = {𝑒 ∈ N

�� 𝜙𝑒 (3)↓}. We showed that if we could solve this then we could solve theHalting problem and we denoted this situation with 𝐾 ≤𝑇 𝑆 . In general, a set 𝐵 Turing
reduces to 𝐴, written 𝐵 ≤𝑇 𝐴, if there is a Turing machine that computes 𝐵 from an 𝐴
oracle, so that 𝜙𝐴𝑒 = 1𝐵 . Said another way, we can answer questions about membership
in 𝐵 by being given access to a routine that answers questions about membership in 𝐴.

This is terminology that is used generally in Mathematics. We say that a problem 𝐵
‘reduces to’ 𝐴 when in order to solve 𝐵, it suffices to solve 𝐴. Here are two examples.

Problem 𝐵 Problem 𝐴

Find the maximum of a list of numbers Sort a list of numbers
Find the roots of a polynomial Factor a polynomial into linear terms

The intuition is that 𝐴 is at least as hard as 𝐵.

Introduction
When we studied incomputability we considered a sense in which some problems are
harder than others. Recall the Halts on Three problem to decide membership in the set
𝑆 = {𝑒 ∈ N

�� 𝜙𝑒 (3)↓}. We showed that if we could solve this then we could solve theHalting problem and we denoted this situation with 𝐾 ≤𝑇 𝑆 . In general, a set 𝐵 Turing
reduces to 𝐴, written 𝐵 ≤𝑇 𝐴, if there is a Turing machine that computes 𝐵 from an 𝐴
oracle, so that 𝜙𝐴𝑒 = 1𝐵 . Said another way, we can answer questions about membership
in 𝐵 by being given access to a routine that answers questions about membership in 𝐴.
This is terminology that is used generally in Mathematics. We say that a problem 𝐵
‘reduces to’ 𝐴 when in order to solve 𝐵, it suffices to solve 𝐴. Here are two examples.

Problem 𝐵 Problem 𝐴

Find the maximum of a list of numbers Sort a list of numbers
Find the roots of a polynomial Factor a polynomial into linear terms

The intuition is that 𝐴 is at least as hard as 𝐵.

Reduction between language decision problems
Recall Vertex-to-Vertex Path: given a graph and two vertices, decide if there is a path
between them. Recall also Shortest Path: given a weighted graph and two vertices, find
the shortest path between them.
These two are related in that if you can find the shortest path then you can find whether
there is a path at all.

As a run-up toward the definition that makes this relationship precise, we first state these
as language decision problems.

L = { ⟨G, 𝑣0, 𝑣1⟩
�� there is a path from 𝑣0 to 𝑣1 in G }

L𝐵 = { ⟨Ĝ,𝑤0,𝑤1⟩
�� there is a path from 𝑤0 to 𝑤1 shorter than length 𝐵 }

(With the second, we are applying the standard bound technique, using the
parameter 𝐵 ∈ N. Also, there is a type issue because Shortest Path applies to weighted
graphs. But we can patch up the type issue by taking an unweighted graph to be a
weighted one where each edge has weight 1.)

Reduction between language decision problems
Recall Vertex-to-Vertex Path: given a graph and two vertices, decide if there is a path
between them. Recall also Shortest Path: given a weighted graph and two vertices, find
the shortest path between them.
These two are related in that if you can find the shortest path then you can find whether
there is a path at all.
As a run-up toward the definition that makes this relationship precise, we first state these
as language decision problems.

L = { ⟨G, 𝑣0, 𝑣1⟩
�� there is a path from 𝑣0 to 𝑣1 in G }

L𝐵 = { ⟨Ĝ,𝑤0,𝑤1⟩
�� there is a path from 𝑤0 to 𝑤1 shorter than length 𝐵 }

(With the second, we are applying the standard bound technique, using the
parameter 𝐵 ∈ N. Also, there is a type issue because Shortest Path applies to weighted
graphs. But we can patch up the type issue by taking an unweighted graph to be a
weighted one where each edge has weight 1.)

Suppose that you could solve Shortest Path. Perhaps you have a library routine
SolveShortestPath. We say that you have a ‘Shortest Path oracle’. This sketches an
algorithm leveraging that oracle to give an algorithm that solves Vertex-to-Vertex Path.

N Y

Start
Read G, E0, E1

Convert to weighted graph Ĝ

Solve Shortest Path on Ĝ, E0, E1 with � = |G |

Path exists?
Print 0 Print 1

This computes a function which translates decisions about instances ofVertex-to-Vertex Path into decisions about instances of Shortest Path.
In particular, because the algorithm runs in polytime, if Shortest Path is in P thenVertex-to-Vertex Path is also in P.

Suppose that you could solve Shortest Path. Perhaps you have a library routine
SolveShortestPath. We say that you have a ‘Shortest Path oracle’. This sketches an
algorithm leveraging that oracle to give an algorithm that solves Vertex-to-Vertex Path.

N Y

Start
Read G, E0, E1

Convert to weighted graph Ĝ

Solve Shortest Path on Ĝ, E0, E1 with � = |G |

Path exists?
Print 0 Print 1

This computes a function which translates decisions about instances ofVertex-to-Vertex Path into decisions about instances of Shortest Path.
In particular, because the algorithm runs in polytime, if Shortest Path is in P thenVertex-to-Vertex Path is also in P.

Polytime reduction
Definition Let L0,L1 be languages, subsets of B∗. Then L1 is polynomial time
reducible to L0, or Karp reducible, or polynomial time mapping reducible, or polynomial
time many-one reducible, written L1 ≤𝑝 L0 or L1 ≤𝑝

𝑚 L0, if there is a reduction function
or transformation function 𝑓 : B∗ → B∗ that is polynomial time computable and such
that 𝜎 ∈ L1 if and only if 𝑓 (𝜎) ∈ L0.

This is a sketch of polytime reduction among problems. The bean encloses all problems,
which we take to be languages, subsets of B∗ (we only show a few problems for graphical
clarity). The easy ones, the ones with fast solution algorithm, are at the bottom.
Problems are shown connected if there is a polynomial time reduction from one to the
other. Highlighted are connections within the complexity class P.

Rec

P

Satisfiability ≤𝑝 Clique
The Clique problem is the decision problem for the language
L𝐵 = { ⟨G, 𝐵⟩

�� G has a clique with 𝐵 vertices}. We will sketch thatSatisfiability ≤𝑝 Clique, so that intuitively Clique is at least as hard as Satisfiability.
Consider how to satisfy this Boolean expression.

𝐸 = (𝑥0 ∨ ¬𝑥1 ∨ 𝑥2) ∧ (¬𝑥0 ∨ 𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ ¬𝑥2)
The ∧’s make the statement as a whole 𝑇 if and only if all of its clauses are 𝑇. The ∨’s
mean that each clause is 𝑇 if and only if any of its literals is 𝑇. So to satisfy the
expression, select a literal from each clause and assign it the value 𝑇. For example, we
can make 𝐸 be 𝑇 by selecting 𝑥0 from the first clause, 𝑥2 from the second, and ¬𝑥1 from
the third, and making them 𝑇. Similarly, if ¬𝑥1 from the first and third clauses and 𝑥3
from the second are 𝑇 then 𝐸 is 𝑇. What we cannot do is pick 𝑥2 from the first and
second and then ¬𝑥2 from the third, because we cannot set both of these literals to be 𝑇.
That is, we can think of Satisfiability as a combinatorial problem. The clauses are like
buckets and we select one thing from each bucket, subject to the constraint that the
things we select must be pairwise compatible.

This view of Satisfiability has a binary relation ‘can be compatibly picked’ between the
literals. So, as below, let G𝐸 be a graph whose vertices are pairs ⟨𝑐, ℓ⟩ where 𝑐 is the
number of a clause and ℓ is a literal in that clause. Two vertices 𝑣0 = ⟨𝑐0, ℓ0⟩ and
𝑣1 = ⟨𝑐1, ℓ1⟩ are connected by an edge if they come from different clauses so 𝑐0 ≠ 𝑐1, and
if the literals are not negations of each other so ℓ0 ≠ ¬ℓ1.

0, G0

0,¬G1

0, G2

1,¬G0

1, G2

1,¬G3

2,¬G1 2,¬G2

A choice of three mutually compatible vertices makes 𝐸 evaluate to 𝑇 . That is, the 3
clause expression 𝐸 is satisfiable if and only if G𝐸 has a 3-clique.
More formally, the reduction function 𝑓 inputs a propositional logic expression 𝐸 and
outputs a pair 𝑓 (𝐸) = ⟨G𝐸 , 𝐵⟩ where G𝐸 is the compatibility graph associated with 𝐸
defined in the prior paragraph and where 𝐵 is the number of clauses in 𝐸. Then 𝐸 ∈ SAT
if and only if 𝑓 (𝐸) ∈ L𝐵 . Clearly this function can be computed in polytime.

Graph Colorability ≤𝑝 Satisfiability
Recall that a graph is 𝑘-colorable if we can partition the vertices into 𝑘 many classes,
called ‘colors’, so that two vertices can have the same color only when there is no edge
between them. This is a 3-coloring of the graph.

We will illustrate that the Graph Colorability problem reduces to the Satisfiability
problem, Graph Colorability ≤𝑝 Satisfiability, by focusing on the 𝑘 = 3 construction.
(Larger 𝑘 ’s work much the same way, although the 𝑘 = 2 case is different.)
To demonstrate that Graph Colorability ≤𝑝 Satisfiability, we must show that given an
instance of Graph Colorability, we can translate it into an instance of Satisfiability (where
the translation algorithm takes polytime).

Denote the set of satisfiable propositional logic statements as L0 and the set of
3-colorable graphs as L1. To show that L1 ≤𝑝 L0 we must produce a reduction
function 𝑓. It inputs a graph G and a outputs a propositional logic expression 𝐸 = 𝑓 (G)
such that the graph is 3-colorable if and only if the expression is satisfiable.
The function builds 𝐸 by including clauses that state, in the language of propositional
logic, the constraints to be met for the graph to be 3-colorable. Let G have 𝑛-many
vertices {𝑣0, ... 𝑣𝑛−1 }. Then 𝐸 has 3𝑛-many Boolean variables, 𝑎0, ... 𝑎𝑛−1, and
𝑏0, ... 𝑏𝑛−1, and 𝑐0, ... 𝑐𝑛−1. The idea is that if the 𝑖-th vertex 𝑣𝑖 gets the first color then 𝐸
will be satisfied when the associated variables have 𝑎𝑖 = 𝑇,𝑏𝑖 = 𝐹, 𝑐𝑖 = 𝐹 , while if 𝑣𝑖 gets
the second color then 𝐸 will be satisfied when 𝑎𝑖 = 𝐹, 𝑏𝑖 = 𝑇, 𝑐𝑖 = 𝐹 , and if 𝑣𝑖 gets the
third color then 𝐸 will be satisfied when 𝑎𝑖 = 𝐹, 𝑏𝑖 = 𝐹, 𝑐𝑖 = 𝑇 .
Specifically, the expression includes two kinds of clauses. For every vertex 𝑣𝑖 , there is a
clause saying that the vertex gets at least one color.

(𝑎𝑖 ∨ 𝑏𝑖 ∨ 𝑐𝑖)
And for each edge {𝑣𝑖 , 𝑣 𝑗 }, there are three clauses which together ensure that the edge
does not connect two same-color vertices.

(¬𝑎𝑖 ∨ ¬𝑎 𝑗) (¬𝑏𝑖 ∨ ¬𝑏 𝑗) (¬𝑐𝑖 ∨ ¬𝑐 𝑗)
The function’s output 𝐸 is the conjunction of all of these clauses.

This illustrates. The expression’s top line has the clauses of the first kind while the
remaining lines have the other kind.

E0 E1 E2

E3

(𝑎0 ∨ 𝑏0 ∨ 𝑐0) ∧ (𝑎1 ∨ 𝑏1 ∨ 𝑐1) ∧ (𝑎2 ∨ 𝑏2 ∨ 𝑐2) ∧ (𝑎3 ∨ 𝑏3 ∨ 𝑐3)
∧ (¬𝑎0 ∨ ¬𝑎1) ∧ (¬𝑏0 ∨ ¬𝑏1) ∧ (¬𝑐0 ∨ ¬𝑐1)
∧ (¬𝑎0 ∨ ¬𝑎3) ∧ (¬𝑏0 ∨ ¬𝑏3) ∧ (¬𝑐0 ∨ ¬𝑐3)
∧ (¬𝑎1 ∨ ¬𝑎2) ∧ (¬𝑏1 ∨ ¬𝑏2) ∧ (¬𝑐1 ∨ ¬𝑐2)
∧ (¬𝑎1 ∨ ¬𝑎3) ∧ (¬𝑏1 ∨ ¬𝑏3) ∧ (¬𝑐1 ∨ ¬𝑐3)

By construction, there is an assignments of truth values for the variables to satisfy the
expression if and only if the graph has a 3-coloring. Completing the argument requires
checking that the reduction function, which inputs a bitstring representation of the graph
and outputs a bitstring representation of the expression, is polynomial. That’s clear so we
omit the details.

Vertex Cover ≤𝑝 Set Cover
Vertex Cover inputs a graph G = ⟨V, E⟩ and a number 𝐵 ∈ N+. It asks if there are vertices
𝑣𝑖0 , 𝑣𝑖1 , ... 𝑣𝑖𝐵−1 so that each edge contains at least one such vertex.
Example Your museum has nine corridors and you must have a guard in a corner of
each corridor.

E0
E1

E2
E3

E4
E5

E6
E7

E8

You can get away with 𝐵 = 4 guards, posted at 𝑣1, 𝑣2, 𝑣5, and 𝑣7.

Set Cover inputs a set 𝑈 , a number 𝐵 ∈ N+, and a collection 𝑆0, 𝑆1, ... 𝑆𝑚 of subsets of 𝑈 .
It asks if there is a subcollection whose union is the entire set 𝑆𝑖0 ∪ 𝑆𝑖1 ∪ · · · ∪ 𝑆𝑖𝐵−1 = 𝑈 .
Example Imagine you are hiring people and have ten skills that you need to cover,
𝑈 = {0, 1, ... 9}. The four applicants list these skills.

𝑆0 = {1, 4} 𝑆1 = {2, 3, 4, 5} 𝑆2 = {0, 7, 9} 𝑆3 = {1, 6, 8}
You can get away with hiring only 𝐵 = 3 applicants because 𝑆1 ∪ 𝑆2 ∪ 𝑆3 = 𝑈 .

Vertex Cover ≤𝑝 Set Cover
Vertex Cover inputs a graph G = ⟨V, E⟩ and a number 𝐵 ∈ N+. It asks if there are vertices
𝑣𝑖0 , 𝑣𝑖1 , ... 𝑣𝑖𝐵−1 so that each edge contains at least one such vertex.
Example Your museum has nine corridors and you must have a guard in a corner of
each corridor.

E0
E1

E2
E3

E4
E5

E6
E7

E8

You can get away with 𝐵 = 4 guards, posted at 𝑣1, 𝑣2, 𝑣5, and 𝑣7.

Set Cover inputs a set 𝑈 , a number 𝐵 ∈ N+, and a collection 𝑆0, 𝑆1, ... 𝑆𝑚 of subsets of 𝑈 .
It asks if there is a subcollection whose union is the entire set 𝑆𝑖0 ∪ 𝑆𝑖1 ∪ · · · ∪ 𝑆𝑖𝐵−1 = 𝑈 .
Example Imagine you are hiring people and have ten skills that you need to cover,
𝑈 = {0, 1, ... 9}. The four applicants list these skills.

𝑆0 = {1, 4} 𝑆1 = {2, 3, 4, 5} 𝑆2 = {0, 7, 9} 𝑆3 = {1, 6, 8}
You can get away with hiring only 𝐵 = 3 applicants because 𝑆1 ∪ 𝑆2 ∪ 𝑆3 = 𝑈 .

We will show that Vertex Cover ≤𝑝 Set Cover by showing how to translate instances ofVertex Cover into instances of Set Cover.
First write each as a language decision problem.

L0 = { ⟨𝑈 , {𝑆0, ... 𝑆𝑚 }, 𝐵⟩
�� some 𝑆𝑖0 , 𝑆𝑖1 , ... 𝑆𝑖𝐵−1 covers 𝑈 }

L1 = { ⟨G, 𝐵⟩
�� some set 𝑣𝑖0 , 𝑣𝑖1 , ... 𝑣𝑖𝐵−1 covers all edges}

We must produce a polytime computable function 𝑓 that takes in 𝜎 = ⟨G, 𝐵⟩ and outputs
𝑓 (𝜎) = ⟨𝑈 , {𝑆0, ... 𝑆𝑚 }, 𝐵⟩, such that 𝜎 ∈ L1 if and only if 𝑓 (𝜎) ∈ L0.

Given 𝜎 = ⟨G, 𝐵⟩, take 𝑈 to be the set of G’s edges. For each of G’s vertices 𝑣𝑖 ∈ V, let
𝑆𝑣𝑖 = {𝑒 ∈ E

�� 𝑣𝑖 is a vertex in 𝑒 }. Define 𝑓 (𝜎) = ⟨𝑈 , {𝑆0, ... 𝑆𝑚 }, 𝐵⟩.
Clearly we can compute 𝑓 in polytime. Further, for the bound 𝐵 there is a collection of
sets 𝑆𝑣0 ∪ 𝑆𝑣1 ∪ · · · 𝑆𝑣𝐵−1 if and only if the collection 𝑣0, 𝑣1, ... 𝑣𝐵−1 is a vertex cover of G.
Example For the corridor guards, G, the associated sets are 𝑈 = {𝑎, 𝑏, ... 𝑖 }, along with
𝑆𝑣1 = {𝑎, 𝑏, 𝑑 }, and 𝑆𝑣2 = {𝑏, 𝑐, 𝑒 }, . . . and 𝑆𝑣7 = { 𝑓 , ℎ, 𝑖 }.

a b

d

c
e

f

g h i

E0
E1

E2
E3

E4
E5

E6
E7

E8

The set cover {𝑆𝑣1 , 𝑆𝑣2 , 𝑆𝑣5 , 𝑆𝑣7 } gives a vertex cover {𝑣1, 𝑣2, 𝑣5, 𝑣7 }.

We will show that Vertex Cover ≤𝑝 Set Cover by showing how to translate instances ofVertex Cover into instances of Set Cover.
First write each as a language decision problem.

L0 = { ⟨𝑈 , {𝑆0, ... 𝑆𝑚 }, 𝐵⟩
�� some 𝑆𝑖0 , 𝑆𝑖1 , ... 𝑆𝑖𝐵−1 covers 𝑈 }

L1 = { ⟨G, 𝐵⟩
�� some set 𝑣𝑖0 , 𝑣𝑖1 , ... 𝑣𝑖𝐵−1 covers all edges}

We must produce a polytime computable function 𝑓 that takes in 𝜎 = ⟨G, 𝐵⟩ and outputs
𝑓 (𝜎) = ⟨𝑈 , {𝑆0, ... 𝑆𝑚 }, 𝐵⟩, such that 𝜎 ∈ L1 if and only if 𝑓 (𝜎) ∈ L0.
Given 𝜎 = ⟨G, 𝐵⟩, take 𝑈 to be the set of G’s edges. For each of G’s vertices 𝑣𝑖 ∈ V, let
𝑆𝑣𝑖 = {𝑒 ∈ E

�� 𝑣𝑖 is a vertex in 𝑒 }. Define 𝑓 (𝜎) = ⟨𝑈 , {𝑆0, ... 𝑆𝑚 }, 𝐵⟩.
Clearly we can compute 𝑓 in polytime. Further, for the bound 𝐵 there is a collection of
sets 𝑆𝑣0 ∪ 𝑆𝑣1 ∪ · · · 𝑆𝑣𝐵−1 if and only if the collection 𝑣0, 𝑣1, ... 𝑣𝐵−1 is a vertex cover of G.
Example For the corridor guards, G, the associated sets are 𝑈 = {𝑎, 𝑏, ... 𝑖 }, along with
𝑆𝑣1 = {𝑎, 𝑏, 𝑑 }, and 𝑆𝑣2 = {𝑏, 𝑐, 𝑒 }, . . . and 𝑆𝑣7 = { 𝑓 , ℎ, 𝑖 }.

a b

d

c
e

f

g h i

E0
E1

E2
E3

E4
E5

E6
E7

E8

The set cover {𝑆𝑣1 , 𝑆𝑣2 , 𝑆𝑣5 , 𝑆𝑣7 } gives a vertex cover {𝑣1, 𝑣2, 𝑣5, 𝑣7 }.

Properties of polytime reduction
Lemma Polytime reduction is reflexive: L ≤𝑝 L for all languages. It is also transitive:
L2 ≤𝑝 L1 and L1 ≤𝑝 L0 imply that L2 ≤𝑝 L0. Every nontrivial computable language is
𝑃 hard: for L1 ∈ P, every language L0 with L0 ≠ ∅ and L0 ≠ N satisfies that L1 ≤𝑝 L0.
The class P is closed downward: if L0 ∈ P and L1 ≤𝑝 L0 then L1 ∈ P. So also is the
class NP.

Pf The first two sentences and the final sentence are Exercise 6.35.
For the third sentence fix a L0 that is nontrivial, so there is a member 𝜎 ∈ L0 and a
nonmember 𝜏 ∉ L0. Let L1 be an element of P. We will specify a polytime reduction
function 𝑓 for L1 ≤𝑝 L0. For 𝛼 ∈ B∗, computing whether 𝛼 ∈ L1 can be done in
polytime. If it is a member then let 𝑓 (𝛼) = 𝜎 while if not then let 𝑓 (𝛼) = 𝜏 .
For the downward closure of P, suppose that L1 ≤𝑝 L0 via the polytime function 𝑔 and
also suppose that there is a polytime algorithm for determining membership in L0.
Determine membership in L1 by starting with an input 𝜎 , finding 𝑔(𝜎), and applying the
L0 algorithm to settle whether 𝑔(𝜎) ∈ L0. Where the L0 algorithm runs in time that is
O(𝑛𝑖) and where 𝑔 runs in time that is O(𝑛 𝑗), determining L1 membership in this way
runs in time that is O(𝑛max(𝑖, 𝑗)), which is polynomial.

NP completeness

The Cook-Levin theorem
Theorem (Cook-Levin theorem) The Satisfiability problem is in NP and has the
property any problem in NP reduces to it: L ≤𝑝 SAT for any L ∈ NP.

First, we have already observed that SAT∈ NP because, given a Boolean expression, we
can use as a witness 𝜔 an assignment of truth values that satisfies the expression.
Here is an outline of the proof ’s other half. Given L ∈ NP, we must show that L ≤𝑝 SAT.
We produce a function 𝑓L that translates membership questions for L into Boolean
expressions, such that the membership answer is ‘yes’ if and only if the expression is
satisfiable. What we know about L is that its member 𝜎 ’s are accepted by a
nondeterministic machine P in time given by a polynomial 𝑞. With that, from ⟨P, 𝜎, 𝑞⟩
the proof constructs a Boolean expression that yields 𝑇 if and only if P accepts 𝜎 . The
Boolean expression encodes the constraints under which a Turing machine operates,
such as that the only tape symbol that can be changed in the current step is the symbol
under the machine’s head.

NP complete, NP hard
Definition A problem is NP hard if every problem in NP reduces to it, that is, L is
NP hard if L̂ ∈ NP implies that L̂ ≤𝑝 L. A problem is NP complete if, in addition to being
NP hard, it is also a member of NP.

This shows all problems, the collection of all L ∈ B∗. In the bottom is NP, drawn with P
as a proper subset (although we don’t know this is true, most experts believe that it is).
In the top are the NP-hard problems. The highlighted intersection of the two is the set of
NP complete problems.

P NP

NP hard

NP complete

Lemma If L0 is NP complete, and L0 ≤𝑝 L1, and L1 ∈ NP then L1 is NP complete.

Garey & Johnson’s key NP complete problems
Theorem (Basic NP Complete Problems) Each of these problems is NP complete.

3-Satisfiability, 3-SAT Given a propositional logic formula in conjunctive normal form in
which each clause has at most 3 variables, decide if it is satisfiable.

3 Dimensional Matching Given as input a set 𝑀 ⊆ 𝑋 × 𝑌 × 𝑍 , where the sets 𝑋,𝑌, 𝑍 all
have the same number of elements, 𝑛, decide if there is a matching, a set 𝑀̂ ⊆ 𝑀
containing 𝑛 elements such that no two of the triples in 𝑀̂ agree on any of their
coordinates.

Vertex cover Given a graph and a bound 𝐵 ∈ N, decide if the graph has a size 𝐵 set of
vertices 𝐶 such that for any edge 𝑣𝑖𝑣 𝑗 , at least one of its ends is a member of 𝐶.

Clique Given a graph and a bound 𝐵 ∈ N, decide if the graph has a set of 𝐵-many
vertices where any two are connected.

Hamiltonian Circuit Given a graph, decide if it contains a cyclic path that includes each
vertex.

Partition Given a finite multiset 𝑆 of natural numbers, decide if there is a division of the
set into the two parts 𝑆 and 𝑆 − 𝑆 so the total of their elements is the same,∑
𝑠∈𝑆 𝑠 =

∑
𝑠∉𝑆 𝑠.

Travelling Salesman is NP-complete
Example We will show that the Traveling Salesman problem is NP complete. Recall that
we have recast it as the decision problem for the language of pairs ⟨G, 𝐵⟩, where 𝐵 is a
parameter bound, and that this problem is a member of NP. We will show that it is
NP hard by proving that the Hamiltonian Circuit problem reduces to it,Hamiltonian Circuit ≤𝑝 Traveling Salesman.
We need a reduction function 𝑓. It must input an instance of Hamiltonian Circuit, a graph
G = ⟨N , E⟩ whose edges are unweighted. Define 𝑓 to return the instance ofTraveling Salesman that uses N as cities, that takes the distances between cities to be
𝑑 (𝑣𝑖 , 𝑣 𝑗) = 1 if 𝑣𝑖𝑣 𝑗 ∈ E and 𝑑 (𝑣𝑖 , 𝑣 𝑗) = 2 if 𝑣𝑖𝑣 𝑗 ∉ E , and such that the bound is the
number of vertices, 𝐵 = |N |.
This bound means that there will be a Traveling Salesman solution if and only if there is aHamiltonian Circuit solution; namely, the salesman uses the edges that appear in the
Hamiltonian circuit. All that remains is to argue that the reduction function runs in
polytime. The number of edges in a graph is no more than twice the number of vertices
so polytime in the input graph size is the same as polytime in the number of vertices. The
reduction function’s algorithm examines all pairs of vertices, which takes time that is
quadratic in the number of vertices.

Knapsack is NP-complete
Example The Knapsack problem starts with a multiset of objects 𝑆 = {𝑠0, ... 𝑠𝑘−1 }, each
with a natural number weight 𝑤 (𝑠𝑖) and a value 𝑣 (𝑠𝑖), along with a weight bound 𝐵 and
value target 𝑇 . We then look for a knapsack 𝐾 ⊆ 𝑆 whose elements have total weight less
than or equal to the bound and total value greater than or equal to the target.
First we check that this problem is in NP. As the witness we can use the 𝑘-bit string 𝜔
such that 𝜔 [𝑖] = 1 if 𝑠𝑖 is in the knapsack 𝐾 , and 𝜔 [𝑖] = 0 if it is not. A deterministic
machine can verify this witness in polynomial time since it only has to total the weights
and values of the elements of 𝐾 .
To finish we must show that Knapsack is NP hard. It is sufficient to show that a special
case is NP hard. Consider the Knapsack instance where 𝑤 (𝑠𝑖) = 𝑣 (𝑠𝑖) for all 𝑠𝑖 ∈ 𝑆 , and
where the two criteria each equal half of the weight total, 𝐵 = 𝑇 = 0.5 ·∑0≤𝑖<𝑘 𝑤 (𝑖).
This shows that any instance of the Partition problem, which is in the above basic list, can
be expressed as a Knapsack instance, so Partition ≤𝑝 Knapsack, and consequently the
latter is NP hard.

EXP
Definition A language decision problem is an element of the complexity class EXP if
there is an algorithm for solving it that runs in time O(𝑏𝑝 (𝑛)) for some constant base 𝑏
and polynomial 𝑝.

A first, informal, take is that EXP contains nearly every problem with which we concern
ourselves in practice— it contains most problems that we seriously hope ever to attack.
In contrast with polytime, where a rough summary is that its problems all have an
algorithm that can conceivably be used, for the hardest problems in EXP, even the best
algorithms are just too slow.

Lemma P ⊆ NP ⊆ EXP

Pf. Fix L ∈ NP. We can verify L on a deterministic Turing machine P in polynomial
time using a witness whose length is bounded by the same polynomial. Let this
problem’s bound be 𝑛𝑐 .
We will decide L in exponential time by brute-forcing it: we will use P to run every
possible verification. Trying any single witness requires polynomial time, 𝑛𝑐 . Witnesses
are in binary so for length ℓ there are ∑0≤𝑖≤ℓ 2𝑖 = 2ℓ+1 − 1 many possible ones; In total
then, brute force requires O(𝑛𝑐2𝑛𝑐) operations. Finish by observing that 𝑛𝑐2𝑛𝑐 is in
O(2𝑛𝑐).

EXP
Definition A language decision problem is an element of the complexity class EXP if
there is an algorithm for solving it that runs in time O(𝑏𝑝 (𝑛)) for some constant base 𝑏
and polynomial 𝑝.

A first, informal, take is that EXP contains nearly every problem with which we concern
ourselves in practice— it contains most problems that we seriously hope ever to attack.
In contrast with polytime, where a rough summary is that its problems all have an
algorithm that can conceivably be used, for the hardest problems in EXP, even the best
algorithms are just too slow.
Lemma P ⊆ NP ⊆ EXP

Pf. Fix L ∈ NP. We can verify L on a deterministic Turing machine P in polynomial
time using a witness whose length is bounded by the same polynomial. Let this
problem’s bound be 𝑛𝑐 .
We will decide L in exponential time by brute-forcing it: we will use P to run every
possible verification. Trying any single witness requires polynomial time, 𝑛𝑐 . Witnesses
are in binary so for length ℓ there are ∑0≤𝑖≤ℓ 2𝑖 = 2ℓ+1 − 1 many possible ones; In total
then, brute force requires O(𝑛𝑐2𝑛𝑐) operations. Finish by observing that 𝑛𝑐2𝑛𝑐 is in
O(2𝑛𝑐).

Dunno
We don’t know whether there are any NP problems that absolutely require exponential
time. Conceivably NP is contained in a smaller determinstic time complexity class—
maybe Satisfiability, for instance, can be solved in less than exponential time. But we just
don’t know.
Here the blob encloses all problems. Shaded are the three classes P, NP, and EXP. They
are drawn with strict containment, which most experts guess is the true arrangement,
but no one knows for sure.

PNPEXP

P versus NP

?P = NP ?
Every deterministic Turing machine is trivially a nondeterministic machine, and so
P ⊆ NP. What about the other direction: can unbounded parallelism bring problems
from super-polynomial to polynomial?
The short answer is that no one knows. One of these two pictures is correct but we do
not know which one.

PNP P=NP

The place of NP complete problems
This bean holds all language decision problems, L ∈ B∗. In the bottom is NP, drawn with
P as a strict subset (although we don’t, strictly speaking, know that is true). In the top
left are the NP-hard problems. The highlighted intersection of the two is the set of NP
complete problems. These problems are elements of NP that are ≤𝑝 -above all NP
problems. They are the hardest of the NP problems. If there is a difference between P
and NP, a gap containing the problems that are in NP − P, then they form a subset of it,
right at its very top.

P NP

NP hard

NP complete

What’s so interesting about NP complete problems?
Soon after Cook raised the question of NP completeness, R Karp brought it to widespread
attention. Karp noted that there are clusters of problems: there is a collection of
problems solvable in time O(lg(𝑛)), problems of time O(𝑛), those of time O(𝑛 lg𝑛), etc.
There is also a cluster of problems that seem much tougher. He gave a list of twenty one
of these, drawn from Computer Science, Mathematics, and the natural sciences, where
lots of smart people had for years been unable find efficient algorithms. He showed that
all of these problems are NP complete, so that if we could efficiently solve any then we
could efficiently solve them all.
Karp demonstrated that many problems that people had been struggling with in
practice—classic unsolved problems— fall in this category. Researchers who have been
looking for an efficient solution to Vertex Cover and those who have been working onClique find that they are working on the same problem, in that the two are
inter-translatable. By now the list of NP complete problems includes determining the
best layout of transistors on a chip, developing accurate financial-forecasting models,
analyzing protein-folding behavior in a cell, or finding the most energy-efficient airplane
wing. So the question of whether P equals NP is extremely practical, and extremely
important.
If someone could solve just one of these problems in polytime then we could solve all of
them in polytime.

In short: what to tell your boss
What if you have a problem that you cannot solve?
Researchers often take proving that a problem is NP complete to be an ending point; they
may feel that continuing to look for an algorithm is a waste since many of the world’s
best minds have failed to find one. They may turn to finding approximations (see
Extra B) or to probabilistic methods.
A researcher could imagine proving that the reason they cannot find an efficient
algorithm is that no such algorithm exists. But perhaps more realistic is to show that your
problem is NP complete and then argue that while you cannot find an efficient algorithm,
neither can anyone else— that you are at the state of the art.

Status of the question
Certainly the P versus NP question is the sexiest one in the Theory of Computing today. It
has attracted a great deal of gossip. In 2018, a poll of experts found that out of 152
respondents, 88% thought that P ≠ NP while only 12% thought that P = NP.

Reflection: why the question is central
In high school you had Euclid. This proves that the base angles of an isosceles triangle
are equal.

A proof is a sequence of statements, each justified by reference to some prior statement,
to a law of logic, or to some axiom.

In a proof we require the all steps be typographic in the sense that we can for instance
combine two prior statements using a law of logic to get a third statement, but a proof
cannot take creative leaps. It must be mechanically checkable.
This is illustrated by Russell and Whitehead’s Principia Mathematica, from the early
1900’s, which tried to derive all of mathematics from first principles, in a way that is
completely mechanically checkable. Each step describes the lines from which it is
derived, so that for instance you can mechanically check that the second line follows
from the first by applying the result 51.231.
This appears on p 362.

Recall the Entscheidungsproblem that was a motivation behind the definition of a Turing
machine. It asks for an algorithm that inputs a mathematical statement and decides
whether it is true. It is perhaps a caricature, but imagine that the job of mathematicians
is to prove theorems. Then the Entscheidungsproblem asks if it is possible to replace
mathematicians with mechanisms.
In the intervening century we have come to understand, through the work of Gödel and
others, that there is a difference between a statement’s being true and its being provable.
Church and Turing expanded on this insight to show that the Entscheidungsproblem is
unsolvable. Consequently, we change to asking for an algorithm that inputs statements
and decides whether they are provable.
In principle this is simple. A proof is a sequence of statements, 𝜎0, 𝜎1, . . . 𝜎𝑘 , where the
final statement is the conclusion and where each statement either is an axiom or else
follows from the statements before it by an application of a rule of deduction (a typical
rule allows the simultaneous replacement of all 𝑥 ’s with 𝑦 + 4’s). A computer could
brute-force the question of whether a given statement is provable by doing a dovetail, a
breadth-first search of all derivations. If a proof exists then it will appear, eventually.
Restated: start with the axioms. Do a one step combination of them in all possible ways.
Then do all two-step combinations, etc. This process generates all possible theorems,
eventually.

The difficulty is the ‘eventually’. This algorithm is very slow. Is there a tractable way? In
the terminology that we now have, the modified Entscheidungsproblem is a decision
problem: given a statement 𝜎 and a bound, we ask if there is a sequence 𝜔 of statements
witnessing a proof that ends in 𝜎 and that is shorter than the bound. A computer can
quickly check whether a given proof is valid— this problem is in NP. With the current
status of the P versus NP problem, the answer to the question in the prior paragraph is
that no one knows of a fast algorithm but no one can show that there isn’t one either.

A Turing K Gödel J von Neumann
As far back as 1956, Gödel raised these issues in a letter to
von Neumann (this letter did not become public until years later).

One can obviously easily construct a Turing machine, which for every formula 𝐹 in first
order predicate logic and every natural number 𝑛, allows one to decide if there is a proof
of 𝐹 of length 𝑛 (length = number of symbols). Let Ψ(𝐹,𝑛) be the number of steps the
machine requires for this and let 𝜙 (𝑛) = max𝐹 Ψ(𝐹,𝑛) . The question is how fast 𝜙 (𝑛)
grows for an optimal machine. One can show that 𝜙 (𝑛) ≥ 𝑘 · 𝑛. If there really were a
machine with 𝜙 (𝑛) ∼ 𝑘 · 𝑛 (or even ∼ 𝑘 · 𝑛2), this would have consequences of the greatest
importance. Namely, it would obviously mean that in spite of the undecidability of the
Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions
could be completely replaced by a machine. After all, one would simply have to choose the
natural number 𝑛 so large that when the machine does not deliver a result, it makes no
sense to think more about the problem. Now it seems to me, however, to be completely within
the realm of possibility that 𝜙 (𝑛) grows that slowly. . . . It would be interesting to know,
for instance, the situation concerning the determination of primality of a number and how
strongly in general the number of steps in finite combinatorial problems can be reduced with
respect to simple exhaustive search.

This problem is in NP. If someone gives you a theorem’s derivation 𝜔 then checking it is
fast. But, that we know today, it appears that generating the theorems is slow. Certainly,
the brute force, breadth-first, way is slow.

Gödel was extremely cautious. We can expand what he said into statements that are
somewhat less careful but perhaps more memorable.

Example Consider how the difficulty of an 𝑛 × 𝑛 Sudoku grid grows as 𝑛 grows.

This problem is NP because as a witness 𝜔 we can use a filled-out grid, and check it
quicky. But, we today know of no polytime solution.
Example Jigsaw puzzles are similar.

This is NP because we can get as witness 𝜔 a finished puzzle. But like the SAT problem,
researchers today do not know of any way to solve it that is essentially faster than trying
all combinations.

Gödel was extremely cautious. We can expand what he said into statements that are
somewhat less careful but perhaps more memorable.
Example Consider how the difficulty of an 𝑛 × 𝑛 Sudoku grid grows as 𝑛 grows.

This problem is NP because as a witness 𝜔 we can use a filled-out grid, and check it
quicky. But, we today know of no polytime solution.
Example Jigsaw puzzles are similar.

This is NP because we can get as witness 𝜔 a finished puzzle. But like the SAT problem,
researchers today do not know of any way to solve it that is essentially faster than trying
all combinations.

S Cook:
. . . a practical algorithm for solving anNP-complete problem . . . would transformmathematics
by allowing a computer to find a formal proof of any theorem that has a proof of reasonable
length, since formal proofs can easily be recognized in polynomial time. . . . Although the
formal proofs may not be initially intelligible to humans, the problem of finding intelligible
proofs would be reduced to that of finding a recognition algorithm for intelligible proofs.
Similar remarks apply to diverse creative human endeavors, such as designing airplane wings,
creating physical theories, or even composing music. The question in each case is to what
extent an efficient algorithm for recognizing a good result can be found.

S Aaronson:
If P = NP, then the world would be a profoundly different place than we usually assume
it to be. There would be no special value in “creative leaps,” no fundamental gap between
solving a problem and recognizing the solution once it’s found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a step-by-step argument would be
Gauss; everyone who could recognize a good investment strategy would be Warren Buffett.

A Widgerson:
The seemingly abstract, philosophical question: Can creativity be automated? in its concrete,
mathematical form: Does P = NP?, emerges as a central challenge of science. And the
basic notions of space and time, studied as resources of efficient computation, emerge as key
objects of study to solving this mystery, just like their physical counterparts hold the key to
understanding the laws of nature.

Guessing whether P = NP: the dominant view
First we address the intuition around the conjecture that P ≠ NP. One way to think
about the question is that a problem is in P if finding a solution is fast, while a problem is
in NP if verifying the correctness of a given witness is fast. Then the claim that P ⊆ NP
becomes the observation that if a problem is fast to solve then it must be fast to verify.
But the other inclusion seems to most experts to be extremely unlikely. For example,
speaking informally, S Aaronson has said, “I’d give it a 2 to 3 percent chance that P
equals NP. Those are the betting odds that I’d take.” Similarly, R Williams puts the
chance that P ≠ NP at 80%.

Related reasoning is that there are thousands of NP complete problems spread across
disciplines such as combinatorics, number theory, geometry, economics and finance,
biology, operations research, etc. These problems differ wildely and bear no obvious
relation to each other, besides the fact that they are all NP complete. Because they are
NP complete, they are mutually inter-reducible, so a polytime solution to one would give
a polytime solution to all. No one has been able to find a polytime algorithm to solve any
of them. This is strong empirical evidence—not proof, to be sure, but still strong
evidence— that P ≠ NP.

Guessing whether P = NP: the dominant view
First we address the intuition around the conjecture that P ≠ NP. One way to think
about the question is that a problem is in P if finding a solution is fast, while a problem is
in NP if verifying the correctness of a given witness is fast. Then the claim that P ⊆ NP
becomes the observation that if a problem is fast to solve then it must be fast to verify.
But the other inclusion seems to most experts to be extremely unlikely. For example,
speaking informally, S Aaronson has said, “I’d give it a 2 to 3 percent chance that P
equals NP. Those are the betting odds that I’d take.” Similarly, R Williams puts the
chance that P ≠ NP at 80%.
Related reasoning is that there are thousands of NP complete problems spread across
disciplines such as combinatorics, number theory, geometry, economics and finance,
biology, operations research, etc. These problems differ wildely and bear no obvious
relation to each other, besides the fact that they are all NP complete. Because they are
NP complete, they are mutually inter-reducible, so a polytime solution to one would give
a polytime solution to all. No one has been able to find a polytime algorithm to solve any
of them. This is strong empirical evidence—not proof, to be sure, but still strong
evidence— that P ≠ NP.

Guessing whether P = NP: the contrarian view
Many observers have noted that there are cases where everyone “knew” that some
algorithm was the fastest but in the end it proved not to be so. The section on Big-O
begins with one, the grade school algorithm for multiplication. Another is the problem of
solving systems of linear equations. The Gauss’s Method algorithm, which runs in time
O(𝑛3), is perfectly natural and had been known for centuries without anyone making
improvements. However, while trying to prove that Gauss’s Method is optimal, V Strassen
found a O(𝑛lg 7) method (lg 7 ≈ 2.81).
A more dramatic speedup happens with the Matching problem. It starts with a graph
whose vertices represent people and such that pairs of vertices are connected if the
people are compatible. We want a set of edges that is maximal, and such that no two
edges share a vertex. The naive algorithm tries all possible match sets, which takes 2𝑚
checks where𝑚 is the number of edges. Even with only a hundred people there are more
things to try than atoms in the universe. But since the 1960’s we have an algorithm that
runs in polytime.

Every day on the Theory of Computing blog feed there are examples of
researchers producing algorithms faster than the ones previously known. A
person can certainly have the sense that we are only just starting to
explore what is possible with algorithms. R J Lipton captured this feeling.

Since we are constantly discovering new ways to program our “machines,” why
not a discovery that shows how to factor? or how to solve SAT? Why are we all
so sure that there are no great new programming methods still to be discovered?
. . . I am puzzled that so many are convinced that these problems could not fall to
new programming tricks, yet that is what is done each and every day in their own
research.

Knuth has a related but somewhat different take.
Some of my reasoning is admittedly naive: It’s hard to believe that P ≠ NP and

that so many brilliant people have failed to discover why. On the other hand if you
imagine a number𝑀 that’s finite but incredibly large . . . then there’s a humongous
number of possible algorithms that do 𝑛𝑀 bitwise addition or shift operations on 𝑛
given bits, and it’s really hard to believe that all of those algorithms fail.

My main point, however, is that I don’t believe that the equality P = NP will
turn out to be helpful even if it is proved, because such a proof will almost surely
be nonconstructive. Although I think 𝑀 probably exists, I also think human beings
will never know such a value. I even suspect that nobody will even know an upper
bound on 𝑀 .

Mathematics is full of examples where something is proved to exist, yet the
proof tells us nothing about how to find it. Knowledge of the mere existence of an
algorithm is completely different from the knowledge of an actual algorithm.

	Review of Big-O
	Problems drive development
	Reflections on problems
	Complexity classes
	Nondeterministic polynomial time
	Problem reduction
	NP completeness
	¶ versus NP

