
Languages, Grammars, and Graphs

Jim Hefferon

University of Vermont
hefferon.net

Languages

Strings
Recall that a symbol, or token, is something that a machine can read and write, and an
alphabet is a nonempty and finite set of symbols.
A string or word over an alphabet is a finite sequence of elements from that
alphabet. The string with no elements is the empty string, denoted 𝜀, along with
https://www.youtube.com/watch?v=juXwu0Nqc3I.
We write symbols in a distinct typeface, as in 1 or a, because the alternative of quoting
them would be clunky.
Traditionally, we denote an alphabet with the Greek letter Σ. In this book we will name
strings with lower case Greek letters (except that we use 𝜙 for something else) and
denote the items in the string with the associated lower case roman letter, as in
𝜎 = ⟨𝑠0, ... 𝑠𝑛−1⟩ and 𝜏 = ⟨𝑡0, ... 𝑡𝑚−1⟩. The length of the string 𝜎 , |𝜎 |, is the number of
symbols that it contains, 𝑛. In particular, the length of the empty string is |𝜀 | = 0. We
usually work with alphabets having single-character symbols and then we write strings
by omitting the brackets and commas. That is, we write 𝜎 = abc instead of ⟨a, b, c⟩.
Example Natural numbers are represented by strings of digits. The alphabet is
Σ = {0, ... 9}. The string 𝜎 = 1066 has length |𝜎 | = 4.

The alphabet consisting of the bit characters is B = {0, 1}. Strings over this alphabet are
bitstrings or bit strings.

https://www.youtube.com/watch?v=juXwu0Nqc3I

String operations
Let 𝜎 = ⟨𝑠0 ... 𝑠𝑛−1⟩ and 𝜏 = ⟨𝑡0, ... 𝑡𝑚−1⟩ be strings over an alphabet Σ.
The concatenation 𝜎⌢𝜏 or 𝜎𝜏 appends the second string to the first,
𝜎⌢𝜏 = ⟨𝑠0 ... 𝑠𝑛−1, 𝑡0, ... 𝑡𝑚−1⟩. Where 𝜎 = 𝜏0⌢· · ·⌢𝜏𝑘−1, we say that 𝜎 decomposes into
the 𝜏 ’s, and that each 𝜏𝑖 is a substring of 𝜎 . The first substring, 𝜏0, is a prefix of 𝜎 . The
last, 𝜏𝑘−1, is a suffix.
A power or replication of a string is an iterated concatenation with itself, so that
𝜎2 = 𝜎⌢𝜎 and 𝜎3 = 𝜎⌢𝜎⌢𝜎 , etc. We write 𝜎1 = 𝜎 and 𝜎0 = 𝜀. The reversal 𝜎R of a
string takes the symbols in reverse order: 𝜎R = ⟨𝑠𝑛−1, ... 𝑠0⟩. The empty string’s reversal
is 𝜀R = 𝜀.
A palindrome is a string that equals its own reversal. Examples are 𝛼 = abba, 𝛽 = cdc,
and 𝜀.
Where Σ is an alphabet, for 𝑘 ∈ N the set of length 𝑘 strings over that alphabet is Σ𝑘. The
set of strings over Σ of any finite length is Σ∗ = ∪𝑘∈NΣ𝑘. The asterisk symbol is the
Kleene star, read aloud as “star.”
Example The set of bitstrings of length 3 is B3 = {000, 001, ... 111}. The set of all
bitstrings is B∗ = {𝜀, 0, 1, 00, ... }.

Languages
Definition A language L over an alphabet Σ is a set of strings drawn from that
alphabet. That is, L ⊆ Σ∗.
Example Let Σ = {a, b}. One language is L0 = {𝜎 ∈ Σ∗

�� 𝜎 = a𝑛ba𝑛 for some 𝑛 ∈ N};
some members are b, aba, aabaa, and aaabaaa. Another is the language of palindromes,
L1 = {𝜎 ∈ Σ∗

�� 𝜎 = 𝜎R }.
Example For the alphabet of parentheses, Σ = {), (}, the set of strings of balanced
parentheses is a language. Three members are the strings (()), (()()), and (()(())).
Nonmembers are the strings)(, ((), and ())(().
Definition (Operations on languages) The concatenation of languages, L0⌢L1 or
L0L1, is the language of concatenations, {𝜎0⌢𝜎1

�� 𝜎0 ∈ L0 and 𝜎1 ∈ L1 }.
For any language L, the power L𝑘 is the language consisting of the concatenation of
𝑘-many members, L𝑘 = {𝜎0⌢ · · ·⌢𝜎𝑘−1

�� 𝜎𝑖 ∈ L} when 𝑘 > 0. We take L0 = {𝜀 }. The
Kleene star of a language L∗ is the language consisting of the concatenation of any
number of strings.

L∗ = {𝜎0⌢ · · ·⌢𝜎𝑘−1
�� 𝑘 ∈ N and 𝜎0, ... , 𝜎𝑘−1 ∈ L} = L0 ∪ L1 ∪ L2 ∪ · · ·

This includes the concatenation of 0-many strings, so 𝜀 ∈ L∗ even if L = ∅.
The reversal of a language is the language of reversals, LR = {𝜎R

�� 𝜎 ∈ L}.

Deciding a language vs recognizing a language
We have already defined that a machine decides a language if it computes whether or not
a given input is a member of that language.
For the other, suppose that the language is computably enumerable but not computable.
Then there is a machine that determines whether a given input is a member of the
language but it is not able to determine whether the input is not in the language. For
instance, there is a Turing machine that, given input 𝑒, can determine whether 𝑒 ∈ 𝐾 but
no machine can determine whether 𝑒 ∉ 𝐾 .
We will say that a machine recognizes (or accepts, or semidecides) a language when,
given an input, the machine computes in a finite time whether the input is in the
language, and if it is not in the language then the machine will never incorrectly report
that it is. (The machine may determine that it is not, or it may simply fail to report a
conclusion such as by failing to halt.)
Example A Turing machine can decide the language of perfect squares,
𝑆 = {1(𝑛2) �� 𝑛 ∈ N}. (Technically, it decides the language of strings representing
squares, but we will not stick to the distinction.)
Example Consider the set 𝑆 of indices 𝑒 such that P𝑒 halts on input 3. A Turing machine
can recognize 𝑆 just by running the P𝑒 on input 3 and waiting for it to halt. But no
Turing machine decides that set, because we have shown that 𝐾 reduces to 𝑆 and so if we
had a Turing machine to decide membership in 𝑆 then we could use it to decide
membership in 𝐾 .)

Grammars

Introduction
The definition of language allows L to be any subset of Σ∗ at all. But languages in
practice usually are constructed according to patterns, to lists of rules.
An example showing that there are rules is that, “When nine hundred years old you
reach, look as good you will not” may fit the rules wherever Yoda was raised, but it does
not fit those for English. Another example is that the C language consists of programs
that follow rules decreed by the standardization committee.

This is a subset of the rules for English:
▶ a sentence can be made from a noun phrase followed by a verb phrase,
▶ a noun phrase can be made from an article followed by a noun,
▶ a noun phrase can also be made from an article then an adjective then a noun,
▶ a verb phrase can be made with a verb followed by a noun phrase,
▶ one article is ‘the’,
▶ one adjective is ‘young’,
▶ one verb is ‘caught’,
▶ two nouns are ‘man’ and ‘ball’.

Introduction
The definition of language allows L to be any subset of Σ∗ at all. But languages in
practice usually are constructed according to patterns, to lists of rules.
An example showing that there are rules is that, “When nine hundred years old you
reach, look as good you will not” may fit the rules wherever Yoda was raised, but it does
not fit those for English. Another example is that the C language consists of programs
that follow rules decreed by the standardization committee.
This is a subset of the rules for English:
▶ a sentence can be made from a noun phrase followed by a verb phrase,
▶ a noun phrase can be made from an article followed by a noun,
▶ a noun phrase can also be made from an article then an adjective then a noun,
▶ a verb phrase can be made with a verb followed by a noun phrase,
▶ one article is ‘the’,
▶ one adjective is ‘young’,
▶ one verb is ‘caught’,
▶ two nouns are ‘man’ and ‘ball’.

We will write the above rules in this form.

⟨sentence⟩ → ⟨noun phrase⟩ ⟨verb phrase⟩
⟨noun phrase⟩ → ⟨article⟩ ⟨noun⟩
⟨noun phrase⟩ → ⟨article⟩ ⟨adjective⟩ ⟨noun⟩
⟨verb phrase⟩ → ⟨verb⟩ ⟨noun phrase⟩
⟨article⟩ → the

⟨adjective⟩ → young

⟨verb⟩ → caught

⟨noun⟩ → man | ball

Each line is a production or rewrite rule. Each has one arrow, →. To the left of each
arrow is a head and to the right is a body or expansion. Sometimes two rules have the
same head, as with ⟨noun phrase⟩. There are also two rules for ⟨noun⟩ but we have
abbreviated by combining the bodies using the ‘|’ pipe symbol.
The rules use two different components. The ones written in typewriter type, such as
young, are from the alphabet Σ of the language. These are terminals. The ones with
angle brackets and italics, such as ⟨article⟩, are nonterminals. These are like variables
and are used for intermediate steps.
The two symbols ‘→’ and ‘|’ are neither terminals nor nonterminals. They are
metacharacters, part of the syntax of the rules themselves.

Derivation
The rewrite rules govern the derivation of strings in the language. Under the grammar
for English every derivation starts with ⟨sentence⟩. During a derivation, intermediate
strings contain a mix of nonterminals and terminals. In our grammars every rule has a
head with a single nonterminal. So to get the next string pick a nonterminal in the
present string and substitute a matching body.

⟨sentence⟩ ⇒ ⟨noun phrase⟩ ⟨verb phrase⟩
⇒ ⟨article⟩ ⟨adjective⟩ ⟨noun⟩ ⟨verb phrase⟩
⇒ the ⟨adjective⟩ ⟨noun⟩ ⟨verb phrase⟩
⇒ the young ⟨noun⟩ ⟨verb phrase⟩
⇒ the young man ⟨verb phrase⟩
⇒ the young man ⟨verb⟩ ⟨noun phrase⟩
⇒ the young man caught ⟨noun phrase⟩
⇒ the young man caught ⟨article⟩ ⟨noun⟩
⇒ the young man caught the ⟨noun⟩
⇒ the young man caught the ball

Note that the single line arrow → is for rules while the double line arrow ⇒ is for
derivations.
The derivation above always substitutes for the leftmost nonterminal, so it is a leftmost
derivation. However, in general we could substitute for any nonterminal.

Derivation tree
The derivation tree or parse tree is an alternative representation.

the young man caught

the ball

〈sentence〉

〈noun phrase〉

〈noun phrase〉

〈verb phrase〉

〈article〉

〈article〉

〈adjective〉 〈verb〉〈noun〉

〈noun〉

Grammar
In this course we will use the definition of grammar below. It is not the most general
definition possible; for instance, we could allow the head to have more than just a single
nonterminal. Our sticking to this more restrictive form is nonstandard so that you may
well see other authors using other definitions, but this is the most general form that we
shall need.
Definition A context-free grammar is a four-tuple G = ⟨Σ, 𝑁 , 𝑆, 𝑃⟩. The set Σ is an
alphabet, whose elements are the terminal symbols, and the elements of the set 𝑁 are
the nonterminals or syntactic categories. (We assume that Σ and 𝑁 are disjoint and that
neither contains metacharacters.) The symbol 𝑆 ∈ 𝑁 is the start symbol. Finally, 𝑃 is a
set of productions or rewrite rules.
Example Let the alphabet be Σ = {a, b}, let the set of nonterminals be
𝑁 = { ⟨start⟩, ⟨left⟩, ⟨right⟩ }. Here are five production rules making the set 𝑃 .
⟨start⟩ → a⟨left⟩
⟨left⟩ → a⟨left⟩ | b⟨right⟩
⟨right⟩ → b⟨right⟩ | 𝜀

As to the start symbol, we take the convention that it is the head of the first rule. Here is
a derivation using the production rules.

⟨start⟩ ⇒ a⟨left⟩ ⇒ aa⟨left⟩ ⇒ aab⟨right⟩ ⇒ aabb⟨right⟩ ⇒ aabb𝜀= aabb

Example This is part of the grammar of C.

⟨statement_list⟩ → ⟨statement⟩ | ⟨statement_list⟩ ⟨statement⟩
⟨expression_statement⟩ → ; | ⟨expression⟩ ⟨;⟩
⟨selection_statement⟩ → IF (⟨expression⟩) ⟨statement⟩
| IF (⟨expression⟩) ⟨statement⟩ ELSE ⟨statement⟩
| SWITCH (⟨expression⟩) ⟨statement⟩

⟨iteration_statement⟩ → WHILE (⟨expression⟩) ⟨statement⟩
| DO ⟨statement⟩ WHILE (⟨expression⟩) ;
| FOR (⟨expression_statement⟩ ⟨expression_statement⟩) ⟨statement⟩
| FOR (⟨expression_statement⟩ ⟨expression_statement⟩ ⟨expression⟩) ⟨statement⟩

(Here the capitalized terminals mean any string that capitalizes to that, so that IF means
If, or iF, or if, or IF.)

Recursive grammars
The prior two example grammars are recursive. For instance in this rule,

⟨left⟩ → a⟨left⟩ | b⟨right⟩
⟨left⟩ can expand to an expression involving ⟨left⟩. Similarly, in the C grammar
⟨statement_list⟩’s expansion involves itself.

⟨statement_list⟩ → ⟨statement⟩ | ⟨statement_list⟩ ⟨statement⟩
But we don’t get stuck in an infinite regress. The question is not whether you could
perversely keep expanding ⟨left⟩ or ⟨statement_list⟩ forever. Instead, you are given a
string such as aabb and the question is whether you can find a terminating derivation.

An abbreviation convention
For examples and exercises, often for nonterminals we use uppercase letters and for
terminals we use other characters such as lowercase letters or digits.
Example This grammar has two nonterminals, S and I. Its terminals are the
parentheses, (and), the arithmetic operators, + and *, and the digits.

S → (S) | S + S | S * S | I
I → 0 | 1 | . . . 9

The derived strings are arithmetic expressions such as 1+2*(3+4).

Language of a grammar
Definition The language derived from a grammar is the set of strings of terminals
having derivations that begin with the start symbol.
Example This grammar 𝐺

S → AB
A → aA | a
B → bB | b

lets you derive strings consisting of some a’s followed by some b’s.

L(𝐺) = {a𝑛b𝑚
�� 𝑛,𝑚 ∈ N+ }

Example This grammar 𝐺

S → AB
A → a
B → bbB | 𝜀

lets you derive strings consisting of a single a, and then an even number of b’s, including
possibly zero many b’s.

L(𝐺) = {ab2𝑚
��𝑚 ∈ N}

This is a kind of computation
Derivations involve pushing symbols around according to formal rules. So it fits with our
idea of a mechanical computation.
For instance, this grammar

S → 11S | 𝜀

produces the language {12𝑛
�� 𝑛 ∈ N} of even numbers in unary notation.

In a similar way we can compute such things as the set of perfect squares. (As we
remarked earlier, there are grammar types that are more general than the ones we’ve
defined. With more general grammars we can compute more sets. An example is that the
set of primes requires such a grammar. But we won’t compute these; having made the
point that derivation is a form of computation we will stop.)

A grammar can be ambiguious
This bit of C-like code shows nested if statements.

i f . . . then . . . i f . . . then . . . e lse . . .

The else could be associated with either the first if or the second.

i f . . .
then . . .

i f . . .
then . . .

e lse . . .

i f . . .
then . . .

i f . . .
then . . .
e lse . . .

This is a dangling else. An ambiguous grammar is one where some strings have two
different leftmost derivations. The example below illustrates.

This grammar

⟨expr⟩ → ⟨expr⟩ + ⟨expr⟩
| ⟨expr⟩ * ⟨expr⟩
| (⟨expr⟩) | 0 | 1 | . . . 9

is ambiguous because 5+2*3 has two leftmost derivations.

⟨expr⟩ ⇒ ⟨expr⟩+⟨expr⟩ ⇒ 5 + ⟨expr⟩
⇒ 5 + ⟨expr⟩ * ⟨expr⟩ ⇒ 5 + 2 * ⟨expr⟩ ⇒ 5 + 2 * 3

⟨expr⟩ ⇒ ⟨expr⟩ * ⟨expr⟩ ⇒ ⟨expr⟩ + ⟨expr⟩ * ⟨expr⟩
⇒ 5 + ⟨expr⟩ * ⟨expr⟩ ⇒ 5 + 2 * ⟨expr⟩ ⇒ 5 + 2 * 3

Here are the two associated parse trees.

+

5 *

2 3

*

+ 3

5 2

The left one evaluates to 5 + 6 = 11, while the right one gives 7 · 3 = 21.

BNF

Backus-Naur notation
Many programming languages, protocols, or formats are specified using Backus-Naur
form. Every rule has the structure: ⟨name⟩ ::= ⟨expansion⟩.
For instance, this is part of a BNF grammar of arithmetic expressions.
<expr> ::= <term> "+" <expr>

| <term>

<term> ::= <factor> "∗" <term>
| <factor>

<factor> ::= " (" <expr> ") "
| <const>

<const> ::= integer

As a first point, it is a more type-able version of this.

⟨expr⟩ → ⟨term⟩ + ⟨expr⟩ | ⟨term⟩
⟨term⟩ → ⟨factor⟩ * ⟨term⟩ | ⟨factor⟩
⟨factor⟩ → (⟨expr⟩) | ⟨const⟩
⟨const⟩ → ⟨integer⟩

But there are also a number of extensions.

Common extensions to BNF
Repetition To show that an element may be repeated zero or more times, use curly

braces. An example is that this describes a comma-separated argument list.
⟨args⟩ ::= ⟨arg⟩ { , ⟨arg⟩ }

To denote zero or more times you may also see a Kleene star, ‘∗’.
⟨trailing-space⟩ ::= ⟨whitespace⟩*

To denote one or more times you may see a plus, ‘+’.
⟨natural⟩ ::= ⟨digit⟩+

For zero or one repetitions, you may see square brackets.
⟨int⟩ ::= [+ | -] ⟨natural⟩

Grouping Use parentheses. This shows the form of addition or subtraction.
⟨expr⟩ ::= ⟨term⟩ (+ | -) ⟨expr⟩

The vertical bar for ‘or’ and the parentheses are metacharacters.
Concatenation Juxtaposition is invisible so occasionally you see a comma ‘,’ to denote

concatenation.

Common extensions to BNF
Repetition To show that an element may be repeated zero or more times, use curly

braces. An example is that this describes a comma-separated argument list.
⟨args⟩ ::= ⟨arg⟩ { , ⟨arg⟩ }

To denote zero or more times you may also see a Kleene star, ‘∗’.
⟨trailing-space⟩ ::= ⟨whitespace⟩*

To denote one or more times you may see a plus, ‘+’.
⟨natural⟩ ::= ⟨digit⟩+

For zero or one repetitions, you may see square brackets.
⟨int⟩ ::= [+ | -] ⟨natural⟩

Grouping Use parentheses. This shows the form of addition or subtraction.
⟨expr⟩ ::= ⟨term⟩ (+ | -) ⟨expr⟩

The vertical bar for ‘or’ and the parentheses are metacharacters.

Concatenation Juxtaposition is invisible so occasionally you see a comma ‘,’ to denote
concatenation.

Common extensions to BNF
Repetition To show that an element may be repeated zero or more times, use curly

braces. An example is that this describes a comma-separated argument list.
⟨args⟩ ::= ⟨arg⟩ { , ⟨arg⟩ }

To denote zero or more times you may also see a Kleene star, ‘∗’.
⟨trailing-space⟩ ::= ⟨whitespace⟩*

To denote one or more times you may see a plus, ‘+’.
⟨natural⟩ ::= ⟨digit⟩+

For zero or one repetitions, you may see square brackets.
⟨int⟩ ::= [+ | -] ⟨natural⟩

Grouping Use parentheses. This shows the form of addition or subtraction.
⟨expr⟩ ::= ⟨term⟩ (+ | -) ⟨expr⟩

The vertical bar for ‘or’ and the parentheses are metacharacters.
Concatenation Juxtaposition is invisible so occasionally you see a comma ‘,’ to denote

concatenation.

Here is part of a grammar taken from RFC 5322. Note the quoted terminals.
date−time = [day−of−week " , "] date time [CFWS]

day−of−week = ([FWS] day−name) / obs−day−of−week

day−name = "Mon" / "Tue" / "Wed" / "Thu" /
" Fr i " / " Sat " / "Sun"

date = day month year

day = ([FWS] 1∗2DIGIT FWS) / obs−day

month = " Jan " / "Feb " / "Mar" / "Apr " /
"May" / " Jun" / " Jul " / "Aug" /
"Sep" / "Oct " / "Nov" / "Dec"

year = (FWS 4∗DIGIT FWS) / obs−year

time = time−of−day zone

time−of−day = hour " : " minute [" : " second]

hour = 2DIGIT / obs−hour

minute = 2DIGIT / obs−minute

second = 2DIGIT / obs−second

zone = (FWS ("+" / "−") 4DIGIT) / obs−zone

Python’s floating point
This is the grammar that the Python documentation uses for floating point numbers.
floatnumber ::= point f loat | exponentfloat

point f loat ::= [intpart] f ract ion | intpart " . "

exponentfloat ::= (intpart | point f loat) exponent

intpart ::= dig i t+

fract ion ::= " . " d ig i t+

exponent ::= (" e " | "E") ["+" | "−"] d ig i t+

Graphs

Definition
Definition A simple graph is an ordered pair G = ⟨N , E⟩ where N is a finite set of
vertices or nodes and E is a set of edges. Each edge is a set of two distinct vertices; these
vertices are adjacent or neighbors.
Example This simple graph has five vertices V = {𝑣0, ... , 𝑣4 } and eight edges.

E0

E1 E2

E3 E4

E = { {𝑣0, 𝑣1 }, {𝑣0, 𝑣2 }, ... {𝑣3, 𝑣4 } }

Instead of writing 𝑒 = {𝑣, 𝑣 } we often write 𝑒 = 𝑣𝑣 . Since edges are sets and sets are
unordered we could write the same edge as 𝑒 = 𝑣𝑣 .
There are many variations of that definition, for modeling different circumstances. We
could allow some vertices to connect to themselves, forming a loop. Another variant is a
multigraph, which allows two vertices to share more than one edge.
Still another is a weighted graph, which gives each edge a real number weight, perhaps
signifying the distance or the cost in money or time to traverse that edge.

A very common variation is a directed graph or digraph, where edges have a direction as
in a road map that includes one-way streets. If an edge is directed from 𝑣 to 𝑣 then we
can write it as 𝑣𝑣 but not in the other order.
Some important variations involve whether the graph has cycles. A cycle is a closed path
around the graph; see the complete definition just below. A tree is an undirected
connected graph with no cycles. A directed acyclic graph or DAG is a directed graph with
no directed cycles.

Definition Where G = ⟨N , E⟩ is a graph, a subgraph Ĝ = ⟨N̂ , Ê⟩ satisfies N̂ ⊆ N and
Ê ⊆ E . A subgraph with every possible edge, that is such that 𝑣𝑖 , 𝑣 𝑗 ∈ N̂ and 𝑒 = 𝑣𝑖𝑣 𝑗 ∈ E
implies that 𝑒 ∈ Ê also, is an induced subgraph.

A very common variation is a directed graph or digraph, where edges have a direction as
in a road map that includes one-way streets. If an edge is directed from 𝑣 to 𝑣 then we
can write it as 𝑣𝑣 but not in the other order.
Some important variations involve whether the graph has cycles. A cycle is a closed path
around the graph; see the complete definition just below. A tree is an undirected
connected graph with no cycles. A directed acyclic graph or DAG is a directed graph with
no directed cycles.
Definition Where G = ⟨N , E⟩ is a graph, a subgraph Ĝ = ⟨N̂ , Ê⟩ satisfies N̂ ⊆ N and
Ê ⊆ E . A subgraph with every possible edge, that is such that 𝑣𝑖 , 𝑣 𝑗 ∈ N̂ and 𝑒 = 𝑣𝑖𝑣 𝑗 ∈ E
implies that 𝑒 ∈ Ê also, is an induced subgraph.

Graph traversal
Definition Two graph edges are adjacent if they share a vertex, so that they have the
form 𝑒0 = 𝑢𝑣 and 𝑒1 = 𝑣𝑤 . A walk is a sequence of adjacent edges
⟨𝑣0𝑣1, 𝑣1𝑣2, ... 𝑣𝑛−1𝑣𝑛⟩. Its length is the number of edges, 𝑛. If the initial vertex 𝑣0
equals the final vertex 𝑣𝑛 then the walk is closed, otherwise it is open. A trail is a walk
where no edge occurs twice. A circuit is a closed trail. A path is a walk with no repeated
edges or vertices, except that it may be closed and so the first and last vertices are equal.
A closed path with at least one edge is a cycle.
Definition If a circuit contains all of a graph’s edges then it is an Euler circuit. If it
contains all of the vertices then it is a Hamiltonian circuit.

Graph representation
We can represent a graph in a computer with reasonable efficiency.
Definition For a graph G, the adjacency matrix M(G) representing the graph has 𝑖, 𝑗
entries equal to the number of edges from 𝑣𝑖 to 𝑣 𝑗 .
Example This is the matrix for the graph.

41

40

43 44 4542

E0 E1

E2 E3

M =

©­­­«
0 2 0 0
0 0 1 1
1 0 0 0
0 1 0 0

ª®®®¬
Lemma Let the matrix M(G) represent the graph G. Then in its matrix multiplicative
𝑛-th power the 𝑖, 𝑗 entry is the number of paths of length 𝑛 from vertex 𝑣𝑖 to vertex 𝑣 𝑗 .
Example We can go from 𝑣0 to 𝑣1 in three steps in two different ways, via 𝑒0𝑒4𝑒5 and
via 𝑒1𝑒4𝑒5.

M3 =

©­­­«
2 2 0 0
0 2 1 1
0 0 2 2
1 1 0 0

ª®®®¬
There is no way from 𝑣3 to 𝑣2 in three steps.

Graph coloring
Definition A 𝑘-coloring of a graph, for 𝑘 ∈ N, is a partition of vertices into 𝑘-many
classes such that no two adjacent vertices are in the same class.
Example We want to schedule final exams for the CS courses 1007, 3137, 3157, 3203,
3261, 4115, 4118, 4156. The classes 1007 and 3137 have students in common and so do
these others: 1007-3157, 3137-3157, 1007-3203, 1007-3261, 3137-3261, 3203-3261,
1007-4115, 3137-4115, 3203-4115, 3261-4115, 1007-4118, 3137-4118, 1007-4156,
3137-4156, 3157-4156. What is the minimum number of time slots that we must use?

Graph coloring
Definition A 𝑘-coloring of a graph, for 𝑘 ∈ N, is a partition of vertices into 𝑘-many
classes such that no two adjacent vertices are in the same class.
Example We want to schedule final exams for the CS courses 1007, 3137, 3157, 3203,
3261, 4115, 4118, 4156. The classes 1007 and 3137 have students in common and so do
these others: 1007-3157, 3137-3157, 1007-3203, 1007-3261, 3137-3261, 3203-3261,
1007-4115, 3137-4115, 3203-4115, 3261-4115, 1007-4118, 3137-4118, 1007-4156,
3137-4156, 3157-4156. What is the minimum number of time slots that we must use?

1007

4115 3261

3203

4118 3137 4156

3157

Graph coloring
Definition A 𝑘-coloring of a graph, for 𝑘 ∈ N, is a partition of vertices into 𝑘-many
classes such that no two adjacent vertices are in the same class.
Example We want to schedule final exams for the CS courses 1007, 3137, 3157, 3203,
3261, 4115, 4118, 4156. The classes 1007 and 3137 have students in common and so do
these others: 1007-3157, 3137-3157, 1007-3203, 1007-3261, 3137-3261, 3203-3261,
1007-4115, 3137-4115, 3203-4115, 3261-4115, 1007-4118, 3137-4118, 1007-4156,
3137-4156, 3157-4156. What is the minimum number of time slots that we must use?

1007

4115 3261

3203

4118 3137 4156

3157

Graph isomorphism
We have a way to express that two graphs are, while not equal, essentially the same.
Definition Two graphs G and Ĝ are isomorphic if there is a one-to-one and onto map
𝑓 : N → N̂ such that G has an edge {𝑣𝑖 , 𝑣 𝑗 } ∈ E if and only if Ĝ has the associated edge
{ 𝑓 (𝑣𝑖), 𝑓 (𝑣 𝑗) } ∈ Ê .

Showing that graphs are not isomorphic usually entails finding some graph-theoretic way
in which they differ. A common and useful such property is to consider the degree of a
vertex, the total number of edges touching that vertex with the proviso that a loop from
the vertex to itself counts as two. The degree sequence of a graph is the non-increasing
sequence of its vertex degrees.
If graphs are isomorphic then associated vertices have the same degree. Thus graphs
with different degree sequences are not isomorphic. If the the degree sequences are
equal then they help us construct an isomorphisms, if there is one, however there are
graphs with the same degree sequence that are not isomorphic.

	Languages
	Grammars
	BNF
	Graphs

