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Matrix Arithmetic Updated

In this note we explore matrix arithmetic for its own sake. The author introduces it in Chapter
Three using linear transformations. While his approach is quite rigorous, matrix arithmetic can be
studied after Chapter One. This note assumes that Chapter One has been completed.

For a shortcut notation instead of writing a matrix A as


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

, we will write

A = (aij)m×n or just A = (aij) if the size of A is understood.
When given a set of objects in mathematics, there are two basic questions we should ask: When

are two objects equal? and How can we combine two objects to produce a third object? For the
first question we have the following definition.

Definition 1
Two matrices A = (aij) and B = (bij) are equal, denoted by A = B, provided they have the
same size and their corresponding entries are equal, that is, their sizes are both m× n and for
each 1 ≤ i ≤ m and 1 ≤ j ≤ n, aij = bij.

Example 1

1. Let A =

(
1 −9 7
0 1 −5

)
and B =

 1 −9
0 1
7 −5

. Are A and B equal?

Since the size of A is 2× 3 and that of B is 3× 2, A ̸= B. Do note, however, that they have
the same entries.

2. Find all values of x and y so that

(
x2 y − x
0 y2

)
=

(
1 x− y

x+ 1 1

)
.

We see that the size of each matrix is 2× 2. So we set their corresponding entries equal:

x2 = 1 y − x = x− y

0 = x+ 1 y2 = 1.
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We see that x = ±1 and y = ±1. From 0 = x + 1, we get that x must be −1. From
y − x = x− y, we get that 2y = 2x and so x = y. Thus y must also be −1.

As for the second question, we have been doing this for quite a while now: Adding, subtracting,
multiplying, and dividing(when possible) real numbers. So how can we add and subtract two
matrices? Eventually we will multiply matrices, but for now we consider another multiplication.
Here are the definitions.

Definition 2
Let A = (aij) and B = (bij) be m × n matrices. We define their sum, denoted by A + B, and
their difference, denoted by A−B, to be the respective matrices (aij + bij) and (aij − bij). We
define scalar multiplication by for any r ∈ R, rA is the matrix (raij).

These definitions should appear quite natural: When two matrices have the same size, we just
add or subtract their corresponding entries, and for the scalar multiplication, we just multiply each
entry by the scalar. Just a note: Since multiplication of real numbers is commutative, we have that
rA = Ar for any real number r and matrix A. Here are some examples.

Example 2

Let A =

(
2 3

−1 2

)
, B =

(
−1 2
6 −2

)
, and C =

(
1 2 3

−1 −2 −3

)
. Compute each of the

following, if possible. If a computation is not possible, explain why it is not.

1. A+B.
Since A and B are both 2× 2 matrices, we can add them. Here we go:

A+B =

(
2 3

−1 2

)
+

(
−1 2
6 −2

)
=

(
2 + (−1) 3 + 2
−1 + 6 2 + (−2)

)
=

(
1 5
5 0

)
.

2. B − A.
Since A and B are both 2× 2 matrices, we can subtract them. Here we go:

B − A =

(
−1 2
6 −2

)
−

(
2 3

−1 2

)
=

(
−1− 2 2− 3
6− (−1) −2− 2

)
=

(
−3 −1
7 −4

)
.

3. B + C.
No can do. B and C have different sizes: B is 2× 2 and C is 2× 3.

4. 4C.
We just multiply each entry of C by 4:

4C = 4

(
1 2 3

−1 −2 −3

)
=

(
4(1) 4(2) 4(3)
4(−1) 4(−2) 4(−3)

)
=

(
4 8 24

−4 −8 −24

)
.

5. 2A− 3B.
Since scalar multiplication does not affect the size of a matrix, the matrices 2A and 3B have
the same size and so we can subtract them. We’ll do the scalar multiplication first and then
the subtraction. Here we go:

2A− 3B = 2

(
2 3

−1 2

)
− 3

(
−1 2
6 −2

)
=

(
4 6

−2 4

)
−

(
−3 6
18 −6

)
=

(
7 0

−20 10

)
.
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Matrix arithmetic has some of the same properties as real number arithmetic.

Properties of Matrix Arithmetic
Let A, B, and C be m× n matrices and r, s ∈ R.

1. A+B = B + A Matrix addition is commutative.

2. A+ (B + C) = (A+B) + C Matrix addition is associative.

3. r(A+B) = rA+ rB Scalar multiplication distributes over matrix addition.

4. (r + s)A = rA+ sA Real number addition distributes over scalar multiplication.

5. (rs)A = r(sA) An associativity for scalar multiplication.

6. There is a unique m× n matrix Θ such that for any m× n matrix M , M +Θ = M .

7. For every m× n matrix M there is a unique m× n matrix N such that M +N = Θ.

The above Θ is suggestively called the m × n zero matrix. The above N is suggestively called
the negative of M and is so denoted by −M . Let’s prove something. How about that real number
addition distributes over matrix addition, there is a unique zero matrix, and each matrix has a
unique negative? You should prove the rest at some point in your life.

Proof
Let A = (aij) be an m×n matrix and r, s ∈ R. By definition, (r+ s)A and rA+ sA have the same
size. Now we must show that their corresponding entries are equal. Let 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Then the ij-entry of (r + s)A is (r + s)aij. Using the usual properties of real number arithmetic,
we have (r + s)(aij) = raij + saij, which is the sum of the ij-entries of rA and sA, that is, it’s the
ij-entry of rA+ sA. Hence (r + s)A = rA+ sA.

Let M = (mij) be an m × n matrix and let Θ be the m × n matrix all of whose entries are 0.
By assumption M , Θ, and M +Θ have the same size. Notice that the ij-entry of M +Θ is mij +0.
This is exactly the ij-entry of M . Hence M +Θ = M . For uniqueness, suppose that Ψ is an m×n
matrix with the property that for any m × n matrix C, C + Ψ = C. Then Θ = Θ + Ψ by the
property of Ψ. But by the property of Θ, Ψ = Ψ + Θ. Since matrix addition is commutative, we
see that Θ = Ψ. Hence Θ is unique.

Let N = (−mij). Now this makes sense as each mij is a real number and so its negative is also a
real number. Notice that M , N , M +N , and Θ all have the same size. Now the ij-entry of M +N
is mij + (−mij) = 0, the ij-entry of Θ. Hence a desired N exists. For uniqueness suppose that P
is an m× n matrix with the property that M + P = Θ. Then

N = N +Θ as Θ is the zero matrix

= N + (M + P ) as M + P = Θ

= (N +M) + P by associativity of matrix addition

= Θ + P as N +M = Θ

= P as Θ is the zero matrix.

Hence this N is unique.
Now we will multiply matrices, but not in the way you’re thinking. We will NEVER just simply

multiply the corresponding entries! What we do is an extension of the dot product of vectors. (If
you’re not familiar with this, don’t worry about it.) First we will multiply a row by a column and
the result will be a real number(or scalar).
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Definition 3

We take a row vector
(
a1 a2 · · · ap

)
with p entries and a column vector


b1
b2
...
bp

 with p entries

and define their product, denoted by
(
a1 a2 · · · ap

)

b1
b2
...
bp

, to be the real number a1b1+a2b2+

· · · + apbp. Notice that we’re just taking the sum of the products of the corresponding entries
and that we may view a real number as a 1× 1 matrix.

Let’s do a couple of examples.
Example 3

Multiply the row and column vectors.

1.
(
2 3 4

) 3
4
5

 = 2(3) + 3(4) + 4(5) = 38.

2.
(
−1 2 −2 3

)
2

−2
−1
2

 = −1(2) + 2(−2) + (−2)(−1) + 3(2) = 2.

Now we’ll multiply a general matrix by a column. After all, we can view a matrix as several row
vectors of the same size put together. To do such a multiplication, the number of entries in each
row must be the number of entries in the column and then we multiply each row of the matrix by
the column.

Definition 4
Let A be an m× p matrix and b a p× 1 column vector. We define their product, denoted by Ab,
to be the m× 1 column vector whose i-th entry, 1 ≤ i ≤ m, is the product of the i-th row of A
and b.

Here are a couple of examples.
Example 4

Multiply the matrix by the column.

1.

(
1 2 3

−2 1 2

) 1
2

−3

 =

(
1(1) + 2(2) + 3(−3)

−2(1) + 1(2) + 2(−3)

)
=

(
−4
−6

)
.

2.

 2 −2
0 3

−1 4

(
5

−1

)
=

2(5) + (−2)(−1)
0(5) + 3(−1)
−1(5) + 4(−1)

 =

 12
−3
−9

.
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We now extend this multiplication to appropriately sized arbitrary matrices. We can view a
matrix as several column vectors of the same size put together. To multiply a row by a column, we
must be sure that they have the same number of entries. This means that the number of columns
of our first matrix must be the number of rows of the second.

Definition 5
Let A be an m× p matrix and B a p× n matrix. We define their product, denoted by AB, to
be the m × n matrix whose ij-entry, 1 ≤ i ≤ m and 1 ≤ j ≤ n, is the product of the i-th row
of A and the j-th column of B.

Here are a few examples.
Example 5

Let A =

(
1 2
3 4

)
, B =

(
4 −3

−2 1

)
, C =

(
2 2 9

−1 0 8

)
, and D =

(
1 2 3
5 2 3

)
. Compute each of

the following, if possible. If a computation is not possible, explain why it is not.

1. AB.
This computation is possible, Since the size of both matrices is 2× 2, the number of columns
of the first is the same as the number of rows of the second. Note that the size of the product
is 2× 2. Here we go:

AB =

(
1 2
3 4

)(
4 −3

−2 1

)

=

(
1st row of A times 1st column of B 1st row of A times 2nd column of B
2nd row of A times 1st column of B 2nd row of A times 2nd column of B

)

=

(
1(4) + 2(−2) 1(−3) + 2(1)
3(4) + 4(−2) 3(−3) + 4(1)

)
=

(
0 −1
4 −5

)
.

2. BA.
Again, the size of both matrices is 2 × 2, so this computation is possible and the size of the
product is 2× 2. Here we go again:

BA =

(
4 −3

−2 1

)(
1 2
3 4

)

=

(
1st row of B times 1st column of A 1st row of B times 2nd column of A
2nd row of B times 1st column of A 2nd row of B times 2nd column of A

)

=

(
4(1) + (−3)(3) 4(2) + (−3)(4)
−2(1) + 1(3) −2(2) + 1(4)

)
=

(
−5 −4
1 0

)
.

Did you notice what just happened? We have that AB ̸= BA! Yes, it’s true: Matrix
multiplication is not commutative.

3. CD.
No can do. The size of the first matrix is 2× 3 and the size of the second is also 2× 3. The
number of columns of the first, 3, is not the same as the number of rows of the second, 2.
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4. BC.
This computation is possible. The size of the first matrix is 2× 2 and the size of the second is
2× 3. The number of columns of the first, 2, is the same as the number of rows of the second,
2. Then the size of this product is 2× 3. Here we go:

BC =

(
4 −3

−2 1

)(
2 2 9

−1 0 8

)
=

(
4(2) + (−3)(−1) 4(2) + (−3)(0) 4(9) + (−3)(8)
−2(2) + 1(−1) −2(2) + 1(0) −2(9) + 1(8)

)
=

(
11 8 12
−5 −4 −10

)
.

5. CB.
No can do. The size of the first matrix is 2×3 and the size of the second is 2×2. The number
of columns of the first, 3, is not the same as the number of rows of the second, 2.

Did you notice what just happened here? We were able to find the product BC, but not the
product CB. It’s not that BC ̸= CB, it’s that CB isn’t even possible. This is what makes
matrix multiplication sooooo not commutative.

Now we state some more nice, and natural, properties of matrix arithmetic.

More Properties of Matrix Arithmetic
Let A, B, and C be matrices of the appropriate sizes and r ∈ R. Then

1. A(BC) = (AB)C Matrix multiplication is associative.

2. (rA)B = r(AB) = A(rB) Scalar multiplication commutes with matrix multiplication.

3. A(B + C) = AB + AC

4. (A+B)C = AC +BC Matrix multiplication distributes over matrix addition.

5. There exists a unique n× n matrix I such that for all n× n matrices M , IM = MI = M .

The matrix I is called the n×n identity matrix. A proof that matrix multiplication is associative
would be quite messy at this point. We will just take it to be true. There is an elegant proof, but
we need to learn some more linear algebra first, which is in Chapter Three of the text. Let’s prove
the first distributive property and existence of the identity matrix. You should prove the rest at
some point in your life.

Proof
Let A be an m × p matrix and B and C p × n matrices. This is what we mean by appropriate
sizes: B and C must be the same size in order to add them, and the number of columns in A must
be the number of rows in B and C in order to multiply them. We have that the two matrices on
each side of the equals sign have the same size, namely, m × n. Now we show their corresponding
entries are equal. Let 1 ≤ i ≤ m and 1 ≤ j ≤ n. For simplicity, let’s write the i-th row of A as

(
a1 a2 · · · ap

)
and the j-th columns of B and C as


b1
b2
...
bp

 and


c1
c2
...
cp

, respectively. Then the
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j-th column of B + C is


b1 + c1
b2 + c2

...
bp + c2

. So the ij-entry of A(B + C) is the product of the i-th row of

A and the j-th column of B + C. Multiplying and then using the usual properties of real number
arithmetic, we have

(
a1 a2 · · · ap

)

b1 + c1
b2 + c2

...
bp + c2

 = a1(b1 + c1) + a2(b2 + c2) + · · ·+ ap(bp + cp)

= a1b1 + a1c1 + a2b2 + b2c2 + · · ·+ apbp + apcp

= (a1b1 + a2b2 + · · ·+ apbp) + (a1c1 + a2c2 + · · ·+ apcp).

We see that the two expressions in parentheses are the products of the i-th row of A with the j-th
columns of B and C, respectively. We know that the sum of these two is the ij-entry of AB +AC.
And we’re done.

Now we will prove that last statement, about this mysterious identity matrix. We need a
definition first: Themain diagonal of a matrix A consists of its entries of the from aii. LetM = (mij)
be an n× n matrix. Let I be the n×n matrix whose main diagonal entries are all 1′s and all of its
other entries 0′s, that is,

I =



1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 0 · · · 1


.

Since the sizes of M and I are n × n, the sizes of the products IM and MI are also n × n. Let
1 ≤ i ≤ m and 1 ≤ j ≤ n. Notice that the i-th row of I is the row vector whose i-th entry is 1 and
all others 0’s. So when we multiply this i-th row of I by the j-th column of M , the only entry in
the column that gets multiplied by the 1 is the i-th, which is mij. Thus IM = M . Now notice that
the j-th column of I is the column vector whose j-th entry is a 1 and all others 0’s. So when we
multiply the i-th row of M by the j-th column of I, the only entry in the row that gets multiplied
by the 1 is j-th, which is just mij. Thus MI = M . The proof that I is unique is quite similar to
that of the zero matrix. And we’re done.

Now we return to linear systems. Here’s a generic one now:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We can express this system as a matrix equation Ax = b. How?, you ask. Just look at each
equation: We’re multiplying a’s by x’s and adding them up. This is exactly how we multiply a row
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by a column. The matrix A we need is the matrix of the coefficients in the system and the x is the
column vector of the variables. So the b is the column vector of the constants. More explicitly, we
have

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

, x =


x1

x2
...
xn

, and b =


b1
b2
...
bm

.

So our matrix equation Ax = b represents the system of linear equations, which is a much more
concise way of writing the system. It also provides a more convenient way of determining whether

or not u =


u1

u2
...
un

 is a solution to the system: Just check whether or not Au = b. Let’s do an

example.

Example 6
Consider the linear system

2x− y = 0
x + z = 4
x+ 2y − 2z =−1

.

1. Write it as a matrix equation Ax = b.
Following the above, we let A be the matrix of coefficients, x the column vector of the variables,
and b the column vector of the constants. We have

A =

 2 −1 0
1 0 1
1 2 −2

, x =

 x
y
z

, and b =

 0
4

−1

.

Then the equation is  2 −1 0
1 0 1
1 2 −2

 x
y
z

 =

 0
4

−1

.

2. Determine whether or not

 1
2
3

 is a solution to the system.

Let u =

 1
2
3

. Then multiplying, we have

Au =

 2 −1 0
1 0 1
1 2 −2

 1
2
3

 =

 2(1)− 1(2) + 0(3)
1(1) + 0(2) + 1(3)
1(1) + 2(2)− 2(3)

 =

 0
4

−1

 = b.
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So

 1
2
3

 is a solution to the system.

3. Determine whether or not

 2
4
2

 is a solution.

Let v =

 2
4
2

. Then multiplying, we have

Av =

 2 −1 0
1 0 1
1 2 −2

 2
4
2

 =

 2(2)− 1(4) + 0(2)
1(2) + 0(4) + 1(2)
1(2) + 2(4)− 2(2)

 =

 0
4
6

 ̸= b.

So

 2
4
2

 is not a solution to the system.

We know that every nonzero real number x has a multiplicative inverse, namely x−1 = 1/x, as
xx−1 = 1. Is there an analogous inverse for matrices? That is, for any nonzero n× n matrix A, is
there an n× n matrix B such that AB = BA = I, where I is the n× n identity matrix? Consider

A =

(
1 0
0 0

)
. Let’s try to find its B. Write B =

(
a b
c d

)
. Then AB =

(
a b
0 0

)
. Oh. The matrix

AB has a row of 0’s, so it can never be the identity, which is

(
1 0
0 1

)
. So the answer to our question

is no. Here, then, is a definition:

Definition 6
An n×nmatrix A is invertible provided that there is an n×nmatrix B for which AB = BA = I.
This B is called an inverse of A.

Notice that II = I, so there is at least one invertible matrix for each possible size. Are there
more? Why, yes, there are. Thanks for asking. Here’s one now.

Example 7

Let A =

(
2 1
1 1

)
and B =

(
1 −1

−1 2

)
. Multiplying, we get that

AB =

(
2 1
1 1

)(
1 −1

−1 2

)
=

(
2(1) + 1(−1) 2(−1) + 1(2)
1(1) + 1(−1) 1(−1) + 1(2)

)
=

(
1 0
0 1

)
and

BA =

(
1 −1

−1 2

)(
2 1
1 1

)
=

(
1(2)− 1(1) 1(1)− 1(1)
−1(2) + 2(1) −1(1) + 2(1)

)
=

(
1 0
0 1

)
.

So A is invertible. Perhaps you’ve noticed that B is also invertible.
As you may have guessed, there are lots of invertible matrices. But there are also lots of matrices

that are not invertible. Before determining a method to check whether or not a matrix is invertible,
let’s state and prove some properties of invertible matrices.
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Properties of Invertible Matrices

1. If an n× n matrix is invertible, then its inverse is unique.

2. The inverse of an invertible matrix is invertible. Furthermore, if A is an n× n invertible
matrix, then the inverse of the inverse of A is A.

3. The product of two invertible n × n matrices is invertible. Moreover, if A and B are
invertible n× n matrices, then (AB)−1 = B−1A−1.

Now we can refer to the inverse of a square matrix A and we will write its inverse as A−1 and
read it as “A inverse”. In this case we have AA−1 = A−1A = I.

Proof
Let A, C, and D be n × n matrices and I the n × n identity matrix. Assume that A is invertible
and C and D are its inverses. So we have that AC = CA = AD = DA = I. Now C = CI =
C(AD) = (CA)D = ID = D. Notice that we used the associativity of matrix multiplication here.

Now we have that AA−1 = A−1A = I. So A satisfies the definition for A−1 being invertible.
Thus the inverse of the inverse of A is A, that is, (A−1)−1 = A.

Finally, let B be n× n invertible matrix. To show that AB is invertible, we will just multiply,
taking full advantage of the associativity of matrix multiplication:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

Hence AB is invertible and its inverse is B−1A−1.
The proof of the following corollary is a nice exercise using mathematical induction.

Corollary 1
If A1, A2, . . . , Am are invertible n × n matrices, then A1A2 · · ·Am is invertible and
(A1A2 · · ·Am)

−1 = A−1
m · · ·A−1

2 A−1
1 .

How do we know if a matrix is invertible or not? The following theorem tells us. All vectors in
Rn will be written as columns.

The Invertible Matrix Theorem(IMT) Part I
Let A be an n × n matrix, I the n × n identity matrix, and θ the vector in Rn all of whose
entries are zero. Then the following are equivalent.

1. A is invertible.

2. The reduced echelon form of A is I.

3. For any b ∈ Rn the matrix equation Ax = b has exactly one solution.

4. The matrix equation Ax = θ has only x = θ as its solution.
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What we mean by “the following are equivalent” is that if one of the statements is true, then
so are the others and if one of the statements is false, then so are the others. The proof takes
advantage of the fact that the logical connective “implies”, denoted by ⇒, is transitive, that is, for
any statements P , Q, and R, if P ⇒ Q and Q ⇒ R, then P ⇒ R. We will prove that (2) ⇒ (1),
(1) ⇒ (3), (3) ⇒ (4), and (4) ⇒ (2).

Proof
Let A be an n×n matrix, I the n×n identity matrix, and θ the vector in Rn all of whose entries are
zero. Assume that the reduced echelon form of A is I. We wish to find an n× n matrix B so that
AB = BA = I. Recall that we can view the multiplication of two matrices as the multiplication of
a matrix by a sequence of columns. In this way finding a matrix B for which AB = I is the same
as solving the n systems of linear equations whose matrix equations are given by Axj = ej where
ej is the j-th column of I for 1 ≤ j ≤ n. To solve each system, we must reduce the augmented
matrix (A|ej). Since the reduced echelon form of A is I, each of these systems has a unique solution.
Notice, however, that it is the A part of the augmented matrix that dictates the row operations
we must use; each ej is just along for the ride. This suggests that in practice we can reduce the
giant augmented matrix (A|I) until the A part is in its reduced echelon form, which in this case we
assumed to be I. Hence we can reduce (A|I) to (I|B) for some n×n matrix B. For each 1 ≤ j ≤ n
the solution to Axj = ej is the j-th column of B. Thus AB = I.

Now since matrix multiplication is not commutative, we must still show that BA = I. Since
we have reduced that giant augmented matrix (A|I) to (I|B), we have in fact reduced I to B.
By Lemma 1.6 in Chapter One Section III, “reduces to” is an equivalence relation. Since we
can reduce I to B, we can reduce B to I. In other words, the reduced echelon form of B is I.
The previous argument then shows that there is an n × n matrix C for which BC = I. Then
A = AI = A(BC) = (AB)C = IC = C. Hence BA = I. Thus A is invertible.

Now we assume that A is invertible. Let b ∈ Rn and consider A−1b. Since A−1 is n × n and
b ∈ Rn, A−1b ∈ Rn. Now A(A−1b) = (AA−1)b = Ib = b. Technically we showed that I is the
identity for square matrices, but since we can make a square matrix whose columns are all b, we see
that Ib is indeed b. We have just shown that the equation Ax = b has a solution. For uniqueness,
suppose that u ∈ Rn is another one. Then we have

Au = b

A−1(Au) = A−1b

(A−1A)u = A−1b

Iu = A−1b

u = A−1b.

Hence the only solution is x = A−1b.
Since θ is a particular vector in Rn, we automatically have that if for any b ∈ Rn the matrix

equation Ax = b has exactly one solution, then the matrix equation Ax = θ has only x = θ as its
solution.

Now to complete the proof, we must show that if the matrix equation Ax = θ has only x = θ
as its solution, then the reduced echelon form of A is I. We do so by contraposition. Assume that
the reduced echelon form of A is not I. Since A is square, its reduced echelon form must contain a
row of zeroes. In solving the homogeneous system of linear equations corresponding to Ax = θ, the
augmented matrix (A|θ) will have an entire row of zeroes when A has been reduced to its reduced
echelon form. As the number of equations and unknowns are the same, the system must have a
free variable. This means that the system has more than one solution(in fact it has infinitely many,
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but who’s counting?). Hence the matrix equation Ax = θ has more than one solution. Thus by
contraposition we have proved that if the matrix equation Ax = θ has only x = θ as its solution,
then the reduced echelon form of A is I. Therefore we have proved the theorem.

Example 8

1. The first part of the proof provides a method for determining whether or not a matrix is
invertible and if so, finding its inverse: Given an n×n matrix A, we form the giant augmented
matrix (A|I) and reduce it until the A part is in reduced echelon form. If this form is I, then
we know that A is invertible and the matrix in the I part is its inverse; if this form is not I,
then A is not invertible. Determine whether or not the matrix is invertible and if so, to find
its inverse.

(a) Let A =

(
2 1
1 −1

)
.

As stated above, we form the giant augmented matrix (A|I) and reduce:(
2 1 | 1 0
1 −1 | 0 1

)
∼

(
1 −1 | 0 1
2 1 | 1 0

)
∼

(
1 −1 | 0 1
0 3 | 1 −2

)
∼

(
1 −1 | 0 1
0 1 | 1/3 −2/3

)
∼

(
1 0 | 1/3 1/3
0 1 | 1/3 −2/3

)
.

So we see that the reduced echelon form of A is the identity. Thus A is invertible and

A−1 =

(
1/3 1/3
1/3 −2/3

)
. We can rewrite this inverse a bit more nicely by factoring out

the 1/3: A−1 =
1

3

(
1 1
1 −2

)
.

(b) Let A =

 1 0 2
−1 1 −2
2 2 1

.

We form the giant augmented matrix (A|I) and reduce: 1 0 2 | 1 0 0
−1 1 −2 | 0 1 0
2 2 1 | 0 0 1

 ∼

 1 0 2 | 1 0 0
0 1 0 | 1 1 0
0 2 −3 | −2 0 1

 ∼

 1 0 2 | 1 0 0
0 1 0 | 1 1 0
0 0 −3 | −4 −2 1


∼

 1 0 2 | 1 0 0
0 1 0 | 1 1 0
0 0 1 | 4/3 2/3 −1/3

 ∼

 1 0 0 | −5/3 −4/3 2/3
0 1 0 | 1 1 0
0 0 1 | 4/3 2/3 −1/3

 .

So we see that A is invertible and A−1 =

 −5/3 −4/3 2/3
1 1 0

4/3 2/3 −1/3

. Factoring out a 1/3,

we get A−1 =
1

3

 −5 −4 2
3 3 0
4 2 −1

.

(c) Let B =

(
1 −1

−1 1

)
.

We form the giant augmented matrix (B|I) and reduce:(
1 −1 | 1 0

−1 1 | 0 1

)
∼

(
1 −1 | 1 0
0 0 | 1 1

)
.
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Since the reduced echelon form of B is not I, B is not invertible.

2. As seen in the proof of the theorem, we can use the inverse of a matrix to solve a linear system
with the same number of equations and unknowns. Specifically, we express the system as a
matrix equation Ax = b, where A is the matrix of the coefficients. If A is invertible, then
the solution is x = A−1b. Solve the following linear system using the inverse of the matrix of
coefficients:

x + 2z = 3
−x+ y − 2z =−3
2x+ 2y + z = 6

.

Notice that the coefficient matrix is, conveniently, the matrix A from part (b) above, whose
inverse we’ve already found. The matrix equation for this system is Ax = b where x = x

y
z

 and b =

 3
−3
6

. Multiplying and using the fact that scalars commute with matrix

multiplication, we get that

x = A−1b =
1

3

 −5 −4 2
3 3 0
4 2 −1

 3
−3
6

 =

 −5 −4 2
3 3 0
4 2 −1

 · 1
3

 3
−3
6


=

 −5 −4 2
3 3 0
4 2 −1

 1
−1
2

 =

 3
0
0

 .

So x = 3, y = 0, and z = 0.

The following theorem tells us that if the product of two square matrices is the identity, then
they are in fact inverses of each other.

Theorem 2
Let A and B be n× n matrices and I the n× n identity matrix. If AB = I, then A and B are
invertible and A−1 = B.

Proof
Let A and B be n × n matrices, I the n × n identity matrix, and θ the vector in Rn all of whose
entries are zero. Assume AB = I. We will use the IMT Part I to prove that B is invertible first.
Consider the matrix equation Bx = θ and let u ∈ Rn be a solution. So we have

Bu = θ

A(Bu) = Aθ

(AB)u = θ

Iu = θ

u = θ.
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The only solution to Bx = θ is x = θ. Hence by the IMT Part I, B is invertible. So B−1 exists.
Then multiplying both sides of AB = I on the right by B−1 gives us that A = B−1. Since B−1 is
invertible, A is too and A−1 = (B−1)−1 = B.

We finish this note off with what’s called the transpose of a matrix. Here’s the definition.

Definition 7
Let A = (aij) be an m×n matrix. The transpose of A, denoted by AT , is the matrix whose i-th
column is the i-th row of A, or equivalently, whose j-th row is the j-th column of A. Notice
that AT is an n×m matrix. We will write AT = (aTji) where aTji = aij.

Notice that the ji-entry of AT is the ij-entry of A. This tells us that the main diagonals of a
matrix and its transpose are the same and that entries of AT are the entries of A reflected about
the main diagonal. Here are a couple of examples.

Example 9
Find the transpose of each of the given matrices.

1. A =

(
1 2 3
4 5 6

)
.

The first row of A is
(
1 2 3

)
and the second row is

(
4 5 6

)
. So these become the columns

of AT , that is, AT =

1 4
2 5
3 6

. Alternatively, we see that the columns of A are

(
1
4

)
,

(
2
5

)
,

and

(
3
6

)
. So these become the rows of AT , as we can see above.

2. B =

 −1 0 6
−4 1 9
2 3 0

.

We make the rows of B the columns of BT . Doing so, we get BT =

 −1 −4 2
0 1 3
6 9 0

. Notice

how the entries of BT are those of B reflected about the main diagonal.

Properties of the Transpose
Let A and B be appropriately sized matrices and r ∈ R. Then

1. (AT )T = A.

2. (A+B)T = AT +BT .

3. (rA)T = rAT .

4. (AB)T = BTAT .

The first three properties seem perfectly natural. You should try to prove them some time. But
what about fourth one? Does that seem natural? Maybe. Given how the inverse of the product of
matrices works, maybe this is fine. Let’s prove it.
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Proof
Let A be an m × p matrix and B a p × n matrix. Then AB is an m × n matrix. So (AB)T is an
n × m matrix. Then BT is an n × p matrix and AT is a p × m matrix. Thus multiplying BTAT

makes sense and its size is also n×m. But what about their corresponding entries? Let 1 ≤ i ≤ m
and 1 ≤ j ≤ n. The ji-entry of (AB)T is the ij-entry of AB, which is the i-th row of A times

the j-th column of B. For simplicity, let
(
a1 a2 · · · ap

)
be the i-th row of A and


b1
b2
...
bp

 the

j-th column of B. Then the ij-entry of AB is a1b1 + a2b2 + · · · + apbp, but this is also equal to

b1a1 + b2a2 + · · · bpap, which is the product of
(
b1 b2 · · · bp

)
and


a1
a2
...
ap

. This is exactly the

product of the j-th row of BT and the i-th column of AT , which is the ji-entry of BTAT . Thus
ji-entry of (AB)T is the ji-entry of BTAT . Therefore (AB)T = BTAT .

Here are some exercises. Enjoy.

1. Let

A =

(
1 −2 3
1 −1 0

)
, B =

 3 4
5 −1
1 −1

, C =

(
4 −1 2

−1 5 1

)
, D =

(
−1 0 1
0 2 1

)
,

E =

 3 4
−2 3
0 1

, F =

(
2

−3

)
, and G =

(
2 −1

)
.

Compute each of the following, if possible. If a computation is not possible, explain why it is
not.

(a) 3C − 4D (b) A− (D + 2C) (c) A− E (d) AE

(e) 3BC − 4BD (f) CB +D (g) GC (h) FG

(h) 3A− 2ET (i) ATB (j) BTA (k) 3AT − 2E

(l) CCT + FG (m) (F T +G)D (o) (B − E)AT (p) DT (F +GT )

2. Illustrate the associativity of matrix multiplication by computing (AB)C and A(BC) where
A, B, and C are matrices above.

3. Let A be an n× n matrix. Let m ∈ N. As you would expect, we define Am to be the product
of A with itself m times. Notice that this makes sense as matrix multiplication is associative.

(a) Compute A4 for A =

(
1 −2
1 −1

)
.

(b) Provide a counter-example to the statement: For any 2× 2 matrices A and B, (AB)2 =
A2B2.
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4. Prove that for all m× n matrices A, B, and C, if A+ C = B + C, then A = B.

5. Let Θ be the m× n zero matrix.

(a) Prove that for any m× n matrix A, −A = (−1)A and 0A = Θ.

(b) Prove that for any r ∈ R and m× n matrix A, if rA = Θ, then r = 0 or A = Θ.

6. We have seen that matrix multiplication is sooooo not commutative. Take this a step further
by finding two matrices A and B for which AB and BA are defined, but have different sizes.

7. Let Θ be the 2 × 2 zero matrix and I the 2 × 2 identity matrix. Provide a counter-example
to each of the following statements:

(a) For any 2× 2 matrices A and B, if AB = Θ, then A = Θ or B = Θ.

(b) For any 2× 2 matrices, A, B, and C, if AB = AC, then B = C.

(c) For any 2× 2 matrix A, if A2 = A, then A = Θ or A = I.

8. Suppose that we have a homogeneous linear system whose matrix equation is given by Ax = θ
where A is the m× n matrix of coefficients, x is the column matrix of the n variables, and θ
is the column matrix of m zeroes. Use the properties of matrix arithmetic to show that for
any solutions u and v to the system and r ∈ R, u+ v and ru are also solutions.

9. Consider the linear system:

x1 + x2 + x3 + x4 = 3
x1 − x2 + x3 + x4 = 5

x2 − x3 − x4 =−4
x1 + x2 − x3 − x4 =−3

.

(a) Express the system as a matrix equation Ax = b.

(b) Use matrix multiplication to determine whether or not u =


1

−1
1
2

 and v =


−1
2
0
3


are solutions to the system.

10. Determine whether or not each of the following matrices is invertible. If so, find its inverse.

(a) A =


1 −2 0 −1
2 3 3 8
4 −6 −3 −5
7 −5 0 2

 (b) B =

 2 1 −1
2 −1 2
1 1 −1


(c) C =

(
4 3
2 3

)
(d) DTD where D =

(
−1 0 1
0 2 1

)
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11. Solve each linear system using the inverse of its coefficient matrix.

(a)
2x+ y − z = 2
2x− y + 2z =−1
x+ y − z = 3

(b)

x1 + 2x2 + x3 = 2
x2 − x3 + x4 =−2

2x1 + 4x2 + 3x3 = 0
x1 + 2x2 − x3 + 2x4 =−4

12. Provide a counter-example to the statement: For any 2×2 invertible matrices A and B, A+B
is invertible.

13. Find an example of a 2× 2 nonidentity matrix whose transpose is its inverse.

14. Let A be an n× n invertible matrix.

(a) Prove that for all m ∈ N, Am is invertible and determine a formula for its inverse in
terms of A−1. Hint: Use mathematical induction and the fact that Am+1 = AmA.

(b) Prove that AT is invertible and determine its inverse in terms of A−1. Hint: Use a
property of the transpose.

15. Determine (BT )−1 for the matrix B in Problem #10.

16. Prove that for any n× n matrices A and B, if AB is invertible, then so are A and B.

17. Here are a couple of new definitions: An n× n matrix A is symmetric provided AT = A and
skew-symmetric provided AT = −A.

(a) Give examples of symmetric and skew-symmetric 2× 2, 3× 3, and 4× 4 matrices.

(b) What can you say about the main diagonal of a skew-symmetric matrix?

(c) Give an example of a matrix that is both symmetric and skew-symmetric.

(d) Prove that for any n× n matrix A, A+AT , AAT , and ATA are symmetric and A−AT

is skew-symmetric.

(e) Prove that any n × n can be written as the sum of a symmetric and skew-symmetric
matrices. Hint: Did you do part (d) yet?
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