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Geometry

We can draw two-unknown equations as lines. Then the three
possibilities for solution sets become clear.

Unique solution

3x+ 2y= 7

x− y=−1

No solutions

3x+ 2y= 7

3x+ 2y= 4

Infinitely many
solutions

3x+ 2y= 7

6x+ 4y= 14

This is a nice restatement of the possibilities; the geometry gives us insight
into what can happen with linear systems.
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Vectors in space



Vectors

A vector is an object consisting of a magnitude and a direction.

A vector can model a displacement.

Two vectors with the same magnitude and same direction, such as all of
these, are equal.

For instance, each of the above could model a displacement of one over and
two up.
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Denote the vector that extends from (a1, a2) to (b1, b2) by(
b1 − a1

b2 − a2

)
so the “one over, two up” vector would be written in this way.(

1

2

)

We often picture a vector

~v =

(
v1
v2

)
as starting at the origin. From there ~v extends to (v1, v2) and we may refer
to it as “the point ~v ” so that we may call each of these R2.

{(x1, x2) | x1, x2 ∈ R } {

(
x1
x2

)
| x1, x2 ∈ R }
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These definitions extend to higher dimensions. The vector that starts at
(a1, . . . , an) and ends at (b1, . . . , bn) is represented by this column

b1 − a1

...
bn − an


and two vectors are equal if they have the same representation. Also, we
aren’t too careful about distinguishing between a point and the vector
which, when it starts at the origin, ends at that point.

Rn = {


v1
...
vn

 | v1, . . . , vn ∈ R }



Vector operations

Scalar multiplication makes a vector longer or shorter, including possibly
flipping it around.

~v

−~v

3~v

Where ~v and ~w represent displacements, the vector sum ~v + ~w represents
those displacements combined.

~v

~w

~v+ ~w
~v+ ~w

~v

~w

The second drawing shows the parallelogram rule for vector addition.
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Lines

The line in R2 through (1, 2) and (3, 1) is comprised of the vectors in this
set

{

(
1

2

)
+ t

(
2

−1

)
| t ∈ R }

{

(
1

2

)
+ t

(
2

−1

)
| t ∈ R }

(that is, it is comprised of the endpoints of those vectors).

The vector
associated with the parameter t (

2

−1

)
is a direction vector for the line. Lines in higher dimensions work the same
way.
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Planes

The plane in R3 through the points (1, 0, 5), (2, 1,−3), and (−2, 4, 0.5)

consists of (endpoints of) the vectors in this set.

{

10
5

+ t

 1

1

−8

+ s

 −3

4

−4.5

 | t, s ∈ R }

The column vectors associated with a parameter, shown here in red, 1

1

−8

 =

 2

1

−3

−

10
5

  −3

4

−4.5

 =

−2

4

0.5

−

10
5


have their whole body in the plane, not just their endpoint.

A set of the form {~p+ t1~v1 + t2~v2 + · · ·+ tk~vk | t1, . . . , tk ∈ R } where
~v1, . . . ,~vk ∈ Rn and k 6 n is a k-dimensional linear surface (or k-flat).



Length and angle measures



Length

2.1 Definition The length of a vector ~v ∈ Rn is the square root of the sum of
the squares of its components.

|~v | =
√
v21 + · · ·+ v2n

Example The length of

~v =

−1

−2

−3


is |~v| =

√
1+ 4+ 9 =

√
14.

For any nonzero vector ~v, the length one vector with the same direction
is ~v/|~v|. We say that this normalizes ~v to unit length.

~v

|~v|
=

−1/
√
14

−2/
√
14

−3/
√
14


Note that

√
(−1/

√
14)2 + (−2/

√
14)2 + (−3/

√
14)2 equals 1.
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Dot product

2.3 Definition The dot product (or inner product or scalar product) of two
n-component real vectors is the linear combination of their components.

~u •~v = u1v1 + u2v2 + · · ·+ unvn

Example The dot product of two vectors 1

1

−1

 •

 3

−3

4

 = 3− 3− 4 = −4

is a scalar, not a vector.

The dot product of a vector with itself ~v •~v = v21 + · · ·+ v2n is the square
of the vector’s length.
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Triangle Inequality

2.5 Theorem For any ~u,~v ∈ Rn,

|~u+~v | 6 |~u |+ |~v |

with equality if and only if one of the vectors is a nonnegative scalar
multiple of the other one.

This is the source of the familiar saying, “The shortest distance between
two points is in a straight line.”

~u

~v~u+~v

start

finish



2.5 Proof Since all the numbers are positive, the inequality holds if and only
if its square holds.

|~u+~v |2 6 ( |~u |+ |~v | )2

( ~u+~v ) • ( ~u+~v ) 6 |~u |2 + 2 |~u | |~v |+ |~v |2

~u • ~u+ ~u •~v+~v • ~u+~v •~v 6 ~u • ~u+ 2 |~u | |~v |+~v •~v

2 ~u •~v 6 2 |~u | |~v |

That, in turn, holds if and only if the relationship obtained by
multiplying both sides by the nonnegative numbers |~u | and |~v |

2 ( |~v | ~u ) • ( |~u |~v ) 6 2 |~u |2 |~v |2

and rewriting

0 6 |~u |2 |~v |2 − 2 ( |~v | ~u ) • ( |~u |~v ) + |~u |2 |~v |2

is true. But factoring shows that it is true

0 6 ( |~u |~v− |~v | ~u ) • ( |~u |~v− |~v | ~u )

since it only says that the square of the length of the vector |~u |~v− |~v | ~u is
not negative.
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As for equality, it holds when, and only when, |~u |~v − |~v | ~u is ~0. The
check that |~u |~v = |~v | ~u if and only if one vector is a nonnegative real scalar
multiple of the other is easy. QED



Cauchy-Schwarz Inequality

2.6 Corollary For any ~u,~v ∈ Rn,

| ~u •~v | 6 | ~u | |~v |

with equality if and only if one vector is a scalar multiple of the other.

2.6 Proof The Triangle Inequality’s proof shows that ~u •~v 6 |~u | |~v | so if ~u •~v
is positive or zero then we are done. If ~u •~v is negative then this holds.

| ~u •~v | = −( ~u •~v ) = (−~u ) •~v 6 |−~u | |~v | = |~u | |~v |

The equality condition is Exercise 19 .
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Angle measure

Definition The angle between two vectors ~u,~v ∈ Rn is this.

θ = arccos(
~u •~v

|~u | |~v |
)

We motivate that definition with two vectors in R3.

~v
~u

If neither is a multiple of the other then they determine a plane, because if
we put them in canonical position then the origin and the endpoints make
three noncolinear points. Consider the triangle formed by ~u, ~v, and ~u−~v.



Apply the Law of Cosines: |~u −~v |2 = |~u |2 + |~v |2 − 2 |~u | |~v | cos θ where θ is
the angle that we want to find. The left side gives

(u1 − v1)
2 + (u2 − v2)

2 + (u3 − v3)
2

= (u2
1 − 2u1v1 + v

2
1) + (u2

2 − 2u2v2 + v
2
2) + (u2

3 − 2u3v3 + v
2
3)

while the right side gives this.

(u2
1 + u

2
2 + u

2
3) + (v21 + v

2
2 + v

2
3) − 2 |~u | |~v | cos θ

Canceling squares u2
1 . . . , v23 and dividing by 2 gives the formula.



2.8 Corollary Vectors from Rn are orthogonal, that is, perpendicular, if and
only if their dot product is zero. They are parallel if and only if their dot
product equals the product of their lengths.
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