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Gauss-Jordan reduction



Here is an extension of Gauss’s method with some advantages.
Example Start as usual by getting echelon form.

x + y − z = 2

2x − y = −1

x − 2y + 2z = −1

−2ρ1+ρ2−→
−1ρ1+ρ3

x + y − z = 2

− 3y + 2z = −5

− 3y + 3z = −3

−1ρ2+ρ3−→
x + y − z = 2

− 3y + 2z = −5

z = 2

Now, instead of doing back substitution, continue using row operations.
First make all the leading entries one.

(−1/3)ρ2−→
x + y − z = 2

y − (2/3)z = 5/3

z = 2



Finish by using the leading entries to eliminate upwards, until we can read
off the solution.

x + y − z = 2

y − (2/3)z = 5/3

z = 2

ρ3+ρ1−→
(2/3)ρ3+ρ2

x + y = 4

y = 3

z = 2

−ρ2+ρ1−→
x = 1

y = 3

z = 2

Using one entry to clear out the rest of a column is pivoting on that
entry.



Example With this system

x − y − 2w = 2

x + y + 3z + w = 1

− y + z − w = 0

we start by getting echelon form.

−1ρ1+ρ2−→

1 −1 0 −2 2

0 2 3 3 −1

0 −1 1 −1 0

 (1/2)ρ2+ρ3−→

1 −1 0 −2 2

0 2 3 3 −1

0 0 5/2 1/2 −1/2


We turn the leading entries to 1’s.

(1/2)ρ2−→
(2/5)ρ3

1 −1 0 −2 2

0 1 3/2 3/2 −1/2

0 0 1 1/5 −1/5


Now eliminate upwards.

−(3/2)ρ3+ρ2−→

1 −1 0 −2 2

0 1 0 6/5 −1/5

0 0 1 1/5 −1/5

 ρ2+ρ1−→

1 0 0 −4/5 9/5

0 1 0 6/5 −1/5

0 0 1 1/5 −1/5





The final augmented matrix1 0 0 −4/5 9/5

0 1 0 6/5 −1/5

0 0 1 1/5 −1/5


gives the parametrized description of the solution set.

{


9/5

−1/5

−1/5

0

+


4/5

−6/5

−1/5

1

w | w ∈ R }



Gauss-Jordan reduction

This extension of Gauss’s Method is the Gauss-Jordan Method or
Gauss-Jordan reduction .

1.3 Definition A matrix or linear system is in reduced echelon form if, in
addition to being in echelon form, each leading entry is a 1 and is the only
nonzero entry in its column.

The cost of using Gauss-Jordan reduction to solve a system is the
additional arithmetic. The benefit is that we can just read off the solution
set description.



Reduces to is an equivalence

1.5 Lemma Elementary row operations are reversible.
Proof For any matrix A, the effect of swapping rows is reversed by
swapping them back, multiplying a row by a nonzero k is undone by
multiplying by 1/k, and adding a multiple of row i to row j (with i 6= j) is
undone by subtracting the same multiple of row i from row j.

A
ρi↔ρj−→

ρj↔ρi−→ A A
kρi−→ (1/k)ρi−→ A A

kρi+ρj−→
−kρi+ρj−→ A

(The third case requires that i 6= j.) QED

We say that matrices that reduce to each other are equivalent with
respect to the relationship of row reducibility. The next result justifies this,
using the definition of an equivalence.



1.6 Lemma Between matrices, ‘reduces to’ is an equivalence relation.
The book has the proof. For the intuition, consider this Gauss’s method

application. (
1 2 −1

2 4 −5

)
−2ρ1+ρ2−→

(
1 2 −1

0 0 −3

)
While our experience with Gauss’s method leads us to feel that the
second matrix in some way “comes after” the first, in fact the two are
interreducible. Here are some other 2×3 matrices that are interreducible
with those two.(

1 2 −1

0 0 1

) (
2 4 −2

2 4 −1

) (
1 2 −1

3 6 −6

)



1.7 Definition Two matrices that are interreducible by elementary row
operations are row equivalent .

The diagram below shows the collection of all matrices as a box. Inside
that box each matrix lies in a class. Matrices are in the same class if and
only if they are interreducible. The classes are disjoint—no matrix is in
two distinct classes. We have partitioned the collection of matrices into row
equivalence classes .

. . .
A
B



Linear Combination Lemma



How Gauss’s method acts

Example Consider this reduction.(
1 3 5

2 4 8

)
−2ρ1+ρ2−→

(
1 3 5

0 −2 −2

)
−(1/2)ρ2−→

(
1 3 5

0 1 1

)
−3ρ2+ρ1−→

(
1 0 2

0 1 1

)
Denote the matrices as A→ D→ G→ B. The steps take us through these
row combinations.(

α1
α2

)
−2ρ1+ρ2−→

(
δ1 = α1
δ2 = −2α1 + α2

)
−(1/2)ρ2−→

(
γ1 = α1
γ2 = α1 − (1/2)α2

)
−3ρ2+ρ1−→

(
β1 = −2α1 + (3/2)α2
β2 = α1 − (1/2)α2

)
So: Gauss’s method acts by taking linear combinations of rows.



Linear Combination Lemma

2.3 Lemma A linear combination of linear combinations is a linear
combination.

For instance, 4x1 + 5x2 and 7x1 + 8x2 are linear combinations, of x1
and x2. A linear combination of those

3 · (4x1 + 5x2) + 6 · (7x1 + 8x2)

yields another combination, 54x1 + 63x2, of x1 and x2.
Proof Given the set c1,1x1 + · · ·+ c1,nxn through cm,1x1 + · · ·+ cm,nxn of
linear combinations of the x’s, consider a combination of those

d1(c1,1x1 + · · ·+ c1,nxn) + · · ·+ dm(cm,1x1 + · · ·+ cm,nxn)

where the d’s are scalars along with the c’s. Distributing those d’s and
regrouping gives

= (d1c1,1 + · · ·+ dmcm,1)x1 + · · ·+ (d1c1,n + · · ·+ dmcm,n)xn

which is also a linear combination of the x’s. QED



2.4 Corollary Where one matrix reduces to another, each row of the second
is a linear combination of the rows of the first.

This states formally what is illustrated in the example showing how
Gauss’s method acts. The book contains the proof.



2.5 Lemma In an echelon form matrix, no nonzero row is a linear
combination of the other nonzero rows.
Example The book contains the full proof. This matrix illustrates.1 2 3 4

0 5 6 7

0 0 0 8


Consider writing the second row as a combination of the others.(

0 5 6 7
)
= c1 · (1 2 3 4) + c3 · (0 0 0 8)

We start by looking at the first row. With the matrix in echelon form, the
second row’s leading entry 5 lies to the right of the first row’s 1. The
equation of entries in 1’s column, the first column, gives that c1 = 0.

0 = c1 · 1+ c3 · 0

Now for the third row. Again because of echelon from, the third row’s
leading entry lies to the right of the 5. The equation of entries in the 5’s
column gives an impossibility.

5 = c3 · 0



Summarizing the prior two lemmas: Gauss’s method acts by taking
linear combinations of the rows, systematically eliminating any linear
relationship among those rows.
Example In this non-echelon form matrix the third row is the sum of the
first and second. 1 −1 3

2 0 4

3 −1 7


But after Gauss’s method

−2ρ1+ρ3−→
−3ρ1+ρ3

1 −1 3

0 2 −2

0 2 −2

 −ρ2+ρ3−→

1 −1 3

0 2 −2

0 0 0


the only linear relationship among the nonzero rows

c1 · (1 −1 3) = c2 · (0 2 −2)

is the trivial relationship c1 = c2 = 0, since the equation of first entries
gives that c1 = 0 and then the equation of second entries gives c2 = 0.



2.6 Theorem Each matrix is row equivalent to a unique reduced echelon
form matrix.

Example The book contains the full proof. This Gauss-Jordan reduction
shows that the matrix on the left is row equivalent to the reduced echelon
form matrix on the right.1 2 1

2 4 0

3 6 1

 −2ρ1+ρ2−→
−3ρ1+ρ3

−ρ2+ρ3−→ (1/2)ρ2−→ −ρ2+ρ1−→

1 2 0

0 0 1

0 0 0


By the theorem the matrix on the left is not row equivalent to any of these.1 0 0

0 1 0

0 0 1

 1 0 0

0 1 1

0 0 0

 1 3 0

0 0 1

0 0 0





So the reduced echelon form is a canonical form for row equivalence: the
reduced echelon form matrices are representatives of the classes.

. . .
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Example To decide if these two are row equivalent3 2 0

1 −1 2

4 1 2

 3 1 −2

6 2 −4

1 0 2


use Gauss-Jordan elimination to bring each to reduced echelon form and
see if they are equal. The results are

−(1/3)ρ1+ρ2−→
−(4/3)ρ1+ρ3

−1ρ2+ρ3−→ (1/3)ρ1−→
−(3/5)ρ2

−(2/3)ρ2+ρ1−→

1 0 4/5

0 1 −6/5

0 0 0


and

−2ρ1+ρ2−→
−(1/3)ρ1+ρ3

ρ2↔ρ3−→ (1/3)ρ1−→
−3ρ2

−(1/3)ρ2+ρ1−→

1 0 2

0 1 −8

0 0 0


and therefore the original matrices are not row equivalent.
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