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Changing representations of vectors



Coordinates vary with the basis

Consider this vector ~v ∈ R3 and bases for the space.

~v =

12
3

 E3 = 〈

10
0

 ,
01
0

 ,
00
1

〉 B = 〈

11
0

 ,
01
1

 ,
10
1

〉
With respect to the different bases, the coordinates of ~v are different.

RepE3
(~v) =

12
3

 RepB(~v) =

02
1


In this section we will see how to convert the representation of a vector

with respect to a first basis to its representation with respect to a second.



Change of basis matrix

Think of translating from RepB(~v) to RepD(~v) as holding the vector
constant. This is the arrow diagram.

Vwrt B

id

y
Vwrt D

(This diagram is vertical to fit with the ones in the next subsection.)

1.1 Definition The change of basis matrix for bases B,D ⊂ V is the
representation of the identity map id : V → V with respect to those bases.

RepB,D(id) =


...

...
RepD(~β1) · · · RepD(~βn)

...
...


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1.3 Lemma To convert from the representation of a vector ~v with respect to
B to its representation with respect to D use the change of basis matrix.

RepB,D(id)RepB(~v) = RepD(~v)

Conversely, if left-multiplication by a matrix changes bases
M ·RepB(~v) = RepD(~v) then M is a change of basis matrix.
Proof The first sentence holds because matrix-vector
multiplication represents a map application and so
RepB,D(id) ·RepB(~v) = RepD( id(~v) ) = RepD(~v) for each ~v. For the second
sentence, with respect to B,D the matrix M represents a linear map whose
action is to map each vector to itself, and is therefore the identity map.

QED



Example To change a representation of a member of P2 from being
with respect to B = 〈1, 1 + x, 1 + x + x2〉 to being with respect to
D = 〈x2 − 1, x, x2 + 1〉, compute RepB,D(id). The identity map acting on the
elements of B has no effect. Represent those elements with respect to D.

RepD(1) =

−1/2

0

1/2

 RepD(1+ x) =

−1/2

1

1/2

 RepD(1+ x+ x
2) =

01
1


The change of basis matrix is the concatenation of those.

RepB,D(id) =

−1/2 −1/2 0

0 1 1

1/2 1/2 1


For example, we can translate the representation of ~v = 2− x+ 3x2.

RepB(~v) =

 3

−4

3

 RepD(~v) =

1/2−1

5/2

 =

−1/2 −1/2 0

0 1 1

1/2 1/2 1

 3

−4

3





1.5 Lemma A matrix changes bases if and only if it is nonsingular.
Proof For the ‘only if’ direction, if left-multiplication by a matrix
changes bases then the matrix represents an invertible function, simply
because we can invert the function by changing the bases back. Because it
represents a function that is invertible, the matrix itself is invertible, and so
is nonsingular.

For ‘if’ we will show that any nonsingular matrix M performs a change
of basis operation from any given starting basis B (having n vectors, where
the matrix is n×n) to some ending basis.

If the matrix is the identity I then the statement is obvious.
Otherwise because the matrix is nonsingular Corollary IV.3.23 says
there are elementary reduction matrices such that Rr · · ·R1 ·M = I with
r > 1. Elementary matrices are invertible and their inverses are also
elementary so multiplying both sides of that equation from the left by
Rr

−1, then by Rr−1−1, etc., gives M as a product of elementary matrices
M = R1

−1 · · ·Rr−1.



1.5 Lemma A matrix changes bases if and only if it is nonsingular.
Proof For the ‘only if’ direction, if left-multiplication by a matrix
changes bases then the matrix represents an invertible function, simply
because we can invert the function by changing the bases back. Because it
represents a function that is invertible, the matrix itself is invertible, and so
is nonsingular.

For ‘if’ we will show that any nonsingular matrix M performs a change
of basis operation from any given starting basis B (having n vectors, where
the matrix is n×n) to some ending basis.

If the matrix is the identity I then the statement is obvious.
Otherwise because the matrix is nonsingular Corollary IV.3.23 says
there are elementary reduction matrices such that Rr · · ·R1 ·M = I with
r > 1. Elementary matrices are invertible and their inverses are also
elementary so multiplying both sides of that equation from the left by
Rr

−1, then by Rr−1−1, etc., gives M as a product of elementary matrices
M = R1

−1 · · ·Rr−1.



We will be done if we show that elementary matrices change a given
basis to another basis, since then Rr−1 changes B to some other basis Br
and Rr−1−1 changes Br to some Br−1, etc. We will cover the three types of
elementary matrices separately; recall the notation for the three.

Mi(k)



c1
...
ci
...
cn


=



c1
...
kci
...
cn


Pi,j



c1
...
ci
...
cj
...
cn


=



c1
...
cj
...
ci
...
cn


Ci,j(k)



c1
...
ci
...
cj
...
cn


=



c1
...
ci
...

kci + cj
...
cn





Applying a row-multiplication matrix Mi(k) changes a representation
with respect to 〈~β1, . . . , ~βi, . . . , ~βn〉 to one with respect to
〈~β1, . . . , (1/k)~βi, . . . , ~βn〉.

~v = c1 · ~β1 + · · ·+ ci · ~βi + · · ·+ cn · ~βn
7→ c1 · ~β1 + · · ·+ kci · (1/k)~βi + · · ·+ cn · ~βn = ~v

The second one is a basis because the first is a basis and because of the
k 6= 0 restriction in the definition of a row-multiplication matrix.

Similarly, left-multiplication by a row-swap matrix Pi,j changes a
representation with respect to the basis 〈~β1, . . . , ~βi, . . . , ~βj, . . . , ~βn〉 into one
with respect to this basis 〈~β1, . . . , ~βj, . . . , ~βi, . . . , ~βn〉.

~v = c1 · ~β1 + · · ·+ ci · ~βi + · · ·+ cj~βj + · · ·+ cn · ~βn
7→ c1 · ~β1 + · · ·+ cj · ~βj + · · ·+ ci · ~βi + · · ·+ cn · ~βn = ~v
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And, a representation with respect to 〈~β1, . . . , ~βi, . . . , ~βj, . . . , ~βn〉
changes via left-multiplication by a row-combination matrix Ci,j(k) into a
representation with respect to 〈~β1, . . . , ~βi − k~βj, . . . , ~βj, . . . , ~βn〉

~v = c1 · ~β1 + · · ·+ ci · ~βi + cj~βj + · · ·+ cn · ~βn
7→ c1 · ~β1 + · · ·+ ci · (~βi − k~βj) + · · ·+ (kci + cj) · ~βj + · · ·+ cn · ~βn = ~v

(the definition of Ci,j(k) specifies that i 6= j and k 6= 0). QED



1.6 Corollary A matrix is nonsingular if and only if it represents the identity
map with respect to some pair of bases.



Changing map representations



The natural next step is to see how to convert RepB,D(h) to RepB̂,D̂(h).
Here is the arrow diagram.

Vwrt B
h−−−−−→
H

Wwrt D

id

y id

y
Vwrt B̂

h−−−−−→
Ĥ

Wwrt D̂

To move from the lower-left to the lower-right we can either go straight
over, or else up to VB then over to WD and then down. So we can calculate
Ĥ = RepB̂,D̂(h) either by directly using B̂ and D̂, or else by first changing
bases with RepB̂,B(id) then multiplying by H = RepB,D(h) and then
changing bases with RepD,D̂(id).
Theorem To convert from the matrix H representing a map h with
respect to B,D to the matrix Ĥ representing it with respect to B̂, D̂ use this
formula.

Ĥ = RepD,D̂(id) ·H ·RepB̂,B(id) (∗)

Proof This is evident from the diagram. QED



Example Consider the derivative map d/dx : P2 → P2 as
well as B = 〈1, 1 + x, 1 + x + x2〉, D = 〈1 + x2, x, 1 − x2〉 and
B̂ = 〈1, x, x2〉, D̂ = 〈1+ x, x+ x2, 1+ x2〉.

We can find H and Ĥ using the methods we have already seen.

RepB,D(d/dx) =

0 1/2 1/2

0 0 2

0 1/2 1/2

 RepB̂,D̂(d/dx) =

0 1/2 1

0 −1/2 1

0 1/2 −1


These do the base changes.

RepB̂,B(id) =

1 −1 0

0 1 −1

0 0 1

 RepD,D̂(id) =

0 1/2 1

0 1/2 −1

1 −1/2 0


We can check this case of equation (∗) by multiplying through.

RepB̂,D̂(d/dx) = RepD,D̂(id) ·RepB,D(d/dx) ·RepB̂,B(id)

=

0 1/2 1

0 1/2 −1

1 −1/2 0

0 1/2 1/2

0 0 2

0 1/2 1/2

1 −1 0

0 1 −1

0 0 1


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



Example The map tπ/6 : R2 → R2 rotating vectors counterclockwise by
π/6 radians has this representation with respect to the standard bases.

RepE2,E2
(tπ/6) =

(√
3/2 −1/2

1/2
√
3/2

)
We can translate to the representatation with respect to

B = D = 〈
(
1

1

)
,

(
1

−1

)
〉

using the change of basis matrices. Here is the diagram, specialized for this
case.

R2wrt E2
tπ/6−−−−−−−−−−−→

RepE2,E2
(tπ/6)

R2wrt E2

id

y id

y
R2wrt B

tπ/6−−−−−→
Ĥ

R2wrt D

To get Ĥ we move up from the upper left, across, and then down.



With respect to the standard basis real vectors represent themselves, so
the matrix representing moving up is easy.

RepB,E2(id) =
(
1 1

1 −1

)
The matrix for moving down is the inverse of the prior one.

RepE2,D
(id) = (RepD,E2(id))

−1 =

(
1 1

1 −1

)−1

=
−1

2
·
(
−1 −1

−1 1

)
Thus we have this.

RepB,D(tπ/6) =
−1

2
·
(
−1 −1

−1 1

)(√
3/2 −1/2

1/2
√
3/2

)(
1 1

1 −1

)
=

(√
3/2 1/2

−1/2
√
3/2

)



2.4 Definition Same-sized matrices H and Ĥ are matrix equivalent if there
are nonsingular matrices P and Q such that Ĥ = PHQ.

2.5 Corollary Matrix equivalent matrices represent the same map, with
respect to appropriate pairs of bases.

Exercise 24 checks that matrix equivalence is an equivalence relation.
Thus it partitions the set of matrices into matrix equivalence classes.

All matrices:
. . .

H

Ĥ

H matrix equivalent
to Ĥ
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Canonical form for matrix equivalence

2.7 Theorem Any m×n matrix of rank k is matrix equivalent to the m×n
matrix that is all zeros except that the first k diagonal entries are ones.

1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0
...

0 0 . . . 1 0 . . . 0

0 0 . . . 0 0 . . . 0
...

0 0 . . . 0 0 . . . 0



This is a block partial-identity form.(
I Z

Z Z

)
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For an example, recall first that any nonsingular matrix M can be
factored into a product M = R1 · · ·Rr where each Rt is an elementary
reduction matrix Ci,j(k), or Mi(k), or Pi,j.

Recall also that from the left matrices operate on rows 1 0 0

0 1 0

−4 0 1

1 2 3

4 5 6

7 8 9

 =

1 2 3

4 5 6

3 0 −3


while from the right they act on columns: this does −4 · col3 + col1.1 2 3

4 5 6

7 8 9

 1 0 0

0 1 0

−4 0 1

 =

−11 2 3

−20 5 6

−29 8 9


Example This matrix has rank 2.1 2 3

4 5 6

7 8 9


We will find P and Q to get the 3×3 canonical matrix of rank 2.
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Row operations produce echelon form.1 2 3

4 5 6

7 8 9

 −4ρ1+ρ2−→
−7ρ1+ρ3

−2ρ2+ρ3−→ −(1/3)ρ2−→

1 2 3

0 1 2

0 0 0


Multiplying the reduction matrices gives P; note the right to left order.1 0 0

0 −1/3 0

0 0 1

1 0 0

0 1 0

0 −2 1

 1 0 0

0 1 0

−7 0 1

 1 0 0

−4 1 0

0 0 1


=

 1 0 0

4/3 −1/3 0

1 −2 1


So far we have this.

PHQ =

 1 0 0

4/3 −1/3 0

1 −2 1

1 2 3

4 5 6

7 8 9

Q =

1 2 3

0 1 2

0 0 0

Q



Column operations produce the block partial identity.1 2 3

0 1 2

0 0 0

 −2col2+col3−→ −2col1+col2−→ col1+col3−→

1 0 0

0 1 0

0 0 0


Combine the reduction matrices to get Q. In contrast with the construction
of P, here they come left to right.1 0 0

0 1 −2

0 0 1

1 −2 0

0 1 0

0 0 1

1 0 1

0 1 0

0 0 1

 =

1 −2 1

0 1 −2

0 0 1


In sum, we have this equation.

PHQ =

 1 0 0

4/3 −1/3 0

1 −2 1

1 2 3

4 5 6

7 8 9

1 −2 1

0 1 −2

0 0 1

 =

1 0 0

0 1 0

0 0 0





Proof Gauss-Jordan reduce the given matrix and combine all the row
reduction matrices to make P. Then use the leading entries to do column
reduction and finish by swapping the columns to put the leading ones on
the diagonal. Combine the column reduction matrices into Q. QED



Action of a canonical form matrix

This kind of matrix is has an easy to understand effect.1 0 0

0 1 0

0 0 0

xy
z

 =

xy
0


It is a projection—the map t : R3 → R3 represented with respect to the
standard bases by this block partial identity matrix is projection from
three space to the xy plane.



Matrix equivalence is characterized by rank

2.9 Corollary Matrix equivalence classes are characterized by rank: two
same-sized matrices are matrix equivalent if and only if they have the same
rank.

Proof Two same-sized matrices with the same rank are equivalent to the
same block partial-identity matrix. QED
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