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Determinants as size functions



Box

This parallelogram is defined by the two vectors.

(
x1
y1

)(
x2
y2

)

1.1 Definition In Rn the box (or parallelepiped) formed by 〈~v1, . . . ,~vn〉 is
the set {t1~v1 + · · ·+ tn~vn | t1, . . . , tn ∈ [0 . . . 1] }.



Area
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box area = rectangle area− area of A− · · ·− area of F

= (x1 + x2)(y1 + y2) − x2y1 − x1y1/2

− x2y2/2− x2y2/2− x1y1/2− x2y1

= x1y2 − x2y1

The determinant of this matrix gives the size of the box formed by the
matrix’s columns. ∣∣∣∣x1 x2

y1 y2

∣∣∣∣ = x1y2 − x2y1



Determinant as a function of the columns

We now switch from considering the determinant as a function of the
rows to considering it as a function of the columns.

Because the determinant of the transpose equals the determinant of the
matrix, the row operation conditions in the definition translate over to
column operation conditions. That is, (1) a determinant is unchanged by a
column combination: where A is square and

A
kcoli+colj−→ Â

(with i 6= j) then det(A) = det Â, (2) a column swap changes the
determinant’s sign, and (3) multiplying a column by a scalar multiplies the
entire determinant by that scalar. Condition (4), that the determinant of
the identity matrix is 1, isn’t about row or column operations so it still
applies, without translation.



Geometric interpretation of the definition
The third condition on a determinant, stated in column

form, is that rescaling a column rescales the entire determinant
det(. . . , k~vi, . . .) = k · det(. . . ,~vi, . . .). This fits our program of arguing that
determinant conditions make good axioms for a function measuring the size
of a box: if we scale a column by a factor k then the size of the box scales
by that factor.

~v

~w

k~v

~w

The determinant’s first condition is that it is unaffected by combining
columns. The picture

~v

~w

~v

k~v+ ~w

shows that the box formed by the two vectors ~v and k~v+ ~w is slanted at a
different angle than the one formed by ~v and ~w but the two boxes have the
same base and height, and hence the same area.



As we noted after the determinant’s definition, its second condition is a
consequence of the others so we leave it aside for a moment.

The final condition is that the determinant of the identity matrix is 1.
This also fits with our program of arguing that the conditions in the
definition of determinant are good ones for the function giving the size of
the box formed by the columns of the matrix.

~e1

~e2



Orientation

1.2 Remark The second condition in the definition is that swapping changes
the sign of the determinant. Consider these pictures, using the same pair of
vectors.

~u

~v

~u

~v

∣∣∣∣4 1

2 3

∣∣∣∣ = 10 ∣∣∣∣1 4

3 2

∣∣∣∣ = −10

On the left, ~u is the first column in the matrix and we get a positive size.
On the right, ~v is first and we get a negative size. On the left, the arc from
first vector to second is counterclockwise while on the right, the arc from
first to second is clockwise. The sign returned by the determinant reflects
the orientation or sense of the box.



More on orientation: R3

These two vectors span a plane. The plane divides three-space into two
parts, the part above and the part below.

~v1 =

14
1

 , ~v2 =
−2

3

1



Take a ~v3 above that plane. More precisely, the ~v3 shown is on the side of
the plane with the property that a person at the tip of ~v3 looking at the arc
from ~v1 to ~v2 sees that arc as counterclockwise. Any such vector defines a
box that is positive-sized.

~v3 =

 0

−1

2

 ∣∣∣∣∣∣
1 −2 0

4 3 −1

1 1 2

∣∣∣∣∣∣ = 25



This is the right hand rule : place your right hand’s pinky finger on the
spanned plane so that your fingers curl from ~v1 to ~v2. Then vectors on the
side of the plane with your thumb define positive-sized boxes.



A vector on the plane’s other side, such as −~v3, will have the same arc
from ~v1 to ~v2 look clockwise and will define a negative-sized box.∣∣∣∣∣∣

1 −2 0

4 3 1

1 1 −2

∣∣∣∣∣∣ = −25

These pictures start above the plane, the perspective of the prior slide.
From below, to a person standing on −~v3, the arc is clockwise.

To have it so that when you curl your fingers from ~v1 to ~v2 then the vector
lies with your thumb, you must use your left hand.



Determinants are multiplicative

1.5 Theorem A transformation t : Rn → Rn changes the size of all boxes by
the same factor, namely, the size of the image of a box |t(S)| is |T | times the
size of the box |S|, where T is the matrix representing t with respect to the
standard basis.

That is, the determinant of a product is the product of the determinants
|TS| = |T | · |S|.
Proof First consider the case that T is singular and thus does not have an
inverse. Observe that if TS is invertible then there is an M such that
(TS)M = I, so T(SM) = I, and so T is invertible. The contrapositive of that
observation is that if T is not invertible then neither is TS—if |T | = 0 then
|TS| = 0.

Now consider the case that T is nonsingular. Any nonsingular matrix
factors into a product of elementary matrices T = E1E2 · · ·Er. To finish
this argument we will verify that |ES| = |E| · |S| for all matrices S
and elementary matrices E. The result will then follow because
|TS| = |E1 · · ·ErS| = |E1| · · · |Er| · |S| = |E1 · · ·Er| · |S| = |T | · |S|.



There are three types of elementary matrix. We will cover the Mi(k)

case; the Pi,j and Ci,j(k) checks are similar. The matrix Mi(k)S equals S
except that row i is multiplied by k. The third condition of determinant
functions then gives that |Mi(k)S| = k · |S|. But |Mi(k)| = k, again by the
third condition becauseMi(k) is derived from the identity by multiplication
of row i by k. Thus |ES| = |E| · |S| holds for E =Mi(k). QED



Example The transformation tθ : R2 → R2 that rotates all vectors through
a counterclockwise angle θ is represented by this matrix.

Tθ = RepE2,E2
(tθ) =

(
cos θ − sin θ
sin θ cosθ

)
Observe that tθ doesn’t change the size of any boxes, it just rotates the
entire box as a rigid whole. Note that |Tθ| = 1.
Example The linear transformation s : R2 → R2 represented with respect to
the standard basis by this matrix

S =

(
1 2

3 4

)
will, by the theorem, change the size of a box by a factor of |S| = −2. Here
is s acting on a typical box.



The box defined by the two vectors ~v1 =
(
1
0

)
and ~v2 =

(
1
1

)
is transformed

by s to the box defined by the two vectors s(~v1) =
(
1
3

)
and s(~v2) =

(
3
7

)
.

~v1

~v2

s−→
s(~v1)

s(~v2)

Note the change in orientation, matching that the determinant is negative.
The two sizes are easy.∣∣∣∣1 1

0 1

∣∣∣∣ = 1 ∣∣∣∣1 3

3 7

∣∣∣∣ = −2



Determinant of the inverse

1.7 Corollary If a matrix is invertible then the determinant of its inverse is
the inverse of its determinant |T−1| = 1/|T |.
Proof 1 = |I| = |TT−1| = |T | · |T−1| QED

Example These matrices are inverse.∣∣∣∣1 2

3 4

∣∣∣∣ = −2

∣∣∣∣−2 1

3/2 −1/2

∣∣∣∣ = −1/2



Volume

1.3 Definition The volume of a box is the absolute value of the determinant
of a matrix with those vectors as columns.
Example The box formed by the vectors

〈~v1,~v2〉 = 〈
(
−1

1

)
,

(
1

1

)
〉 ~v1 ~v2

gives this determinant ∣∣∣∣−1 1

1 1

∣∣∣∣ = −2

so its volume is 2.



Cramer’s Rule



Geometric interpretation of linear systems

A linear system is equivalent to a linear relationship among vectors.

x1 + 2x2 = 6

3x1 + x2 = 8
⇐⇒ x1 ·

(
1

3

)
+ x2 ·

(
2

1

)
=

(
6

8

)
This drawing restates the algebraic question of finding the solution of a

linear system into geometric terms: by what factors x1 and x2 must we
dilate the sides of the starting parallelogram so that it will fill the other
one?

(
2

1

) x2 ·
(
2

1

)
(
1

3

)
x1 ·

(
1

3

)
(
6

8

)



Consider expanding only one side of the parallelogram. Compare the
sizes of these shaded boxes.

(
2

1

)

(
1

3

)

(
2

1

)

x1 ·
(
1

3

)

(
2

1

)

(
6

8

)

Taken together we have this.

x1 ·
∣∣∣∣1 2

3 1

∣∣∣∣ = ∣∣∣∣x1 · 1 2

x1 · 3 1

∣∣∣∣ = ∣∣∣∣x1 · 1+ x2 · 2 2

x1 · 3+ x2 · 1 1

∣∣∣∣ = ∣∣∣∣6 2

8 1

∣∣∣∣
(The last equality is by the first condition in the definition of determinants,
applied to columns.)



Solving gives the value of one of the variables.

x1 =

∣∣∣∣6 2

8 1

∣∣∣∣∣∣∣∣1 2

3 1

∣∣∣∣ =
−10

−5
= 2

The symmetric argument for the other side gives the other value.

x2 =

∣∣∣∣1 6

3 8

∣∣∣∣∣∣∣∣1 2

3 1

∣∣∣∣ = 2



Cramer’s Rule

Theorem Let A be an n×n matrix with a nonzero determinant, let ~b be
an n-tall column vector, and consider the linear system A~x = ~b. For
any i ∈ [1, . . . , n] let Bi be the matrix obtained by substituting ~b for
column i of A. Then the value of the i-th unknown is xi = |Bi|/|A|.

Of course, if the matrix has a zero determinant then the system does not
have a unique solution.



Example This system
2x1 + x2 − x3 = 4

x1 + 3x2 = 2

x2 − 5x3 = 0

is 2 1 −1

1 3 0

0 1 −5

x1x2
x3

 =

42
0


and

|A| =

∣∣∣∣∣∣
2 1 −1

1 3 0

0 1 −5

∣∣∣∣∣∣ = −26 |B2| =

∣∣∣∣∣∣
2 4 −1

1 2 0

0 0 −5

∣∣∣∣∣∣ = 0
so x2 = 0/− 26 = 0.



A caution

Cramer’s Rule is an interesting application of the geometry. And, it
allows us to mentally solve small systems with simple numbers. But don’t
use it for systems having many variables; taking a determinant of a general
large matrix is very slow.
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