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Gauss-Jordan reduction



Here is an extension of Gauss’s method with some advantages.
Example Start as usual by getting echelon form.

x + y − z = 2

2x − y = −1

x − 2y + 2z = −1

−2ρ1+ρ2−→
−1ρ1+ρ3

x + y − z = 2

− 3y + 2z = −5

− 3y + 3z = −3

−1ρ2+ρ3−→
x + y − z = 2

− 3y + 2z = −5

z = 2

Now, instead of doing back substitution, continue using row operations.
First make all the leading entries one.

(−1/3)ρ2−→
x + y − z = 2

y − (2/3)z = 5/3

z = 2
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Finish by using the leading entries to eliminate upwards, until we can read
off the solution.

x + y − z = 2

y − (2/3)z = 5/3

z = 2

ρ3+ρ1−→
(2/3)ρ3+ρ2

x + y = 4

y = 3

z = 2

−ρ2+ρ1−→
x = 1

y = 3

z = 2

Using one entry to clear out the rest of a column is pivoting on that
entry.
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Example With this system

x − y − 2w = 2

x + y + 3z + w = 1

− y + z − w = 0

we start by getting echelon form.

−1ρ1+ρ2−→

1 −1 0 −2 2

0 2 3 3 −1

0 −1 1 −1 0

 (1/2)ρ2+ρ3−→

1 −1 0 −2 2

0 2 3 3 −1

0 0 5/2 1/2 −1/2


We turn the leading entries to 1’s.

(1/2)ρ2−→
(2/5)ρ3

1 −1 0 −2 2

0 1 3/2 3/2 −1/2

0 0 1 1/5 −1/5


Now eliminate upwards.

−(3/2)ρ3+ρ2−→

1 −1 0 −2 2

0 1 0 6/5 −1/5

0 0 1 1/5 −1/5

 ρ2+ρ1−→

1 0 0 −4/5 9/5

0 1 0 6/5 −1/5

0 0 1 1/5 −1/5





The final augmented matrix1 0 0 −4/5 9/5

0 1 0 6/5 −1/5

0 0 1 1/5 −1/5


gives the parametrized description of the solution set.

{


9/5

−1/5

−1/5

0

+


4/5

−6/5

−1/5

1

w | w ∈ R }



Gauss-Jordan reduction

This extension of Gauss’s Method is the Gauss-Jordan Method or
Gauss-Jordan reduction .

1.3 Definition A matrix or linear system is in reduced echelon form if, in
addition to being in echelon form, each leading entry is a 1 and is the only
nonzero entry in its column.

The cost of using Gauss-Jordan reduction to solve a system is the
additional arithmetic. The benefit is that we can just read off the solution
set description.
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Reduces to is an equivalence

1.5 Lemma Elementary row operations are reversible.

Proof For any matrix A, the effect of swapping rows is reversed by
swapping them back, multiplying a row by a nonzero k is undone by
multiplying by 1/k, and adding a multiple of row i to row j (with i 6= j) is
undone by subtracting the same multiple of row i from row j.

A
ρi↔ρj−→

ρj↔ρi−→ A A
kρi−→ (1/k)ρi−→ A A

kρi+ρj−→
−kρi+ρj−→ A

(The third case requires that i 6= j.) QED

We say that matrices that reduce to each other are equivalent with
respect to the relationship of row reducibility. The next result justifies this,
using the definition of an equivalence.
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1.6 Lemma Between matrices, ‘reduces to’ is an equivalence relation.
Proof We must check the conditions (i) reflexivity, that any matrix
reduces to itself, (ii) symmetry, that if A reduces to B then B reduces to A,
and (iii) transitivity, that if A reduces to B and B reduces to C then A
reduces to C.

Reflexivity is easy; any matrix reduces to itself in zero-many operations.
The relationship is symmetric by the prior lemma— if A reduces to B

by some row operations then also B reduces to A by reversing those
operations.

For transitivity, suppose that A reduces to B and that B reduces to
C. Following the reduction steps from A → · · · → B with those from
B→ · · · → C gives a reduction from A to C. QED
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1.7 Definition Two matrices that are interreducible by elementary row
operations are row equivalent .

The diagram below shows the collection of all matrices as a box. Inside
that box each matrix lies in a class. Matrices are in the same class if and
only if they are interreducible. The classes are disjoint—no matrix is in
two distinct classes. We have partitioned the collection of matrices into row
equivalence classes .

. . .
A
B
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Linear Combination Lemma



How Gauss’s method acts

Example Consider this reduction.(
1 3 5

2 4 8

)
−2ρ1+ρ2−→

(
1 3 5

0 −2 −2

)
−(1/2)ρ2−→

(
1 3 5

0 1 1

)
−3ρ2+ρ1−→

(
1 0 2

0 1 1

)
Denote the matrices as A→ D→ G→ B. The steps take us through these
row combinations.(

α1
α2

)
−2ρ1+ρ2−→

(
δ1 = α1
δ2 = −2α1 + α2

)
−(1/2)ρ2−→

(
γ1 = α1
γ2 = α1 − (1/2)α2

)
−3ρ2+ρ1−→

(
β1 = −2α1 + (3/2)α2
β2 = α1 − (1/2)α2

)

So: Gauss’s method acts by taking linear combinations of rows.
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Linear Combination Lemma

2.3 Lemma A linear combination of linear combinations is a linear
combination.

For instance, 4x1 + 5x2 and 7x1 + 8x2 are linear combinations, of x1
and x2. A linear combination of those

3 · (4x1 + 5x2) + 6 · (7x1 + 8x2)

yields another combination, 54x1 + 63x2, of x1 and x2.

Proof Given the set c1,1x1 + · · ·+ c1,nxn through cm,1x1 + · · ·+ cm,nxn of
linear combinations of the x’s, consider a combination of those

d1(c1,1x1 + · · ·+ c1,nxn) + · · ·+ dm(cm,1x1 + · · ·+ cm,nxn)

where the d’s are scalars along with the c’s. Distributing those d’s and
regrouping gives

= (d1c1,1 + · · ·+ dmcm,1)x1 + · · ·+ (d1c1,n + · · ·+ dmcm,n)xn

which is also a linear combination of the x’s. QED
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2.4 Corollary Where one matrix reduces to another, each row of the second
is a linear combination of the rows of the first.

Proof For any two interreducible matrices A and B there is some
minimum number of row operations that will take one to the other. We
proceed by induction on that number.

In the base step, that we can go from one matrix to another using zero
reduction operations, the two are equal. Then each row of B is trivially a
combination of A’s rows ~βi = 0 · ~α1 + · · ·+ 1 · ~αi + · · ·+ 0 · ~αm.

For the inductive step assume the inductive hypothesis: with k > 0, any
matrix that can be derived from A in k or fewer operations has rows that
are linear combinations of A’s rows. Consider a matrix B such that
reducing A to B requires k + 1 operations. In that reduction there is a
next-to-last matrix G, so that A −→ · · · −→ G −→ B. The inductive
hypothesis applies to this G because it is only k steps away from A. That
is, each row of G is a linear combination of the rows of A.
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We will verify that the rows of B are linear combinations of the rows
of G. Then the Linear Combination Lemma, Lemma 2.3 , applies to show
that the rows of B are linear combinations of the rows of A.

If the row operation taking G to B is a swap then the rows of B are just
the rows of G reordered and each row of B is a linear combination of the
rows of G. If the operation taking G to B is multiplication of a row by a
scalar cρi then ~βi = c~γi and the other rows are unchanged. Finally, if the
row operation is adding a multiple of one row to another rρi + ρj then only
row j of B differs from the matching row of G, and ~βj = rγi + γj, which is
indeed a linear combinations of the rows of G. QED



2.5 Lemma In an echelon form matrix, no nonzero row is a linear
combination of the other nonzero rows.

Proof Let R be an echelon form matrix and consider its non-~0 rows. First
observe that if we have a row written as a combination of the others
~ρi = c1~ρ1 + · · ·+ ci−1~ρi−1 + ci+1~ρi+1 + · · ·+ cm~ρm then we can rewrite that
equation as

~0 = c1~ρ1 + · · ·+ ci−1~ρi−1 + ci~ρi + ci+1~ρi+1 + · · ·+ cm~ρm (∗)

where not all the coefficients are zero; specifically, ci = −1. The converse
holds also: given equation (∗) where some ci 6= 0 we could express ~ρi as a
combination of the other rows by moving ci~ρi to the left and dividing by
−ci. Therefore we will have proved the theorem if we show that in (∗) all of
the coefficients are 0. For that we use induction on the row number i.



2.5 Lemma In an echelon form matrix, no nonzero row is a linear
combination of the other nonzero rows.
Proof Let R be an echelon form matrix and consider its non-~0 rows. First
observe that if we have a row written as a combination of the others
~ρi = c1~ρ1 + · · ·+ ci−1~ρi−1 + ci+1~ρi+1 + · · ·+ cm~ρm then we can rewrite that
equation as

~0 = c1~ρ1 + · · ·+ ci−1~ρi−1 + ci~ρi + ci+1~ρi+1 + · · ·+ cm~ρm (∗)

where not all the coefficients are zero; specifically, ci = −1. The converse
holds also: given equation (∗) where some ci 6= 0 we could express ~ρi as a
combination of the other rows by moving ci~ρi to the left and dividing by
−ci. Therefore we will have proved the theorem if we show that in (∗) all of
the coefficients are 0. For that we use induction on the row number i.



The base case is the first row i = 1 (if there is no such nonzero row, so
that R is the zero matrix, then the lemma holds vacuously). Let `i be the
column number of the leading entry in row i. Consider the entry of each
row that is in column `1. Equation (∗) gives this.

0 = c1r1,`1 + c2r2,`1 + · · ·+ cmrm,`1 (∗∗)

The matrix is in echelon form so every row after the first has a zero entry
in that column r2,`1 = · · · = rm,`1 = 0. Thus equation (∗∗) shows that
c1 = 0, because r1,`1 6= 0 as it leads the row.

The inductive step is much the same as the base step. Again consider
equation (∗). We will prove that if the coefficient ci is 0 for each row index
i ∈ {1, . . . , k } then ck+1 is also 0. We focus on the entries from column `k+1.

0 = c1r1,`k+1
+ · · ·+ ck+1rk+1,`k+1

+ · · ·+ cmrm,`k+1

By the inductive hypothesis c1, . . . ck are all 0 so this reduces to the
equation 0 = ck+1rk+1,`k+1

+ · · · + cmrm,`k+1
. The matrix is in echelon

form so the entries rk+2,`k+1
, . . . , rm,`k+1

are all 0. Thus ck+1 = 0, because
rk+1,`k+1

6= 0 as it is the leading entry. QED
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Summarizing the prior two lemmas: Gauss’s method acts by taking
linear combinations of the rows, systematically eliminating any linear
relationship among those rows.
Example In this non-echelon form matrix the third row is the sum of the
first and second. 1 −1 3

2 0 4

3 −1 7



But after Gauss’s method

−2ρ1+ρ3−→
−3ρ1+ρ3

1 −1 3

0 2 −2

0 2 −2

 −ρ2+ρ3−→

1 −1 3

0 2 −2

0 0 0


the only linear relationship among the nonzero rows

c1 · (1 −1 3) = c2 · (0 2 −2)

is the trivial relationship c1 = c2 = 0, since the equation of first entries
gives that c1 = 0 and then the equation of second entries gives c2 = 0.
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2.6 Theorem Each matrix is row equivalent to a unique reduced echelon
form matrix.

Proof Fix a number of rows m. We will proceed by induction on the
number of columns n.

The base case is that the matrix has n = 1 column. If this is the zero
matrix then its echelon form is the zero matrix. If instead it has any
nonzero entries then when the matrix is brought to reduced echelon form it
must have at least one nonzero entry, which must be a 1 in the first row.
Either way, its reduced echelon form is unique.

For the inductive step we assume that n > 1 and that all m row matrices
having fewer than n columns have a unique reduced echelon form. Consider
an m×n matrix A and suppose that B and C are two reduced echelon form
matrices derived from A. We will show that these two must be equal.

Let Â be the matrix consisting of the first n− 1 columns of A. Observe
that any sequence of row operations that bring A to reduced echelon form
will also bring Â to reduced echelon form. By the inductive hypothesis this
reduced echelon form of Â is unique, so if B and C differ then the difference
must occur in column n.
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an m×n matrix A and suppose that B and C are two reduced echelon form
matrices derived from A. We will show that these two must be equal.

Let Â be the matrix consisting of the first n− 1 columns of A. Observe
that any sequence of row operations that bring A to reduced echelon form
will also bring Â to reduced echelon form. By the inductive hypothesis this
reduced echelon form of Â is unique, so if B and C differ then the difference
must occur in column n.



Consider a homogeneous system of equations for which A is the matrix
of coefficients.

a1,1x1 + a1,2x2 + · · · + a1,nxn = 0

a2,1x1 + a2,2x2 + · · · + a2,nxn = 0
...

am,1x1 + am,2x2 + · · · + am,nxn = 0

(∗)

By Theorem One.I.1.5 the set of solutions to that system is the same as
the set of solutions to B’s system

b1,1x1 + b1,2x2 + · · · + b1,nxn = 0

b2,1x1 + b2,2x2 + · · · + b2,nxn = 0
...

bm,1x1 + bm,2x2 + · · · + bm,nxn = 0

(∗∗)

and to C’s.
c1,1x1 + c1,2x2 + · · · + c1,nxn = 0

c2,1x1 + c2,2x2 + · · · + c2,nxn = 0
...

cm,1x1 + cm,2x2 + · · · + cm,nxn = 0

(∗∗∗)



With B and C different only in column n, suppose that they differ in
row i. Subtract row i of (∗∗∗) from row i of (∗∗) to get the equation
(bi,n − ci,n) · xn = 0. We’ve assumed that bi,n 6= ci,n and so we get xn = 0.
Thus xn is not a free variable and so in (∗∗) and (∗∗∗) the n-th column
contains the leading entry of some row, since in an echelon form matrix any
column that does not contain a leading entry is associated with a free
variable.

But now, with B and C equal on the first n− 1 columns, by the definition
of reduced echeleon form their leading entries in the n-th column are in the
same row. And, both leading entries would have to be 1, and would have to
be the only nonzero entries in that column. Therefore B = C. QED



So the reduced echelon form is a canonical form for row equivalence: the
reduced echelon form matrices are representatives of the classes.
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Example To decide if these two are row equivalent3 2 0

1 −1 2

4 1 2

 3 1 −2

6 2 −4

1 0 2


use Gauss-Jordan elimination to bring each to reduced echelon form and
see if they are equal.

The results are

−(1/3)ρ1+ρ2−→
−(4/3)ρ1+ρ3

−1ρ2+ρ3−→ (1/3)ρ1−→
−(3/5)ρ2

−(2/3)ρ2+ρ1−→

1 0 4/5

0 1 −6/5

0 0 0


and

−2ρ1+ρ2−→
−(1/3)ρ1+ρ3

ρ2↔ρ3−→ (1/3)ρ1−→
−3ρ2

−(1/3)ρ2+ρ1−→

1 0 2

0 1 −8

0 0 0


and therefore the original matrices are not row equivalent.
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