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Sums and Scalar Products



Operations on linear functions

Recall that given a linear map f : V →W then the scalar multiple
function

~v
r·f7−→ r · ( f(~v) )

is also a linear map rf : V →W.
And where f, g : V →W are linear then the function that is their sum

~v
f+g7−→ f(~v) + g(~v)

is again linear f+ g : V →W.
We will now see how the matrix representation of RepB,D(f) is related

to that of RepB,D(rf), and how the representations of RepB,D(f) and
RepB,D(g) combine to give the representation of RepB,D(f+ g).



Example Fix a domain V and codomain W with bases B = 〈~β1, ~β2〉 and
D = 〈~δ1,~δ2〉. Let h : V →W be linear and consider the map 6f : V →W

given by ~v
6f7−→ 6 · h(~v).

Where this is the representation of h(~v)

RepD(h(~v) ) =
(
w1
w2

)
then 6 · h(~v) = 6 · (w1~δ1 + w2~δ2) = (6w1) · ~δ1 + (6w2) · ~δ2. So the
representation of 6h (~v)

RepD(6h (~v)) =

(
6w1
6w2

)
is entry-by-entry bigger by a factor of 6.



For instance, if

H = RepB,D(h) =
(
2 1

3 4

)
then this represents the action of h.

RepD(h(~v)) = RepB,D(h)RepB(~v) =
(
2 1

3 4

)(
v1
v2

)
=

(
2v1 + v2
3v1 + 4v2

)
By the prior slide we know that the output of 6h is 6 times bigger.

RepD(6h (~v)) = RepB,D(6h)
(
v1
v2

)
=

(
12v1 + 6v2
18v1 + 24v2

)
So the matrix representing 6h

RepB,D(6h) =
(
12 6

18 24

)
is entry-by-entry 6 times as large as the matrix representing h.



Example Next consider the representation of the sum f + g of two linear
maps f, g : V →W. For a domain vector ~v let the outputs f(~v) and g(~v)
have these representations.

RepD(f(~v)) =
(
u1
u2

)
RepD(g(~v)) =

(
w1
w2

)
The action of f+ g is this.

~v
f+g7−→ ~u+~v = (u1~δ1 + u2~δ2) + (w1~δ1 +w2~δ2)

= (u1 +w1) ·~δ1 + (u2 +w2) ·~δ2

The effect on the representations of adding the functions is to add the
column vectors.

RepD( (f+ g) (~v) ) =
(
u1 +w1
u2 +w2

)



For instance, let these be the map representations.

RepB,D(f) =
(
2 1

3 4

)
RepB,D(g) =

(
5 8

7 6

)
The functions given have this effect.

RepD(f(~v)) =
(
2 1

3 4

)(
v1
v2

)
=

(
2v1 + v2
3v1 + 4v2

)
RepD(g(~v)) =

(
5 8

7 6

)(
v1
v2

)
=

(
5v1 + 8v2
7v1 + 6v2

)
The prior slide says that f+ g acts in this way

RepD( (f+ g) (~v) )
(
v1
v2

)
=

(
7v1 + 9v2
10v1 + 10v2

)
so its matrix

RepB,D(f+ g) =
(
7 9

10 10

)
is the entry-by-entry sum of the other two.



Definition of matrix sum and scalar multiple

1.3 Definition The scalar multiple of a matrix is the result of entry-by-entry
scalar multiplication. The sum of two same-sized matrices is their
entry-by-entry sum.
Example Where

A =

(
1 −1

2 3

)
B =

(
0 0 2

9 −1/2 5

)
C =

(
1 0

8 −1

)
Then

A+ C =

(
2 −1

10 2

)
5B =

(
0 0 10

45 −5/2 25

)
None of these is defined: A+ B, B+A, B+ C, C+ B.

From the definition, they are not defined because the sizes don’t match
and so the entry-by-entry sum is not possible. But really they are not
defined because the underlying function operations are not possible.
The fact that A has two columns means that functions represented
by A have two-dimensional domains. Functions represented by B have
three-dimensional domains. Adding the two functions would be adding
apples and oranges.



1.4 Theorem Let h, g : V →W be linear maps represented with respect to
bases B,D by the matrices H and G and let r be a scalar. Then with
respect to B,D the map r · h : V →W is represented by rH and the map
h+ g : V →W is represented by H+G.
Proof Generalize the earlier examples. See Exercise 10. QED

1.6 Definition A zero matrix has all entries 0. We write Zn×m or simply Z
(another common notation is 0n×m or just 0).

Example The zero matrix is the identity element for matrix addition.(
3 1 2

5 0 9

)
+

(
0 0 0

0 0 0

)
=

(
3 1 2

5 0 9

)
A zero function Z : V →W is the identity element for function addition,
and the matrix fact accords with the map fact.



Matrix Multiplication



Representing composition

Another function operation, besides scalar multiplication and addition,
is composition.

2.1 Lemma The composition of linear maps is linear.
Proof Let h : V →W and g : W → U be linear. The calculation

g ◦ h
(
c1 ·~v1 + c2 ·~v2

)
= g

(
h(c1 ·~v1 + c2 ·~v2)

)
= g

(
c1 · h(~v1) + c2 · h(~v2)

)
= c1 · g

(
h(~v1)) + c2 · g(h(~v2)

)
= c1 · (g ◦ h)(~v1) + c2 · (g ◦ h)(~v2)

shows that g ◦ h : V → U preserves linear combinations, and so is linear.
QED



Example Consider two linear functions h : V →W and g : W → X

represented as here.

RepB,C(h) =

3 1

2 5

4 6

 RepC,D(g) =
(
8 7 11

9 10 12

)

We will do an explatory computation, to see how these two representations
combine to give the representation of the composition g ◦ h : V → X.

We start with the action of h on ~v ∈ V.

RepC(h(~v)) = RepB,C(h) ·RepB(~v)

=

3 1

2 5

4 6

(v1
v2

)
=

 3v1 + v22v1 + 5v2
4v1 + 6v2





Next, to that apply g.

RepC,D(g) ·RepC(h(~v)) =
(
8 7 11

9 10 12

) 3v1 + v22v1 + 5v2
4v1 + 6v2


=

(
8(3v1 + v2) + 7(2v1 + 5v2) + 11(4v1 + 6v2)

9(3v1 + v2) + 10(2v1 + 5v2) + 12(4v1 + 6v2)

)
Gather terms.

=

(
(8 · 3+ 7 · 2+ 11 · 4)v1 + (8 · 1+ 7 · 5+ 11 · 6)v2
(9 · 3+ 10 · 2+ 12 · 4)v1 + (9 · 1+ 10 · 5+ 12 · 6)v2

)
Rewrite as a matrix-vector multiplication.

=

(
8 · 3+ 7 · 2+ 11 · 4 8 · 1+ 7 · 5+ 11 · 6
9 · 3+ 10 · 2+ 12 · 4 9 · 1+ 10 · 5+ 12 · 6

)(
v1
v2

)
So here is how the two starting matrices combine.

(
8 7 11

9 10 12

)3 1

2 5

4 6

 =

(
8 · 3+ 7 · 2+ 11 · 4 8 · 1+ 7 · 5+ 11 · 6
9 · 3+ 10 · 2+ 12 · 4 9 · 1+ 10 · 5+ 12 · 6

)



Definition of matrix multiplication

2.3 Definition The matrix-multiplicative product of the m×r matrix G and
the r×n matrix H is the m×n matrix P, where

pi,j = gi,1h1,j + gi,2h2,j + · · ·+ gi,rhr,j

so that the i, j-th entry of the product is the dot product of the i-th row of
the first matrix with the j-th column of the second.

GH =


...

gi,1 gi,2 · · · gi,r
...




h1,j
· · · h2,j · · ·

...
hr,j

 =


...

· · · pi,j · · ·
...


Example (

3 1 6

2 5 9

)2 0 4

1 −3 5

4 2 7

 =

(
31 9 59

45 3 96

)



Example This product 1 3 −1

0 0 0

2 0 0

(5 7 1

2 2 0

)

is not defined because the number of columns on the left must equal the
number of rows on the right.
Example Square matrices of the same size have a defined product.1 3 −1

0 0 0

2 0 0

5 7 1

2 2 0

1 −1 2

 =

10 14 −1

0 0 0

10 14 2


This reflects the fact that we can compose two functions from a space to
itself g, h : V → V.



Matrix multiplication represents composition

2.7 Theorem A composition of linear maps is represented by the matrix
product of the representatives.

The book has the proof, which retraces the steps of the example.



Arrow diagrams

This pictures the relationship between maps and matrices.

Vwrt B

Wwrt C

Xwrt D

h
H

g

G

g ◦ h
GH

Above the arrows, the maps show that the two ways of going from V to X,
straight over via the composition or else in two steps by way of W, have the
same effect

~v
g◦h7−→ g(h(~v)) ~v

h7−→ h(~v)
g7−→ g(h(~v))

(this is just the definition of composition). Below the arrows, the matrices
indicate that multiplying GH into the column vector RepB(~v) has the same
effect as multiplying the column vector first by H and then multiplying the
result by G.

RepB,D(g ◦ h) = GH RepC,D(g) RepB,C(h) = GH



Example Let V = R2, W = P2, and X = M2×2. Fix these bases.

B = 〈
(
1

1

)
,

(
1

−1

)
〉 C = 〈x2, x2 + x, x2 + x+ 1〉

D = 〈
(
1 0

0 0

)
,

(
0 2

0 0

)
,

(
0 0

3 0

)
,

(
0 0

0 4

)
〉

Suppose that h : R2 → P2 and g : P2 →M2×2 have these actions.(
a

b

)
h7−→ ax2 + (a+ b) px2 + qx+ r

g7−→
(
p p+ q

0 r

)
Then the composition does this.(

a

b

)
h7−→ ax2 + (a+ b)

g7−→
(
a a

0 a+ b

)
Here is the same statement in the other notation.

g ◦ h (
(
a

b

)
) =

(
a a

0 a+ b

)



We next compute the matrices representing those maps, and we will
finish by checking that the product of G and H is the matrix representing
g ◦ h.

To find H = RepB,D(h), compute the action of h on the domain basis
vectors, (

1

1

)
h7−→ x2 + 2

(
1

−1

)
h7−→ x2

represent the results with respect to D, and make the matrix.

RepC(x
2 + 2) =

 1

−2

2

 RepC(x
2) =

10
0

 H =

 1 1

−2 0

2 0


Do the same for g: see where it maps its domain basis

x2 7→
(
1 1

0 0

)
x2 + x 7→

(
1 2

0 0

)
x2 + x+ 1 7→

(
1 2

0 1

)
and represent those with respect to its codomain basis.

G =


1 1 1

1/2 1 1

0 0 0

0 0 1/4





Next, g ◦ h has this action.(
1

1

)
7→
(
1 1

0 2

) (
1

−1

)
7→
(
1 1

0 0

)
This represents the composition.

RepB,D(g ◦ h) =


1 1

1/2 1/2

0 0

1/2 0


Finish by checking that the product of G with H equals the matrix

representing g ◦ h.

RepC,D(g) ·RepB,C(h) = RepB,D(g ◦ h)
1 1 1

1/2 1 1

0 0 0

0 0 1/4


 1 1

−2 0

2 0

 =


1 1

1/2 1/2

0 0

1/2 0





Order, dimensions, and sizes

An important observation about the order in which we write these
things: in writing the composition g ◦ h, the function g is written first, that
is, leftmost, but it is applied second.

~v
h7−→ h(~v)

g7−→ g(h(~v))

That order carries over to matrices: g ◦ h is represented by GH.
Also consider the dimensions of the spaces.

dimension n space h−→ dimension r space g−→ dimension m space

Briefly, m×r times r×n equals m×n, as here.

2×3 3×4 = 2×4(
2 1 4

−1 0 3

)3 0 2 1

5 0 0 2

1 −1 4 7

 =

(
15 −4 20 32

0 −3 10 20

)



Matrix multiplication is not commutative

Function composition is in general not a commutative operation—
cos(
√
x) is different than

√
cos(x). This holds even in the special case of

composition of linear functions.
Example Changing the order in which we multiply these matrices(

3 3

0 4

)(
−2 6

6 5

)
=

(
12 33

24 20

)
changes the result. (

−2 6

6 5

)(
3 3

0 4

)
=

(
−6 18

18 38

)
Example The product of these two is defined in one order and not defined
in the other. (

3 4

0 2

) (
8 12 0

−4 0 1/2

)



Although the matrix operation of multiplication does not have the
property of being commutative, it does have some nice algebraic properties.

2.12 Theorem If F, G, and H are matrices, and the matrix products are
defined, then the product is associative (FG)H = F(GH) and distributes over
matrix addition F(G+H) = FG+ FH and (G+H)F = GF+HF.
Proof Associativity holds because matrix multiplication represents
function composition, which is associative: the maps (f ◦ g) ◦ h and
f ◦ (g ◦ h) are equal as both send ~v to f(g(h(~v))).

Distributivity is similar. For instance, the first one goes f ◦ (g+ h) (~v) =
f
(
(g+ h)(~v)

)
= f
(
g(~v) + h(~v)

)
= f(g(~v)) + f(h(~v)) = f ◦ g(~v) + f ◦ h(~v) (the

third equality uses the linearity of f). Right-distributivity goes the same
way. QED



Mechanics of Matrix Multiplication



Combinatorics of multiplication

The striking thing about matrix multiplication is the way rows and
columns combine. The i, j entry of the matrix product GH is the dot
product of row i of the left matrix G with column j of the right one H.

pi,j = gi,1h1,j + gi,2h2,j + · · ·+ gi,rhr,j

Here a second row and a third column combine to make a 2, 3 entry.1 1

0 1

1 0

(4
5

6

7

)
=

9 13

5 7

4 6


We can view this as the left matrix acting by multiplying its rows into the
columns of the right matrix. Or we could see it as the right matrix using its
columns to act on the left matrix’s rows.



3.7 Lemma In a product of two matrices G and H, the columns of GH are
formed by taking G times the columns of H

G ·


...

...
~h1 · · · ~hn
...

...

 =


...

...
G · ~h1 · · · G · ~hn

...
...


and the rows of GH are formed by taking the rows of G times H

· · · ~g1 · · ·
...

· · · ~gr · · ·

 ·H =


· · · ~g1 ·H · · ·

...

· · · ~gr ·H · · ·


(ignoring the extra parentheses).



3.2 Definition A matrix with all 0’s except for a 1 in the i, j entry is an i, j
unit matrix (or matrix unit).
Example The 2, 1 unit 2×3 matrix multiplies from the left

(
0 0 0

1 0 0

)2 1 3

5 6 4

7 8 9

 =

(
0 0 0

2 1 3

)

to copy row 1 of the multiplicand into row 2 of the result.
Example From the right the 2, 1 unit 2×3 matrix(

3 4

6 5

)(
0 0 0

1 0 0

)
=

(
4 0 0

5 0 0

)
copies column 2 of the first matrix into column 1 of the result.
Example Rescaling the unit matrix rescales the result.(

3 4

6 5

)(
0 0 0

3 0 0

)
=

(
12 0 0

15 0 0

)



3.8 Definition The main diagonal (or principal diagonal or simply
diagonal) of a square matrix goes from the upper left to the lower right.

3.9 Definition An identity matrix is square and every entry is 0 except for
1’s in the main diagonal.

In×n =


1 0 . . . 0

0 1 . . . 0
...

0 0 . . . 1


Taking the product with an identity matrix returns the multiplicand.
Example Multiplication by an identity from the left(

1 0

0 1

)(
3 2

−1 5

)
=

(
3 2

−1 5

)
or from the right leaves the matrix unchanged.(

3 2

−1 5

)(
1 0

0 1

)
=

(
3 2

−1 5

)



3.12 Definition A diagonal matrix is square and has 0’s off the main diagonal.
a1,1 0 . . . 0

0 a2,2 . . . 0
...

0 0 . . . an,n


Example Multiplication from the left by a diagonal matrix rescales the
rows. (

2 0

0 3

)(
3 2

−1 5

)
=

(
6 4

−3 15

)
From the right it rescales the columns.(

3 2

−1 5

)(
2 0

0 3

)
=

(
6 6

−2 15

)



3.14 Definition A permutation matrix is square and is all 0’s except for a
single 1 in each row and column.
Example Multiplication by a permutation matrix from the left will swap
rows. 0 1 0

1 0 0

0 0 1

1 2 3

4 5 6

7 8 9

 =

4 5 6

1 2 3

7 8 9


From the right it swaps columns.1 2 3

4 5 6

7 8 9

 0 1 0

1 0 0

0 0 1

 =

2 1 3

5 4 6

8 7 9





3.19 Definition The elementary reduction matrices (or just elementary
matrices) result from applying a single Gaussian operation to an identity
matrix.
1) I

kρi−→ Mi(k) for k 6= 0

2) I
ρi↔ρj−→ Pi,j for i 6= j

3) I
kρi+ρj−→ Ci,j(k) for i 6= j

Example Multiplying on the left by the 3×3 matrix M2(1/2) has the effect
of the row operation (1/2)ρ2.1 0 0

0 1/2 0

0 0 1

1 3 0

0 2 5

0 0 0

 =

1 3 0

0 1 5/2

0 0 0


Example Left multiplication by C1,3(−2) performs the row operation
−2ρ1 + ρ3.  1 0 0

0 1 0

−2 0 1

1 3 0

0 2 5

2 1 1

 =

1 3 0

0 2 5

0 −5 1





3.20 Lemma Matrix multiplication can do Gaussian reduction.

1) If H
kρi−→ G then Mi(k)H = G.

2) If H
ρi↔ρj−→ G then Pi,jH = G.

3) If H
kρi+ρj−→ G then Ci,j(k)H = G.

Proof Clear. QED

3.23 Corollary For any matrix H there are elementary reduction matrices R1,
. . . , Rr such that Rr · Rr−1 · · ·R1 ·H is in reduced echelon form.
Example You can do this Gauss-Jordan reduction(

1 2

4 3

)
−4ρ1+ρ2−→ −(1/5)ρ2−→ −2ρ2+ρ1−→

(
1 0

0 1

)
as a product; note that the order is right-to-left.(

1 −2

0 1

)(
1 0

0 −1/5

)(
1 0

−4 1

)
·
(
1 2

4 3

)
=

(
1 0

0 1

)
C2,1(−2)M2(−1/5)C1,2(−4) ·H = I



Example You can bring this augmented matrix to echelon form with
matrix multiplication. 1 −1 2 4

2 −2 −1 6

0 3 1 5


First perform −2ρ1 + ρ2 via left multiplication by C1,2(−2). 1 0 0

−2 1 0

0 0 1

1 −1 2 4

2 −2 −1 6

0 3 1 5

 =

1 −1 2 4

0 0 −5 −2

0 3 1 5


Swap rows 2 and 3 with P2,31 0 0

0 0 1

0 1 0

1 −1 2 4

0 0 −5 −2

0 3 1 5

 =

1 −1 2 4

0 3 1 5

0 0 −5 −2


Here is the full equation.1 0 0

0 0 1

0 1 0

 1 0 0

−2 1 0

0 0 1

1 −1 2 4

2 −2 −1 6

0 3 1 5

 =

1 −1 2 4

0 3 1 5

0 0 −5 −2





Inverses



Function inverses

We finish this section by considering how to represent the inverse of a
linear map. Our goal is, where a linear h has an inverse, to find the
relationship between the matrices RepB,D(h) and RepD,B(h−1).

We first recall some things about inverses. Where π : R3 → R2 is the
projection map and ι : R2 → R3 is the embeddingxy

z

 π7−→
(
x

y

) (
x

y

)
ι7−→

xy
0


then the composition π ◦ ι is the identity map π ◦ ι = id on R2.

(
x

y

)
ι7−→

xy
0

 π7−→
(
x

y

)

We say that ι is a right inverse of π or, what is the same thing, that π is a
left inverse of ι.



However, composition in the other order ι ◦ π doesn’t give the identity
map—here is a vector that is not sent to itself under ι ◦ π.00

1

 π7−→
(
0

0

)
ι7−→

00
0


In fact, π has no left inverse at all. For, if f were to be a left inverse of π

then we would have xy
z

 π7−→
(
x

y

)
f7−→

xy
z


for all of the infinitely many z’s. But a function f cannot send a single
argument

(
x
y

)
to more than one value.

So a function can have a right inverse but no left inverse, or a left inverse
but no right inverse. A function can also fail to have an inverse on either
side; one example is the zero transformation on R2.



Some functions have a two-sided inverse , another function that is
the inverse both from the left and from the right. For instance, the
transformation given by ~v 7→ 2 ·~v has the two-sided inverse ~v 7→ (1/2) ·~v.
The appendix shows that a function has a two-sided inverse if and only if it
is both one-to-one and onto. The appendix also shows that if a function f
has a two-sided inverse then it is unique, so we call it ‘the’ inverse and
write f−1.

In addition, recall that we have shown in Theorem II.2.20 that if a
linear map has a two-sided inverse then that inverse is also linear.



Definition of matrix inverse

4.1 Definition A matrix G is a left inverse matrix of the matrix H if GH is
the identity matrix. It is a right inverse if HG is the identity. A matrix H
with a two-sided inverse is an invertible matrix . That two-sided inverse is
denoted H−1.
Example This matrix

H =

(
2 5

1 3

)
has a two-sided inverse.

H−1 =

(
3 −5

−1 2

)
To check that, we multiply them in both orders. Here is one; the other is
just as easy. (

2 5

1 3

)(
3 −5

−1 2

)
=

(
1 0

0 1

)



Example One advantage of knowing a matrix inverse is that it makes
solving a linear system easy and quick. To solve

2x + 5y = −3

x + 3y = 10

rewrite as a matrix equation(
2 5

1 3

)(
x

y

)
=

(
−3

10

)
and multiply both sides (from the left) by the matrix inverse.(

3 −5

−1 2

)
·
(
2 5

1 3

)(
x

y

)
=

(
3 −5

−1 2

)
·
(
−3

10

)
(
1 0

0 1

)(
x

y

)
=

(
−59

23

)
(
x

y

)
=

(
−59

23

)



This specializes the arrow diagram for composition to the case of
inverses.

Vwrt B

Wwrt C

Vwrt B

h
H

h−1

H−1

id
I

4.2 Lemma If a matrix has both a left inverse and a right inverse then the
two are equal.

4.3 Theorem A matrix is invertible if and only if it is nonsingular.
Proof (For both results.) Given a matrix H, fix spaces of appropriate
dimension for the domain and codomain and fix bases for these spaces.
With respect to these bases, H represents a map h. The statements are true
about the map and therefore they are true about the matrix. QED



4.4 Lemma A product of invertible matrices is invertible: if G and H are
invertible and GH is defined then GH is invertible and (GH)−1 = H−1G−1.

4.7 Lemma A matrix H is invertible if and only if it can be written as the
product of elementary reduction matrices. We can compute the inverse by
applying to the identity matrix the same row steps, in the same order, that
Gauss-Jordan reduce H.



Example This matrix is nonsingular and so is invertible.

A =

1 3 1

2 0 −1

1 2 0


To ease the inverse calculation described in the prior proof, we write the
matrix A next to the 3×3 identity and as we Gauss-Jordan reduce the
matrix on the left, we apply those operations also on the right.1 3 1 1 0 0

2 0 −1 0 1 0

1 2 0 0 0 1

 −2ρ1+ρ2−→
−ρ1+ρ3

1 3 1 1 0 0

0 −6 −3 −2 1 0

0 −1 −1 −1 0 1


−1/6ρ2+ρ3−→

1 3 1 1 0 0

0 −6 −3 −2 1 0

0 0 −1/2 −2/3 −1/6 1


The right-hand side is in echelon form. We continue with the second half of
Gauss-Jordan reduction on the next slide.



−1/6ρ2−→
−2ρ3

1 3 1 1 0 0

0 1 1/2 1/3 −1/6 0

0 0 1 4/3 1/3 −2


−ρ3+ρ1−→

−(1/2)ρ3+ρ2

1 3 0 −1/3 −1/3 2

0 1 0 −1/3 −1/3 1

0 0 1 4/3 1/3 −2


−3ρ2+ρ1−→

1 0 0 2/3 2/3 −1

0 1 0 −1/3 −1/3 1

0 0 1 4/3 1/3 −2


This is the inverse.

A−1 =

 2/3 2/3 −1

−1/3 −1/3 1

4/3 1/3 −2





Finding the inverse of a matrix A is a lot of work but as we noted
earlier, once we have it then solving linear systems A~x = ~b is easy.
Example The linear system

x + 3y + z = 2

2x − z = 12

x + 2y = 4

is this matrix equation.1 3 1

2 0 −1

1 2 0

xy
z

 =

 212
4


Solve it by multiplying both sides from the left by the inverse that we
found earlier.xy

z

 =

 2/3 2/3 −1

−1/3 −1/3 1

4/3 1/3 −2

 212
4

 =

16/3−2/3

−4/3





We sometimes want to repeatedly solve systems with the same left side
but different right sides. This system equals the one on the prior slide but
for one number on the right.

x + 3y + z = 1

2x − z = 12

x + 2y = 4

The solution is this.xy
z

 =

 2/3 2/3 −1

−1/3 −1/3 1

4/3 1/3 −2

 112
4

 =

14/3−1/3

−8/3





The inverse of a 2×2 matrix

4.11 Corollary The inverse for a 2×2 matrix exists and equals(
a b

c d

)−1

=
1

ad− bc

(
d −b

−c a

)
if and only if ad− bc 6= 0.
Proof This computation is Exercise 21 . QED

Example (
2 4

−1 1

)−1

=
1

6

(
1 −4

1 2

)
=

(
1/6 −2/3

1/6 1/3

)
The 3×3 formula is much more complicated. We will cover it in the next
chapter.


	Sums and Scalar Products
	Matrix Multiplication
	Mechanics of Matrix Multiplication
	Inverses

