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Definition



Homomorphism

1.1 Definition A function between vector spaces h : V →W that preserves
addition

if ~v1,~v2 ∈ V then h(~v1 +~v2) = h(~v1) + h(~v2)

and scalar multiplication

if ~v ∈ V and r ∈ R then h(r ·~v) = r · h(~v)

is a homomorphism or linear map.



Example Of these two maps h, g : R2 → R, the first is a homomorphism
while the second is not.

(
x

y

)
h7−→ 2x− 3y

(
x

y

)
g7−→ 2x− 3y+ 1

The map h respects addition

h(

(
x1
y1

)
+

(
x2
y2

)
) = h(

(
x1 + x2
y1 + y2

)
) = 2(x1 + x2) − 3(y1 + y2)

= (2x1 − 3y1) + (2x2 − 3y2) = h(

(
x1
y1

)
) + h(

(
x2
y2

)
)

and scalar multiplication.

r · h(
(
x

y

)
) = r · (2x− 3y) = 2rx− 3ry = (2r)x− (3r)y = h(r ·

(
x

y

)
)

In contrast, g does not respect addition.

g(

(
1

4

)
+

(
5

6

)
) = −17 g(

(
1

4

)
) + g(

(
5

6

)
) = −16



We proved these two while studying isomorphisms.
1.6 Lemma A linear map sends the zero vector to the zero vector.
1.7 Lemma The following are equivalent for any map f : V →W between vector

spaces.
(1) f is a homomorphism
(2) f(c1 ·~v1 + c2 ·~v2) = c1 · f(~v1) + c2 · f(~v2) for any c1, c2 ∈ R and

~v1,~v2 ∈ V
(3) f(c1 ·~v1 + · · ·+ cn ·~vn) = c1 · f(~v1) + · · ·+ cn · f(~vn) for any

c1, . . . , cn ∈ R and ~v1, . . . ,~vn ∈ V

To verify that a map is a homomorphism, we most often use (2).
Example Between any two vector spaces the zero map
Z : V →W given by Z(~v) = ~0W is a linear map. Using (2):
Z(c1~v1 + c2~v2) = ~0W = ~0W +~0W = c1Z(~v1) + c2Z(~v2).



Example The inclusion map ι : R2 → R3

ι(

(
x

y

)
) =



x

y

0




is a homomorphism.

ι(c1 ·
(
x1
y1

)
+ c2 ·

(
x2
y2

)
) = ι(

(
c1x1 + c2x2
c1y1 + c2y2

)
)

=



c1x1 + c2x2
c1y1 + c2y2

0




=



c1x1
c1y1
0


+



c2x2
c2y2
0




= c1 · ι(
(
x1
y1

)
) + c2 · ι(

(
x2
y2

)
)



Example The derivative is a transformation on polynomial spaces. For
instance, consider d/dx : P2 → P1 given by

d/dx (ax2 + bx+ c) = 2ax+ b

(examples are d/dx (3x2 − 2x+ 4) = 6x− 2 and d/dx (x2 + 1) = 2x).
It is a homomorphism.

d/dx
(
r1(a1x

2 + b1x+ c1) + r2(a2x
2 + b2x+ c2)

)

= d/dx
(
(r1a1 + r2a2)x

2 + (r1b1 + r2b2)x+ (r1c1 + r2c2)
)

= 2(r1a1 + r2a2)x+ (r1b1 + r2b2)

= (2r1a1x+ r1b1) + (2r2a2x+ r2b2)

= r1 · d/dx (a1x2 + b1x+ c1) + r2 · d/dx (a2x2 + b2x+ c2)



Example The trace of a square matrix is the sum down the upper-left to
lower-right diagonal. Thus Tr : M2×2 → R is this.

Tr(
(
a b

c d

)
) = a+ d

It is linear.

Tr( r1 ·
(
a1 b1
c1 d1

)
+ r2 ·

(
a2 b2
c2 d2

)
)

= Tr(
(
r1a1 + r2a2 r1b1 + r2b2
r1c1 + r2c2 r1d1 + r2d2

)
)

= (r1a1 + r2a2) + (r1d1 + r2d2)

= r1(a1 + d1) + r2(a2 + d2)

= r1 ·Tr(
(
a1 b1
c1 d1

)
) + r2 ·Tr(

(
a2 b2
c2 d2

)
)



1.9 Theorem A homomorphism is determined by its action on a basis: if V is
a vector space with basis 〈~β1, . . . , ~βn〉, if W is a vector space, and if
~w1, . . . , ~wn ∈W (these codomain elements need not be distinct) then there
exists a homomorphism from V to W sending each ~βi to ~wi, and that
homomorphism is unique.
Example The book has the proof. Here is an illustration. Consider a map
h : R2 → R2 with this action on a basis.

(
1

1

)
h7−→
(
1

3

) (
1

0

)
h7−→
(
2

0

)

The effect of the map on any vector ~v at all is determined by those two
facts. Represent that vector ~v with respect to the basis.

(
−1

5

)
= 5 ·

(
1

1

)
− 6 ·

(
1

0

)

Compute h(~v) using the definition of homomorphism.

h(~v) = h( 5 ·
(
1

1

)
− 6 ·

(
1

0

)
) = 5 ·

(
1

3

)
− 6 ·

(
2

0

)
=

(
−7

15

)



Example Consider f : R3 → R3 with this effect on the standard basis.

f(~e1) =



1

2

−1


 f(~e2) =



0

1

0


 f(~e3) =



3

−1

0




Because this is the standard basis, the effect of the map on any vector
~v ∈ R3 is especially easy to compute. For instance,

RepE3,E3
(



−5

0

10


) =



−5

0

10




and so we have this.

f(



−5

0

10


) = −5 ·



1

2

−1


+ 0 ·



0

1

0


+ 10 ·



3

−1

0


 =



25

−20

5




1.10 Definition Let V and W be vector spaces and let B = 〈~β1, . . . , ~βn〉 be a
basis for V. A function defined on that basis f : B→W is extended linearly
to a function f̂ : V →W if for all ~v ∈ V such that ~v = c1~β1 + · · ·+ cn~βn, the
action of the map is f̂(~v) = c1 · f(~β1) + · · ·+ cn · f(~βn).



Example Consider the action tΘ : R2 → R2 of rotating all vectors in the
plane through an angle Θ. These drawings show that this map satisfies the
addition

~v1

~v2
~v1 +~v2

tπ/67−→
tΘ(~v1)

tΘ(~v2)
tΘ(~v1 +~v2)

and scalar multiplication conditions.

~v
1.5 ·~v

tπ/67−→ tΘ(~v)

tΘ(1.5 ·~v)

We will develop the formula for tΘ.



Fix a basis for the domain R2; the standard basis E2 is convenient. We
want the basis vectors mapped as here.

(
cosΘ
sinΘ

)

(
− sinΘ

cosΘ

)
(
1

0

)
7→
(
cos θ
sin θ

) (
0

1

)
7→
(
− sin θ
cos θ

)

Extend linearly.

tθ(

(
x

y

)
) = tθ(x ·

(
1

0

)
+ y ·

(
0

1

)
)

= x · tθ(
(
1

0

)
) + y · tθ(

(
0

1

)
)

= x ·
(
cos θ
sin θ

)
+ y ·

(
− sin θ
cos θ

)

=

(
x cos θ− y sin θ
x sin θ+ y cos θ

)



Example One basis of the space of quadratic polynomials P2 is
B = 〈x2, x, 1〉. Define the evaluation map eval3 : P2 → R by specifying its
action on that basis

x2
eval37−→ 9 x

eval37−→ 3 1
eval37−→ 1

and then extending linearly.

eval3(ax2 + bx+ c) = a · eval3(x2) + b · eval3(x) + c · eval3(1)
= 9a+ 3b+ c

For instance, eval3(x2 + 2x+ 3) = 9+ 6+ 3 = 18.
On the basis elements, we can describe the action of this map as:

plugging the value 3 in for x. That remains true when we extend linearly,
so eval3(p(x) ) = p(3).



1.12 Definition A linear map from a space into itself t : V → V is a linear
transformation .
Example For any vector space V the identity map id : V → V given by
~v 7→ ~v is a linear transformation. The check is easy.
Example In R3 the function fyz that reflects vectors over the yz-plane



x

y

z


 fyz7−→



−x

y

z




is a linear transformation.

fyz(r1



x1
y1
z1


+ r2



x2
y2
z2


) = fyz(



r1x1 + r2x2
r1y1 + r2y2
r1z1 + r2z2


) =



−(r1x1 + r2x2)

r1y1 + r2y2
r1z1 + r2z2




= r1



−x1
y1
z1


+ r2



−x2
y2
z2


 = r1fyz(



x1
y1
z1


) + r2fyz(



x2
y2
z2


)



1.17 Lemma For vector spaces V and W, the set of linear functions from V to
W is itself a vector space, a subspace of the space of all functions from V to
W.
We denote the space of linear maps from V to W by L(V,W).

The book contains the proof; instead we will do a couple of examples.

Example We can combine the two homomorphisms f, g : P1 → R2

f(a0 + a1x) =

(
a0 + a1
0

)
g(a0 + a1x) =

(
4a1
a1

)

into a function 2f+ 3g : P1 → R2 whose action is this.

(2f+ 3g) (a0 + a1x) =

(
2a0 + 14a1

3a1

)

The point of the lemma is that the linear combination 2f + 3g is
also a homomorphism; the check is routine. The collection of
homomorphisms from P1 to R2 is closed under linear combinations of those
homomorphisms— it is a vector space.



Example Consider L(R,R2). A member of L(R,R2) is a linear map. A
linear map is determined by its action on a basis of the domain space. Fix
these bases.

BR = E1 = 〈1〉 BR2 = E2 = 〈
(
1

0

)
,

(
0

1

)
〉

Thus the functions that are elements of L(R,R2) are determined by c1 and
c2 here.

1
t7−→ c1

(
1

0

)
+ c2

(
0

1

)

We could write each such map as h = hc1,c2 . There are two parameters and
thus L(R,R2) is a dimension 2 space.



Range space and null space



2.1 Lemma Under a homomorphism, the image of any subspace of the
domain is a subspace of the codomain. In particular, the image of the entire
space, the range of the homomorphism, is a subspace of the codomain.

The book has the proof; we instead consider an example.



Example Let f : R2 →M2×2 be
(
a

b

)
f7−→
(
a a+ b

2b b

)

(the check that it is a homomorphism is routine). One subspace of the
domain is the x axis.

S = {

(
a

0

)
| a ∈ R }

The image under f of the x axis is a subspace of of the codomain M2×2.

f(S) = {

(
a a

0 0

)
| a ∈ R }

Another subspace of R2 is R2 itself. The image of R2 under f is this
subspace of M2×2.

f(R2) = {

(
1 1

0 0

)
· c1 +

(
0 1

2 1

)
· c2 | c1, c2 ∈ R }



Example For any angle θ, the function tθ : R2 → R2 that rotates vectors
counterclockwise through an angle θ is a homomorphism.

In the domain R2 each line through the origin is a subspace. The image
of that line under this map is another line through the origin, a subspace of
the codomain R2.



Range space

2.2 Definition The range space of a homomorphism h : V →W is

R(h) = {h(~v) | ~v ∈ V }

sometimes denoted h(V). The dimension of the range space is the map’s
rank .
Example This map from M2×2 to R2 is linear.

(
a b

c d

)
h7−→
(
a+ b

2a+ 2b

)

The range space is a line through the origin.

{

(
t

2t

)
| t ∈ R }

Every member of that set is the image of a 2×2 matrix.
(
t

2t

)
= h(

(
t 0

0 0

)
)

The map’s rank is 1.



Example The derivative map d/dx : P4 → P4 is linear. Its range is
R(d/dx) = P3. (Verifying that every member of P3 is the derivative of
some member of P4 is easy.) The rank of this derivative function is the
dimension of P3, namely 4.
Example Projection π : R3 → R2



x

y

z


 7→

(
x

y

)

is a linear map; the check is routine. The range space is R(π) = R2 because
given a vector ~w ∈ R2

~w =

(
a

b

)

we can find a ~v ∈ R3 that maps to it, specifically any ~v with a first
component a and second component b. Thus the rank of π is 2.

In the book’s next section, on computing linear maps, we will do more
examples of determining the range space.



Many-to-one

In moving from isomorphisms to homomorphisms we dropped the
requirement that the maps be onto and one-to-one. But any homomorphism
h : V →W is onto its range space R(h), so dropping the onto condition has,
in a way, no effect on the range. It doesn’t allow any essentially new maps.

In contrast, consider the effect of dropping the one-to-one condition.
With that, an output vector ~w ∈ W may have many associated inputs,
many ~v ∈ V such that h(~v) = ~w.

Recall that for any function h : V →W, the set of elements of V that
map to ~w ∈W is the inverse image h−1(~w) = {~v ∈ V | h(~v) = ~w }.

The structure of the inverse image sets will give us insight into the
definition of homomorphism.



Example Projection π : R2 → R onto the x axis is linear.

π(

(
x

y

)
) = x

Here are some elements of π−1(2). Think of these as “2 vectors.”

7−→
0

Think of elements of π−1(3) as “3 vectors.”

7−→
0

These elements of π−1(5) are “5 vectors.”

7−→
0



These drawings give us a way to make the definition of homomorphism
more concrete. Consider preservation of addition.

π(~u) + π(~v) = π(~u+~v)

If ~u is such that π(~u) = 2, and ~v is such that π(~v) = 3, then ~u +~v will be
such that the sum π(~u+~v) = 5. That is, a “2 vector” plus a “3 vector” is a
“5 vector.” Red plus blue makes magenta.

A similar interpretation holds for preservation of scalar multiplication:
the image of an “r · 2 vector” is r times 2.



Example This function h : R2 → R2 is linear.
(
x

y

)
7→
(
x+ y

2x+ 2y

)

Here are elements of h−1(

(
1

2

)
). (Only one inverse image element is shown

as a vector, most are indicated with dots.)

7−→

Here are some elements of h−1(

(
1.5

3

)
) and h−1(

(
2.5

5

)
).

7−→ 7−→



The way that the range space vectors add
(
1

2

)
+

(
1.5

3

)
=

(
2.5

5

)

is reflected in the domain: red plus blue makes magenta.

That is, preservation of addition is: h(~v1) + h(~v2) = h(~v1 +~v2).



Homomorphisms organize the domain

So the intuition is that a linear map organizes its domain into inverse
images,

such that those sets reflect the structure of the range.



Example Projection π : R3 → R2 is a homomorphism.


x

y

z


 7→

(
x

y

)

Here we draw the range R2 as the xy-plane inside of R3.

In the range the parallelogram shows a vector addition ~w1 + ~w2 = ~w3.
The diagram shows some of the points in each inverse image π−1(~w1),

π−1(~w2), and π−1(~w3). The sum of a vector ~v1 ∈ π−1(~w1) and a vector
~v2 ∈ π−1(~w2) equals a vector ~v3 ∈ π−1(~w3). A ~w1 vector plus a ~w2 vector
equals a ~w3 vector.



This interpretation of the definition of homomorphism also holds when
the spaces are not ones that we can sketch.
Example Let h : P2 → R2 be

ax2 + bx+ c 7→
(
b

b

)

and consider these three members of the range such that ~w1 + ~w2 = ~w3

~w1 =

(
1

1

)
~w2 =

(
−1

−1

)
~w3 =

(
0

0

)

The inverse image of ~w1 is h−1(~w1) = {a1x
2 + 1x+ c1 | a1, c1 ∈ R2 }.

Members of this set are “ ~w1 vectors.” The inverse image of ~w2 is
h−1(~w2) = {a2x

2 − 1x+ c2 | a2, c2 ∈ R }; these are “ ~w2 vectors.” The
“ ~w3 vectors” are members of h−1(~w3) = {a3x

2 + 0x+ c3 | a3, c3 ∈ R2 }.
Any ~v1 ∈ h−1(~w1) plus any ~v2 ∈ h−1(~w2) equals a ~v3 ∈ h−1(~w3): a

quadratic with an x coefficient of 1 plus a quadratic with an x coefficient of
−1 equals a quadratic with an x coefficient of 0.



Null space

In each of those examples, the homomorphism h : V →W shows how to
view the domain V as organized into the inverse images h−1(~w).

In the examples these inverse images are all the same, but shifted. So if
we describe one of them then we understand how the domain is divided.
Vector spaces have a distinguished element, ~0. So we next consider the
inverse image h−1(~0).



2.10 Lemma For any homomorphism the inverse image of a subspace of the
range is a subspace of the domain. In particular, the inverse image of the
trivial subspace of the range is a subspace of the domain.

The book has the verification.



2.11 Definition The null space or kernel of a linear map h : V →W is the
inverse image of ~0W .

N (h) = h−1(~0W) = {~v ∈ V | h(~v) = ~0W }

The dimension of the null space is the map’s nullity .

0V 0W

Note Strictly, the trivial subspace of the codomain is not ~0W , it is {~0W },
and so we may think to write the nullspace as h−1({~0W }). But we have
defined the two sets h−1(~w) and h−1({ ~w }) to be equal and the first is easier
to write.



Example Consider the derivative d/dx : P2 → P1. This is the nullspace;
note that it is a subset of the domain

N (d/dx) = {ax2 + bx+ c | 2ax+ b = 0 }

(the ‘0’ there is the zero polynomial 0x+ 0). Now, 2ax+ b = 0 if and only if
they have the same constant coefficient b = 0, the same x coefficient of
a = 0, and the same coefficient of x2 (which gives no restriction). So this is
the nullspace, and the nullity is 1.

N (d/dx) = {ax2 + bx+ c | a = 0, b = 0, c ∈ R } = {c | c ∈ R }

Example The function h : R2 → R1 given by
(
a

b

)
7→ 2a+ b

has this null space and so its nullity is 1.

N (h) = {

(
a

b

)
| 2a+ b = 0 } = {

(
−1/2

1

)
b | b ∈ R }



Example The homomorphism f : M2×2 → R2

(
a b

c d

)
f7−→
(
a+ b

c+ d

)

has this null space

N (f) = {

(
a b

c d

)
| a+ b = 0 and c+ d = 0 }

= {

(
−b b

−d d

)
| b, d ∈ R }

and a nullity of 2.
Example The dilation function d3 : R2 → R2

(
a

b

)
7→
(
3a

3b

)

has N (d3) = {~0 }. A trivial space has an empty basis so d3’s nullity is 0.



Rank plus nullity

Recall the example map h : R2 → R2

(
x

y

)
7→
(
x+ y

2x+ 2y

)

whose range space R(h) is the line y = 2x and whose domain is organized
into lines, N (h) is the line y = −x. There, an entire line’s worth of domain
vectors collapses to the single range point.

7−→

In moving from domain to range, this maps drops a dimension. We can
account for it by thinking that each output point absorbs a one-dimensional
set.



2.14 Theorem A linear map’s rank plus its nullity equals the dimension of its
domain.

The book contains the proof.

Example Consider this map h : R3 → R.


x

y

z


 h7−→ x/2+ y/5+ z

The null space is this plane.

N (h) = h−1(0) = {



x

y

z


 | x/2+ y/5+ z = 0 }

Other inverse image sets are also planes.

h−1(1) = {



x

y

z


 | x/2+ y/5+ z = 1 } = {



x

y

z


 | z = 1− x/2− y/5 }



This shows the inverse images h−1(0) and h−1(1) lined up on the z axis.

So h breaks the domain into stacked planes—any two inverse images
h−1(r1) and h−1(r2) are collections of domain vectors whose endpoints form
a plane. The only difference between these 2-dimensional subsets is where
they sit in the stack, shown here as where they intersect z axis.

That is, h partitions the 3-dimensional domain into 2-dimensional sets,
leaving 1 dimension of freedom, which matches the dimension of the map’s
range.



Example Projection π : R3 → R2



a

b

c


 7→

(
a

b

)

takes a 3-dimensional domain to a 2-dimensional range. Its null space is the
z-axis, so its nullity is 1.

This example shows the idea of the proof particularly clearly. Take the
basis BN = 〈~e3〉 for the null space. Expand that to the basis E3 for the
entire domain. On an input vector the action of π is

c1~e1 + c2~e2 + c3~e3 7→ c1~e1 + c2~e2 +~0

and so the domain is organized by π into inverse images that are vertical
lines, one-dimensional sets like the null space.



Example The derivative function d/dx : P2 → P1

ax2 + bx+ c 7→ 2a · x+ b

has this range space

R(d/dx) = {d · x+ e | d, e ∈ R } = P1

(the linear polynomial dx + e ∈ P1 is the image of any antiderivative
(d/2)x2 + ex+ C, where C ∈ R). This is its null space.

N (d/dx) = {0x2 + 0x+ c | c ∈ R } = {c | c ∈ R }

The rank is 2 while the nullity is 1, and they add to the domain’s
dimension 3.



Example The dilation function d3 : R2 → R2

(
a

b

)
7→
(
3a

3b

)

has range space R2 and a trivial nullspace N (d3) = {~0 }. So its rank is 2
and its nullity is 0.

The book’s next section is on computing linear maps, and we will
compute more null spaces there.



2.18 Lemma Under a linear map, the image of a linearly dependent set is
linearly dependent.
Proof Suppose that c1~v1 + · · ·+ cn~vn = ~0V with some ci nonzero. Apply
h to both sides: h(c1~v1 + · · · + cn~vn) = c1h(~v1) + · · · + cnh(~vn) and
h(~0V ) = ~0W . Thus we have c1h(~v1) + · · · + cnh(~vn) = ~0W with some ci
nonzero. QED

Example The trace function Tr : M2×2 → R
(
a b

c d

)
7→ a+ d

is linear. This set of matrices is dependent.

S = {

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
2 1

0 0

)
}

The three matrices map to 1, 0, and 2 respectively. The set {1, 0, 2 } ⊆ R is
linearly dependent.



A one-to-one homomorphism is an isomorphism

2.20 Theorem Where V is an n-dimensional vector space, these are equivalent
statements about a linear map h : V →W.
(1) h is one-to-one
(2) h has an inverse from its range to its domain that is a linear map
(3) N (h) = {~0 }, that is, nullity(h) = 0
(4) rank(h) = n
(5) if 〈~β1, . . . , ~βn〉 is a basis for V then 〈h(~β1), . . . , h(~βn)〉 is a basis for

R(h)

The book has the proof.



Transformations of R2



Lines go to lines

In a real space Rn a line through the origin is a set {r ·~v | r ∈ R } of
multiples of a nonzero vector.

Consider a transformation t : Rn → Rn. It is linear and so t’s action

r ·~v t7−→ r · t(~v)

sends members of the line {r ·~v | r ∈ R } in the domain to members of the
line {s · t(~v) | s ∈ R } in the codomain.

Thus, under a transformation, lines through the origin map to lines
through the origin. Further, the action of t is determined by its effect t(~v)
on any nonzero element of the domain line.



Example Consider the line y = 2x in the plane

{r ·
(
1

2

)
| r ∈ R }

and this transformation.
(
x

y

)
7→
(
x+ 3y

2x+ 4y

)

The map’s effect on any vector in the line is easy to compute.

~v =

(
1

2

)
t7−→
(
7

10

)

The linear map property t(r · ~v) = r · t(~v) imposes a uniformity on t’s
action: t has twice the effect on 2~v, three times the effect on 3~v, etc.

(
2

4

)
t7−→
(
14

20

) (
−3

−6

)
t7−→
(
−21

−30

) (
r

2r

)
t7−→
(
7r

10r

)

In short: the action of t on any nonzero ~v determines its action on any
other vector r~v in the line [{~v }].



Pick one, any one

Every plane vector is in some line through the origin so to understand
what t : R2 → R2 does to plane elements it suffices to understand what it
does to lines through the origin. By the prior slide, to understand what t
does to a line through the origin it suffices to understand what it does to a
single nonzero vector in that line.

So one way to understand a transformation’s action is to take a set
containing one nonzero vector from each line through the origin, and
describe where the transformation maps the elements of that set.

A natural set with one nonzero element from each line through the
origin is the upper half unit circle (we will explain the colors below).

{

(
x

y

)
=

(
cos(t)
sin(t)

)
| 0 6 t < π }



Dilate x

Example The map (
x

y

)
7→
(
2x

y

)

doubles the first coordinate while keeping the second coordinate constant.
This shows the transformation of the upper half circle.

→



Reverse orientation

Example Here we dilate by a negative.
(
x

y

)
7→
(
−x

y

)

The transformation of the upper half circle shows why we used the colors.
In the domain they are, taken counterclockwise, red, orange, yellow, green,
blue, indigo, violet. In the codomain, again taken counterclockwise, they do
the opposite.

→



Combine dilations

Example Here we dilate both x and y.
(
x

y

)
7→
(
−x

3y

)

Again the color order reverses, in addition to the stretching along the
y axis.

→

The two dilations combine independently in that the first coordinate of the
output uses only x and the second coordinate of the output uses only y.



Skew

Example Next is a map with an output coordinate affected by both x
and y. (

x

y

)
7→
(
x+ 2y

y

)

→

On the x axis, where y = 0, the output’s first coordinate is the same as the
input’s first coordinate. However as we move away from the x axis the y’s
get larger, and the first coordinate of the output is increasingly affected.
(One definition of skew is: having an oblique direction or position;
slanting.)



Skew the other way

Example We can flip which output coordinate is affected by both x and y.
(
x

y

)
7→
(

x

2x+ y

)

→

In addition to dilation we see clear rotation, for instance of the red input
vector.



Same idea but with a smaller effect

Example (
x

y

)
7→
(

x

(1/2)x+ y

)

→

Observe that the rotation is not even. A red vector is rotated quite a bit
but a green vector, near the y axis, is not rotated much. And right on the
y-axis the vector is not rotated at all.



Pure roation

Example This rotates every vector counterclockwise through the angle θ.
(
x

y

)
7→
(
cos(θ) · x− sin(θ) · y
cos(θ) · x+ sin(θ) · y

)

In this picture θ = π/6.

→



Projection

Example Maps can lose a dimension.
(
x

y

)
7→
(
x

0

)

The output is one-dimensional.

→



Example The map may project the input vector to a line that is not an
axis. (

x

y

)
7→
(
x

2x

)

The two-dimensional input is sent to an output that is one-dimensional.

→



A generic map

Example An arbitrary map
(
x

y

)
7→
(
x+ 2y

3x+ 4y

)

may have an action that is a mixture of the effects shown above.

→

This shows dilation, rotation, and orientation reversal.
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