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Basis



Definition of basis

1.1 Definition A basis for a vector space is a sequence of vectors that is
linearly independent and that spans the space.

Because a basis is a sequence, meaning that bases are different if they
contain the same elements but in different orders, we denote it with angle
brackets 〈~β1, ~β2, . . .〉.
Example This is a basis for R2.

〈
(
1

−1

)
,

(
1

1

)
〉

It is linearly independent.

c1

(
1

−1

)
+ c2

(
1

1

)
=

(
0

0

)
=⇒ c1 + c2 = 0

−c1 + c2 = 0
=⇒ c1 = 0, c2 = 0

And it spans R2 since

c1

(
1

−1

)
+ c2

(
1

1

)
=

(
x

y

)
=⇒ c1 + c2 = x

−c1 + c2 = y

has the solution c1 = (1/2)x− (1/2)y and c2 = (1/2)x+ (1/2)y.



Example In the vector space of linear polynomials P1 = {a+ bx | a, b ∈ R }

one basis is B = 〈1+ x, 1− x〉.
Check that is a basis by verifying that it is linearly independent

0 = c1(1+ x) + c2(1− x) =⇒ 0 = c1 + c2, 0 = c1 − c2 =⇒ c1 = c2 = 0

and that it spans the space.

a+ bx = c1(1+ x) + c2(1− x) =⇒ c1 = (a+ b)/2, c2 = (a− b)/2

Example This is a basis for M2×2.

〈
(
1 0

0 0

)
,

(
0 2

0 0

)
,

(
0 0

3 0

)
,

(
0 0

0 4

)
〉

This is another one.

〈
(
1 0

0 0

)
,

(
1 2

0 0

)
,

(
1 2

3 0

)
,

(
1 2

3 4

)
〉



Example This is a basis for R3.

E3 = 〈

10
0

 ,
01
0

 ,
00
1

〉
Calculus books sometimes call those ~ı, ~, and ~k.

1.5 Definition For any Rn

En = 〈


1

0
...
0

 ,

0

1
...
0

 , . . . ,

0

0
...
1

〉
is the standard (or natural) basis. We denote these vectors ~e1, . . . ,~en.

Checking that En is a basis for Rn is routine.



Although a basis is a sequence we will follow the common practice and
refer to it as a set.

1.12 Theorem In any vector space, a subset is a basis if and only if each
vector in the space can be expressed as a linear combination of elements of
the subset in one and only one way.
Proof A sequence is a basis if and only if its vectors form a set that spans
and that is linearly independent. A subset is a spanning set if and only if
each vector in the space is a linear combination of elements of that subset
in at least one way. Thus we need only show that a spanning subset is
linearly independent if and only if every vector in the space is a linear
combination of elements from the subset in at most one way.



Consider two expressions of a vector as a linear combination of the
members of the subset. Rearrange the two sums, and if necessary add some
0 · ~βi terms, so that the two sums combine the same ~β’s in the same order:
~v = c1~β1 + c2~β2 + · · ·+ cn~βn and ~v = d1~β1 + d2~β2 + · · ·+ dn~βn. Now

c1~β1 + c2~β2 + · · ·+ cn~βn = d1~β1 + d2~β2 + · · ·+ dn~βn

holds if and only if

(c1 − d1)~β1 + · · ·+ (cn − dn)~βn = ~0

holds. So, asserting that each coefficient in the lower equation is zero is the
same thing as asserting that ci = di for each i, that is, that every vector is
expressible as a linear combination of the ~β’s in a unique way. QED



Example This is a vector and basis for the vector space R3.

~v =

12
3

 ∈ R3 B = 〈

11
1

 ,
11
0

 ,
10
0

〉 = 〈~β1, ~β2, ~β3〉
Find how to express ~v as c1~β1 + c2~β2 + c3~β3 by solving this system.

c1 + c2 + c3 = 1

c1 + c2 = 2

c1 = 3

By eye we see just what the Theorem says we will see: there is one and
only one solution c1 = 3, c2 = −1, and c3 = −1.



1.13 Definition In a vector space with basis B the representation of ~v with
respect to B is the column vector of the coefficients used to express ~v as a
linear combination of the basis vectors:

RepB(~v) =


c1
c2
...
cn


B

where B = 〈~β1, . . . , ~βn〉 and ~v = c1~β1 + c2~β2 + · · ·+ cn~βn. The c’s are the
coordinates of ~v with respect to B.

The prior slide shows that where

~v =

12
3

 B = 〈

11
1

 ,
11
0

 ,
10
0

〉
we have this.

RepB(~v) =

 3

−1

−1


B



Example Above we saw that in P1 = {a+ bx | a, b ∈ R } one basis is
B = 〈1 + x, 1 − x〉. As part of that we computed the coefficients needed to
express a member of P1 as a combination of basis vectors.

a+ bx = c1(1+ x) + c2(1− x) =⇒ c1 = (a+ b)/2, c2 = (a− b)/2

For instance, the polynomial 3+ 4x has this expression

3+ 4x = (7/2) · (1+ x) + (−1/2) · (1− x)

so its representation is this.

RepB(3+ 4x) =
(
7/2

−1/2

)



Example With respect to R3’s standard basis E3 the vector

~v =

 2

−3

1/2


has this representation.

RepE3
(~v) =

 2

−3

1/2


In general, any ~w ∈ Rn has RepEn

(~w) = ~w.



Dimension



Definition of dimension

2.1 Definition A vector space is finite-dimensional if it has a basis with
only finitely many vectors.
Example The space R3 is finite-dimensional since it has a basis with three
elements E3.
Example The space of quadratic polynomials P2 has at least one basis with
finitely many elements, 〈1, x, x2〉, so it is finite-dimensional.
Example The space M2×2 of 2×2 matrices is finite-dimensional. Here is one
basis with finitely many members.

〈
(
1 0

0 0

)
,

(
1 1

0 0

)
,

(
1 1

1 0

)
,

(
1 1

1 1

)
〉

Note From this point on we will restrict our attention to vector spaces that
are finite-dimensional. All the later examples, definitions, and theorems
assume this of the spaces.



We will show that for any finite-dimensional space, all of its bases have
the same number of elements.
Example Each of these is a basis for P2.

B0 = 〈1, 1+ x, 1+ x+ x2〉
B1 = 〈1+ x+ x2, 1+ x, 1〉
B2 = 〈x2, 1+ x, 1− x〉
B3 = 〈1, x, x2〉

Each has three elements.
Example Here are two different bases for M2×2.

B0 = 〈
(
1 0

0 0

)
,

(
1 1

0 0

)
,

(
1 1

1 0

)
,

(
1 1

1 1

)
〉

B1 = 〈
(
0 0

0 1

)
,

(
0 0

1 0

)
,

(
0 1

0 0

)
,

(
1 0

0 0

)
〉

Both have four elements.



All of a space’s bases are the same size

2.4 Theorem In any finite-dimensional vector space, all bases have the same
number of elements.
Note: the proof in the book is different. This one relies more on
computation with coordinates.
Proof Fix a vector space with at least one finite basis. From among all of
this space’s bases, choose one B = 〈~β1, . . . , ~βn〉 that has minimal size. We
will show that any other basis D = 〈~δ1,~δ2, . . .〉 also has n members.
Because B has minimal size, D cannot have fewer than n vectors. We will
argue that it cannot have more.

So suppose that ~δ1, . . . , ~δn+1 are distinct. The assumption
that D is linearly independent gives that the only relationship
a1~δ+ 1+ · · ·+ an+1~δn+1 = ~0 is the one where each ai is zero. We shall get
a contradiction by finding that there is a nontrivial relationships among
these n+ 1 vectors. First represent them with respect to B.

RepB(~δ1) =


c1,1
...
cn,1

 · · · RepB(~δn+1) =


c1,n+1

...
cn,n+1





Lemma 1.18 says that a relationship holds among the vectors
a1~δ1 + · · ·+ an+1~δn+1 = ~0 if and only if the same relationship holds among
the representations.

a1


c1,1
...
cn,1

+ · · ·+ an+1


c1,n+1

...
cn,n+1

 =


0
...
0


Here the ci,j are fixed, since they are the coefficients in the representations
of the given vectors, while we are looking for the ai. Thus the above is a
homogeneous linear system

c1,1a1 + · · · + c1,n+1an+1 = 0
...

cn,1a1 + · · · + cn,n+1an+1 = 0

with more unknowns, n+ 1, than equations. Such a system does not have
only one solution, it has infinitely many solutions. QED



Definition of dimension

2.5 Definition The dimension of a vector space is the number of vectors in
any of its bases.
Example The vector space Rn has dimension n because that is how many
members are in En.
Example The vector space P2 has dimension 3 because one of its bases is
〈1, x, x2〉. More generally, Pn has dimension n+ 1.
Example The vector space Mn×m has dimension n ·m. A natural basis
consists of matrices with a single 1 and the other entries 0’s.



Example The solution set S of this system

x − y + z = 0

−x + 2y − z + 2w = 0

−x + 3y − z + 4w = 0

is a vector space (this is easy to check for any homogeneous system).
Solving the system 1 −1 1 0 0

−1 2 −1 2 0

1 3 −1 4 0

 ρ1+ρ2−→
ρ1+ρ3

−2ρ2+ρ3−→

1 −1 1 0 0

0 1 0 2 0

0 0 0 0 0


and parametrizing gives a basis of two vectors.

{


x

y

z

w

 =


−1

0

1

0

 · z+

−2

−2

0

1

 ·w | z,w ∈ R } B = 〈


−1

0

1

0

 ,

−2

−2

0

1

〉
So S is a vector space of dimension two.



2.10 Corollary No linearly independent set can have a size greater than the
dimension of the enclosing space.
Proof The proof of Theorem 2.4 never uses that D spans the space, only
that it is linearly independent. QED

Remark This is an example of a result that assumes the vector spaces are
finite-dimensional without specifically saying so.



2.12 Corollary Any linearly independent set can be expanded to make a
basis.
Proof If a linearly independent set is not already a basis then it must not
span the space. Adding to the set a vector that is not in the span will
preserve linear independence by Lemma II.1.15 . Keep adding until the
resulting set does span the space, which the prior corollary shows will
happen after only a finite number of steps. QED

2.13 Corollary Any spanning set can be shrunk to a basis.
Proof Call the spanning set S. If S is empty then it is already a basis (the
space must be a trivial space). If S = {~0 } then it can be shrunk to the empty
basis, thereby making it linearly independent, without changing its span.

Otherwise, S contains a vector ~s1 with ~s1 6= ~0 and we can form a basis
B1 = 〈~s1〉. If [B1] = [S] then we are done. If not then there is a ~s2 ∈ [S] such
that ~s2 6∈ [B1]. Let B2 = 〈~s1, ~s2〉; by Lemma II.1.15 this is linearly
independent so if [B2] = [S] then we are done.

We can repeat this process until the spans are equal, which must happen
in at most finitely many steps. QED



2.14 Corollary In an n-dimensional space, a set composed of n vectors is
linearly independent if and only if it spans the space.
Proof First we will show that a subset with n vectors is linearly
independent if and only if it is a basis. The ‘if’ is trivially true—bases are
linearly independent. ‘Only if’ holds because a linearly independent set can
be expanded to a basis, but a basis has n elements, so this expansion is
actually the set that we began with.

To finish, we will show that any subset with n vectors spans the space if
and only if it is a basis. Again, ‘if’ is trivial. ‘Only if’ holds because any
spanning set can be shrunk to a basis, but a basis has n elements and so
this shrunken set is just the one we started with. QED

Example This clearly spans the space.

〈

11
1

 ,
11
0

 ,
10
0

〉 ⊆ R3

Because it has same number of elements as the dimension of the space, it is
therefore a basis.



Vector Spaces and Linear Systems



Row space

3.1 Definition The row space of a matrix is the span of the set of its rows.
The row rank is the dimension of this space, the number of linearly
independent rows.

3.3 Lemma If two matrices A and B are related by a row operation

A
ρi↔ρj−→ B or A

kρi−→ B or A
kρi+ρj−→ B

(for i 6= j and k 6= 0) then their row spaces are equal. Hence, row-equivalent
matrices have the same row space and therefore the same row rank.
Proof Corollary One.III.2.4 shows that when A −→ B then each row
of B is a linear combination of the rows of A. That is, in the above
terminology, each row of B is an element of the row space of A. Then
Rowspace(B) ⊆ Rowspace(A) follows because a member of the set
Rowspace(B) is a linear combination of the rows of B, so it is a combination
of combinations of the rows of A, and by the Linear Combination Lemma is
also a member of Rowspace(A).



For the other set containment, recall Lemma One.III.1.5 , that row
operations are reversible so A −→ B if and only if B −→ A. Then
Rowspace(A) ⊆ Rowspace(B) follows as in the previous paragraph. QED

3.3 Lemma The nonzero rows of an echelon form matrix make up a linearly
independent set.
Proof Lemma One.III.2.5 says that no nonzero row of an echelon form
matrix is a linear combination of the other rows. This result restates that
using this chapter’s terminology. QED



Example The matrix before Gauss’s Method and the matrix after have
equal row spaces.

M =

 1 2 1 0 3

−1 −2 2 2 0

2 4 5 2 9

 ρ1+ρ2−→
−2ρ1+ρ3

−ρ2+ρ3−→

1 2 1 0 3

0 0 3 2 3

0 0 0 0 0


The nonzero rows of the latter matrix form a basis for Rowspace(M).

B = 〈(1 2 1 0 3), (0 0 3 2 3)〉

The row rank is 2.
So Gauss’s Method produces a basis for the row space of a matrix. It has

found the “repeat” information, that M’s third row is three times the first
plus the second, and eliminated that extra row.



Column space

3.6 Definition The column space of a matrix is the span of the set of its
columns. The column rank is the dimension of the column space, the
number of linearly independent columns.
Example This system

2x + 3y = d1
−x + (1/2)y = d2

has a solution for those d1, d2 ∈ R that we can find to satisfy this vector
equation.

x ·
(
2

−1

)
+ y ·

(
3

1/2

)
=

(
d1
d2

)
x, y ∈ R

That is, the system has a solution if and only if the vector on the right is in
the column space of this matrix.(

2 3

−1 1/2

)



Transpose

3.8 Definition The transpose of a matrix is the result of interchanging its
rows and columns, so that column j of the matrix A is row j of AT and vice
versa.
Example To find a basis for the column space of a matrix,(

2 3

−1 1/2

)
transpose, (

2 3

−1 1/2

)T

=

(
2 −1

3 1/2

)
reduce, (

2 −1

3 1/2

)
(−3/2)ρ1+ρ2−→

(
2 −1

0 2

)
and transpose back. (

2 −1

0 2

)T

=

(
2 0

−1 2

)



This basis

B = 〈
(
2

−1

)
,

(
0

2

)
〉

shows that the column space is the entire vector space R2.



3.10 Lemma Row operations do not change the column rank.

The reason is that row operations do not change linear relationships
between the columns. So row operations do not change the number of
linearly unrelated columns.

The book has the full proof; here is an example. In this matrix, the
second column minus the first is equal to the third.1 2 1

0 3 3

2 6 4


As we perform row operations that relationship between the columns
continues to hold.

−2ρ1+ρ3−→

1 2 1

0 3 3

0 2 2

 −(2/3)ρ2+ρ3−→

1 2 1

0 3 3

0 0 0





3.11 Theorem For any matrix, the row rank and column rank are equal.
Proof Bring the matrix to reduced echelon form. Then the row rank
equals the number of leading entries since that equals the number of
nonzero rows. Then also, the number of leading entries equals the column
rank because the set of columns containing leading entries consists of some
of the ~ei’s from a standard basis, and that set is linearly independent and
spans the set of columns. Hence, in the reduced echelon form matrix, the
row rank equals the column rank, because each equals the number of
leading entries.

But Lemma 3.3 and Lemma 3.10 show that the row rank and column
rank are not changed by using row operations to get to reduced echelon
form. Thus the row rank and the column rank of the original matrix are
also equal. QED

3.12 Definition The rank of a matrix is its row rank or column rank.



Example The column rank of this matrix
2 −1 3 1 0 1

3 0 1 1 4 −1

4 −2 6 2 0 2

1 0 3 0 0 2


is 3. Its largest set of linearly independent columns is size 3 because that’s
the size of its largest set of linearly independent rows.

−(3/2)ρ1+ρ2−→
−2ρ1+ρ3
−(1/2)ρ1+ρ4

−(1/3)ρ2+ρ4−→ ρ3↔ρ4−→


2 −1 3 1 0 1

0 3/2 −7/2 −1/2 4 −5/2

0 0 8/3 −1/3 −4/3 7/3

0 0 0 0 0 0





3.13 Theorem For linear systems with n unknowns and with matrix of
coefficients A, the statements
(1) the rank of A is r
(2) the vector space of solutions of the associated homogeneous system

has dimension n− r

are equivalent.
Proof The rank of A is r if and only if Gaussian reduction on A ends
with r nonzero rows. That’s true if and only if echelon form matrices row
equivalent to A have r-many leading variables. That in turn holds if and
only if there are n− r free variables. QED



3.14 Corollary Where the matrix A is n×n, these statements
(1) the rank of A is n
(2) A is nonsingular
(3) the rows of A form a linearly independent set
(4) the columns of A form a linearly independent set
(5) any linear system whose matrix of coefficients is A has one and only

one solution

are equivalent.
Proof Clearly (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4). The last, (4) ⇐⇒ (5),
holds because a set of n column vectors is linearly independent if and only
if it is a basis for Rn, but the system

c1


a1,1
a2,1
...

am,1

+ · · ·+ cn


a1,n
a2,n
...

am,n

 =


d1
d2
...
dm


has a unique solution for all choices of d1, . . . , dn ∈ R if and only if the
vectors of a’s on the left form a basis. QED
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