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Definition and examples



Vector space

1.1 Definition A vector space (over R) consists of a set V along with
two operations ‘+’ and ‘·’ subject to the conditions that for all vectors
~v, ~w, ~u ∈ V, and all scalars r, s ∈ R:
1) the set V is closed under vector addition, that is, ~v+ ~w ∈ V

2) vector addition is commutative ~v+ ~w = ~w+~v

3) vector addition is associative (~v+ ~w) + ~u = ~v+ (~w+ ~u)

4) there is a zero vector ~0 ∈ V such that ~v+~0 = ~v for all ~v ∈ V

5) each ~v ∈ V has an additive inverse ~w ∈ V such that ~w+~v = ~0

6) the set V is closed under scalar multiplication, that is, r ·~v ∈ V

7) scalar multiplication distributes over addition of scalars
(r+ s) ·~v = r ·~v+ s ·~v

8) scalar multiplication distributes over vector addition
r · (~v+ ~w) = r ·~v+ r · ~w

9) ordinary multiplication of scalars associates with scalar multiplication
(rs) ·~v = r · (s ·~v)

10) multiplication by the scalar 1 is the identity operation 1 ·~v = ~v.
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Example Let V be the line with slope 2 that passes through the origin in
the plane.

(
1

2

)
V = {

(
x

y

)
∈ R2 | y = 2x }

It is a set consisting of vectors. Here are some of its infinitely many
elements. (

4

8

) (
1/2

1

) (
−100

−200

) (
0

0

)

We will show that this set is a vector space, where the operations are the
usual vector addition and scalar multiplication.



We will verify conditions (1)-(10) above.
Before we go through those details, we first reiterate the intuition. A

vector space is a place where linear combinations can happen. For instance,
this linear combination of vectors from V

3 ·
(
4

8

)
+ 6 ·

(
1/2

1

)
− (1/10) ·

(
−100

−200

)
+

(
0

0

)
=

(
5

10

)
(∗)

totals to a member of V, a two-tall vector whose second compenent is twice
its first.

To say “linear combinations can happen” requires that we have an
addition operation and a scalar multiplication. For an operation to
deserve to be called an addition it must satisfy some conditions, such as
commutativity, and similarly we have some conditions on scalar
multiplication.

But the key conditions, as we illustrated in (∗) above, are the closure
conditions: when you take a combination of vectors from the space then it
must total to another vector from the space.



Now we will verify that V is a vector space under the natural addition
and scalar multiplication operations.

(
x1
y1

)
+

(
x2
y2

)
=

(
x1 + x2
y1 + y2

)
r ·
(
x

y

)
=

(
rx

ry

)

Because this is the first time through the definition we will verify the ten
conditions at length.



First is condition (1), closure under addition, that the sum of two
members of V is also a member of V.

Take two vectors

~v1 =

(
x1
y1

)
~v2 =

(
x2
y2

)

that are members of V, that is, are subject to the restriction that the
second component is twice the first: y1 = 2x1 and y2 = 2x2. Their sum

~v1 +~v2 =

(
x1 + x2
y1 + y2

)

is also a member of V because it satisfies the same restriction:
y1 + y2 = 2x1 + 2x2 = 2(x1 + x2).



Condition (2), commutativity of addition, is also straightforward. Again
we take two vectors

~v1 =

(
x1
y1

)
~v2 =

(
x2
y2

)

subject to y1 = 2x1 and y2 = 2x2.
The sums in the two orders are

~v1 +~v2 =

(
x1 + x2
y1 + y2

)
~v2 +~v1 =

(
x2 + x1
y2 + y1

)

and the two are equal because x1 + x2 = x2 + x1 and y1 + y2 = y2 + y1, as
those are sums of real numbers.

Remark Some conditions, including this one, have nothing to do with the
y = 2x restriction. We’ll say more about this in the next section.



Condition (3), associativity of addition, is like the prior one. The left
side is

(~v1 +~v2) +~v3 =

(
(x1 + x2) + x3
(y1 + y2) + y3

)

while the right side is

~v1 + (~v2 +~v3) =

(
x1 + (x2 + x3)

y1 + (y2 + y3)

)

and the two are equal, since the entries are real numbers.

Condition (4) asserts that a member of V is an additive identity. We can
just exhibit the called-for vector.

~0 =

(
0

0

)

This is a member of V since its second component is twice its first. It is the
identity element with respect to addition.

~v+~0 =

(
x+ 0

y+ 0

)
= ~v
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Condition (5), existence of an additive inverse, is also a matter of
producing the desired element. Given

~v =

(
x

y

)

subject to y = 2x, consider this vector.

~w =

(
−x

−y

)

Note that ~w ∈ V because −y = 2(−x) follows from y = 2x. Note also that
the two add to make the zero vector ~v+ ~w = ~0.



We finish by verifying the five conditions having to do with scalar
multiplication.

Condition (6) is closure under scalar multiplication. Consider a scalar
r ∈ R and a vector ~v ∈ V

~v =

(
x

y

)

(that is, such that y = 2x). Then

r ·~v =

(
rx

ry

)

satisfies the restriction that the second component is twice the first
ry = 2(rx), because that equation follows from y = 2x. Thus r~v is also a
member of V.



Condition (7) is that real number addition distributes over scalar
multiplication. Fix scalars r, s ∈ R, and a vector ~v ∈ V.

~v =

(
x

y

)

Then we have this.

(r+ s) ·~v =

(
(r+ s)x

(r+ s)y

)
=

(
rx+ sx

ry+ sy

)
= r~v+ s~v

For (8), distributivity of vector addition over scalar multiplication, take
a scalar r ∈ R and two vectors ~v1,~v2 ∈ V.

r(~v1 +~v2) =

(
r(x1 + x2)

r(y1 + y2)

)
=

(
rx1 + rx2
ry1 + ry2

)
= r~v1 + r~v2
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x

y
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r(x1 + x2)
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rx1 + rx2
ry1 + ry2
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= r~v1 + r~v2



For condition (9) suppose r, s ∈ R and ~v ∈ V. Compare these two.

(rs) ·~v =

(
(rs)x

(rs)y

)
r · (s~v) =

(
r(sx)

r(sy)

)

They are equal because the expressions in the components are
multiplications of real numbers.

Condition (10) is simple:

1 ·~v =

(
1 · x
1 · y

)
= ~v

The conclusion: V is a vector space, under the natural addition and
scalar multiplication operations.
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Example This plane through the origin

P = {



x

y

z


 ∈ R3 | 2x+ y+ 3z = 0 }

is a vector space (under the natural operations). We will verify the two
closure conditions (1) and (6); verifying the other conditions is similar to
the prior example.

Condition (1) is that two vectors in the plane sum to a vector in the
plane. Before we confirm that algebraically, here is the geometry.



For (1), take two members of the plane,

~p1 =



x1
y1
z1


 ~p2 =



x2
y2
z2




so that both 2x1 + y1 + 3z1 = 0 and 2x2 + y2 + 3z2 = 0. The sum is

~p1 + ~p2 =



x1 + x2
y1 + y2
z1 + z2




and this sum is in the plane because it satisfies the restriction.

2(x1 + x2) + (y1 + y2) + 3(z1 + z2) = (2x1 + y1 + 3z1) + (2x2 + y2 + 3z2) = 0



For condition (6) take a member of the plane

~p =



x

y

z


 2x+ y+ 3z = 0

and multiply by a scalar r ∈ R.

r~p =



rx

ry

rz




Then r~p is a member of the plane P because
2(rx) + (ry) + 3(rz) = r(2x+ y+ 3z) = 0.



Rn

The set of n-tall vectors is a vector space under the natural operations.
All ten conditions are easy; we will just verify condition (1). Where

~v =




v1
...
vn


 ~w =




w1
...

wn




then the sum

~v+ ~w =




v1 +w1
...

vn +wn




is also a member of Rn. (There are no restrictions to check, since every
n-tall vector is a member of Rn.)



Example Consider the set of quadratic polynomials.

P2 = {a0 + a1x+ a2x
2 | a0, a1, a2 ∈ R }

Some members are 3+ 2x+ 1x2, 10+ 0x+ 5x2, and 0+ 0x+ 0x2.

This is a
vector space under the usual operations of polynomial addition

(a0 + a1x+ a2x
2) + (b0 + b1x+ b2x

2) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2

and scalar multiplication.

r · (a0 + a1x+ a2x
2) = (ra0) + (ra1)x+ (ra2)x

2

Remember the intuition that a vector space is a place where linear
combinations can happen. Here is a sample combination in P2

4 · (1+ 2x+ 3x2) − (1/5) · (10+ 5x2) = 2+ 8x+ 11x2

illustrating that a linear combination of quadratic polynomials is a
quadratic polynomial.
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We won’t give a full verification but we will check the closure conditions
(1) and (6).

For (1) note that if ~v = a0 + a1x+ a2x
2 and ~w = (b0 + b1x+ b2x

2) then
~v+ ~w = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x

2 is also a quadratic polynomial.

Similarly, for (6) note that if ~v = a0 + a1x + a2x
2 then

r ·~v = (ra0) + (ra1)x+ (ra2)x
2 is also a member of P2.
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Example The set of 3×3 matrices

M3×3 = {



a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


 | ai,j ∈ R }

is a vector space under the usual matrix addition and scalar multiplication.
The check of the ten conditions is straightforward.

Here is a sample linear combination.



1 0 1

2 0 2

−1 3 1/2


− 3



0 0 2

1 1 1

0 4 3/2


 =




1 0 −5

−1 −3 1

−1 −9 −4






The empty set cannot be made a vector space, regardless of which
operations we use, because the definition requires that the space contains
an additive identity.

Example The set consisting only of the two-tall zero vector

V = {

(
0

0

)
}

is a vector space (under the usual vector addition and scalar multiplication
operations). (

0

0

)
+

(
0

0

)
=

(
0

0

)
r ·
(
0

0

)
=

(
0

0

)

1.7 Definition A one-element vector space is a trivial space.
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0
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0

0
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0

0
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r ·
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0

0
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0

0

)

1.7 Definition A one-element vector space is a trivial space.



1.16 Lemma In any vector space V, for any ~v ∈ V and r ∈ R, we have
(1) 0 ·~v = ~0, (2) (−1 ·~v) +~v = ~0, and (3) r ·~0 = ~0.

Proof For (1) note that ~v = (1+ 0) ·~v = ~v+ (0 ·~v). Add to both sides the
additive inverse of ~v, the vector ~w such that ~w+~v = ~0.

~w+~v = ~w+~v+ 0 ·~v
~0 = ~0+ 0 ·~v
~0 = 0 ·~v

Item (2) is easy: (−1 · ~v) + ~v = (−1 + 1) · ~v = 0 · ~v = ~0. For (3),
r ·~0 = r · (0 ·~0) = (r · 0) ·~0 = ~0 will do. QED
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Subspaces and spanning sets



Subspace

2.1 Definition For any vector space, a subspace is a subset that is itself a
vector space, under the inherited operations.

Any vector space has a trivial subspace {~0 }. At the opposite extreme,
any vector space has itself for a subspace. A subspace that is not the entire
space is a proper subspace.
Example We have seen that in the vector space R2, the line y = 2x

S = {

(
a

2a

)
| a ∈ R } = {

(
1

2

)
· a | a ∈ R }

is a subspace. The operations are the ones from R2, as required by the
definition above. Earlier, to show it is a vector space we checked the ten
conditions from the definition. The result below says that to check if
something is a subspace there is an easier way.
Example This subset of M2×2 is a subspace.

S = {

(
a b

a b

)
| a, b ∈ R } = {

(
1 0

1 0

)
· a+

(
0 1

0 1

)
· b | a, b ∈ R }

Addition and scalar multiplication are the same as in M2×2.
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Example This is not a subspace of R3.

T = {



x

y

z


 | x+ y+ z = 1 }

It is a subset of R3 but it is not a vector space. One condition that it
violates is that it is not closed under vector addition: here are two elements
of T that sum to a vector that is not an element of T .



1

0

0


+



0

1

0


 =



1

1

0




(Another reason that it is not a vector space is that it does not satisfy
condition (6). Still another is that it does not contain the zero vector.)



2.9 Lemma For a nonempty subset S of a vector space, under the inherited
operations the following are equivalent statements.
(1) S is a subspace of that vector space
(2) S is closed under linear combinations of pairs of vectors: for any

vectors ~s1,~s2 ∈ S and scalars r1, r2 the vector r1~s1 + r2~s2 is in S

(3) S is closed under linear combinations of any number of vectors: for
any vectors ~s1, . . . ,~sn ∈ S and scalars r1, . . . , rn the vector
r1~s1 + · · ·+ rn~sn is an element of S.

‘The following are equivalent’ means that each pair of statements are
equivalent.

(1) ⇐⇒ (2) (2) ⇐⇒ (3) (3) ⇐⇒ (1)

We will prove the equivalence by establishing that
(1) =⇒ (3) =⇒ (2) =⇒ (1). This strategy is suggested by the
observation that the implications (1) =⇒ (3) and (3) =⇒ (2) are easy and
so we need only argue that (2) =⇒ (1).
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2.9 Proof Assume that S is a nonempty subset of a vector space V that is
closed under combinations of pairs of vectors. We will show that S is a
vector space by checking the conditions.

The vector space definition has five conditions on addition. First, for
closure under addition, if ~s1,~s2 ∈ S then ~s1 + ~s2 ∈ S, as it is a combination
of a pair of vectors and we are assuming that S is closed under those.
Second, for any ~s1,~s2 ∈ S, because addition is inherited from V, the sum
~s1 + ~s2 in S equals the sum ~s1 + ~s2 in V, and that equals the sum ~s2 + ~s1 in
V (because V is a vector space, its addition is commutative), and that in
turn equals the sum ~s2 + ~s1 in S. The argument for the third condition is
similar to that for the second. For the fourth, consider the zero vector of V
and note that closure of S under linear combinations of pairs of vectors
gives that 0 · ~s+ 0 · ~s = ~0 is an element of S (where ~s is any member of the
nonempty set S); checking that ~0 acts under the inherited operations as the
additive identity of S is easy. The fifth condition is satisfied because for any
~s ∈ S, closure under linear combinations of pairs of vectors shows that
0 ·~0+ (−1) ·~s is an element of S, and it is obviously the additive inverse of ~s
under the inherited operations.

The conditions for scalar multiplication are similar. QED
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of a pair of vectors and we are assuming that S is closed under those.
Second, for any ~s1,~s2 ∈ S, because addition is inherited from V, the sum
~s1 + ~s2 in S equals the sum ~s1 + ~s2 in V, and that equals the sum ~s2 + ~s1 in
V (because V is a vector space, its addition is commutative), and that in
turn equals the sum ~s2 + ~s1 in S. The argument for the third condition is
similar to that for the second. For the fourth, consider the zero vector of V
and note that closure of S under linear combinations of pairs of vectors
gives that 0 · ~s+ 0 · ~s = ~0 is an element of S (where ~s is any member of the
nonempty set S); checking that ~0 acts under the inherited operations as the
additive identity of S is easy. The fifth condition is satisfied because for any
~s ∈ S, closure under linear combinations of pairs of vectors shows that
0 ·~0+ (−1) ·~s is an element of S, and it is obviously the additive inverse of ~s
under the inherited operations.

The conditions for scalar multiplication are similar. QED



Example The vector space of quadratic polynomials
P2 = {a0 + a1x+ a2x

2 | a0, a1, a2 ∈ R } has a subspace comprised of the
linear polynomials L = {b0 + b1x | b0, b1 ∈ R }. By the prior result, to verify
that we need only check closure under linear combinations of two members.

r · (b0 + b1x) + s · (c0 + c1x) = (rb0 + sc0) + (rb1 + sc1)x

The right side is a linear polynomial with real coefficients, and so is a
member of L. Thus L is a subspace of P2.

Example Another subspace of P2 is the set of quadratic polynomials
having three equal coefficients.

M = {a+ ax+ ax2 | a ∈ R } = {(1+ x+ x2) · a | a ∈ R }

Verify that it is a subspace by considering a linear combination of two of its
members (under the inherited operations).

r · (a+ ax+ ax2) + s · (b+ bx+ bx2) = (ra+ sb) + (ra+ sb)x+ (ra+ sb)x2

The result is a quadratic polynomial with three equal coefficients and so M

is closed under linear combinations.
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The prior subspace example parametrizes the description.

M = {a+ ax+ ax2 | a ∈ R } = {(1+ x+ x2) · a | a ∈ R }

That proves to be a great way to understand vector spaces.

Example This subset of R3 is a plane.

P = {



x

y

z


 | 2x− y+ z = 0 }

We could verify that it is a subspace by checking that it is closed under
linear combination, as above. However, that’s easier if we first parametrize.

Solve the one-equation linear system 2x− y+ z = 0 to express the leading
variable x in terms of the free variables y and z.

P = {



(1/2)y− (1/2)z

y

z


 | y, z ∈ R } = {



1/2

1

0


y+



−1/2

0

1


 z | y, z ∈ R }



The prior subspace example parametrizes the description.

M = {a+ ax+ ax2 | a ∈ R } = {(1+ x+ x2) · a | a ∈ R }

That proves to be a great way to understand vector spaces.

Example This subset of R3 is a plane.

P = {



x

y

z


 | 2x− y+ z = 0 }

We could verify that it is a subspace by checking that it is closed under
linear combination, as above. However, that’s easier if we first parametrize.
Solve the one-equation linear system 2x− y+ z = 0 to express the leading
variable x in terms of the free variables y and z.

P = {



(1/2)y− (1/2)z

y

z


 | y, z ∈ R } = {



1/2

1

0


y+



−1/2

0

1


 z | y, z ∈ R }



With the parametrized description

P = {y



1/2

1

0


+ z



−1/2

0

1


 | y, z ∈ R } (∗)

showing the subspace is closed under linear combinations is straightforward
(here, r1, r2 ∈ R).

r1 ·
(
y1



1/2

1

0


+ z1



−1/2

0

1


)+ r2 ·

(
y2



1/2

1

0


+ z2



−1/2

0

1


)

= (r1y1 + r2y2) ·



1/2

1

0


+ (r1z1 + r2z2) ·



−1/2

0

1




Line (∗) describes each member of P as a linear combination of the two
vectors. Verifying that P is closed then just involves taking a linear
combination of linear combinations. Of course, that gives a linear
combination.



Example To show that this is a subspace of M2×2

Q = {

(
a b

c d

)
| a− b = 0 and b− c = 0 }

treat that as a two-equation linear system and parametrize. The leading
variables are a and b, with free variables c and d.

Q = {

(
c c

c d

)
| c, d ∈ R } = {c

(
1 1

1 0

)
+ d

(
0 0

0 1

)
| c, d ∈ R }

To show Q is a subspace, use the lemma’s clause (2) by finding that a
linear combination of such matrices is such a matrix.

r1 ·
(
c1

(
1 1

1 0

)
+ d1

(
0 0

0 1

))
+ r2 ·

(
c2

(
1 1

1 0

)
+ d2

(
0 0

0 1

))

= (r1c1 + r2c2) ·
(
1 1

1 0

)
+ (r1d1 + r2d2))

(
0 0

0 1

)
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1 1
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(
0 0

0 1
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Span

2.13 Definition The span (or linear closure) of a nonempty subset S of a
vector space is the set of all linear combinations of vectors from S.

[S] = {c1~s1 + · · ·+ cn~sn | c1, . . . , cn ∈ R and ~s1, . . . ,~sn ∈ S}

The span of the empty subset of a vector space is its trivial subspace.

No notation for the span is completely standard. The square brackets used
here are common but so are ‘span(S)’ and ‘sp(S)’.

Example Inside the vector space of all two-wide row vectors, the span of
this one-element set

S = {(1 2) }

is this.
[S] = {(a 2a) | a ∈ R } = {(1 2)a | a ∈ R }
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Example This is a subset of R3.

Ŝ = {




1

−1

0


 ,



1

1

0


 }

Any vector in the xy-plane is a member of the span [S] because any such
vector is a combination of the two; for instance, this system has a solution



3

2

0


 =




1

−1

0


 c1 +



1

1

0


 c2

(the top two rows gives a linear system with a unique solution).

But
vectors not in the xy-plane are not in the span. For instance, this system
does not have a solution.



−1

−2

−3


 =




1

−1

0


 c1 +



1

1

0


 c2



Example This is a subset of R3.

Ŝ = {




1

−1

0


 ,



1

1

0


 }

Any vector in the xy-plane is a member of the span [S] because any such
vector is a combination of the two; for instance, this system has a solution



3

2

0


 =




1

−1

0


 c1 +



1

1

0


 c2

(the top two rows gives a linear system with a unique solution). But
vectors not in the xy-plane are not in the span. For instance, this system
does not have a solution.



−1

−2

−3


 =




1

−1

0


 c1 +



1

1

0


 c2



Example Here is another subset of R3.

P = {



1

0

2


 ,



0

2

1


 }

Vectors in the span [P] are combinations of the two, shown in red. The
span is a plane through the origin.

[P] = {



1

0

2


 · s+



0

2

1


 · t | s, t ∈ R }



2.15 Lemma In a vector space, the span of any subset is a subspace.

Proof If the subset S is empty then by definition its span is the trivial
subspace. If S is not empty then by Lemma 2.9 we need only check that
the span [S] is closed under linear combinations of pairs of elements.
For a pair of vectors from that span, ~v = c1~s1 + · · · + cn~sn and
~w = cn+1~sn+1 + · · ·+ cm~sm, a linear combination

p · (c1~s1 + · · ·+ cn~sn) + r · (cn+1~sn+1 + · · ·+ cm~sm)

= pc1~s1 + · · ·+ pcn~sn + rcn+1~sn+1 + · · ·+ rcm~sm

is a linear combination of elements of S and so is an element of [S] (possibly
some of the ~si’s from ~v equal some of the ~sj’s from ~w but that does not
matter). QED
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Example This illustrates that a span is closed under linear combinations.
Where

Ŝ = {




1

−1

0


 ,



1

1

0


 } ⊂ R3

these are two elements of the span [Ŝ].

~v1 = 5 ·




1

−1

0


+ 3 ·



1

1

0


 ~v2 = −2 ·




1

−1

0


+ 10 ·



1

1

0




The linear combination of those two −3~v1 + 7 ~v2 makes another element of
the span.

−3 ·
(
5




1

−1

0


+ 3



1

1

0


)+ 7 ·

(
− 2




1

−1

0


+ 10



1

1

0


) = −29 ·




1

−1

0


+ 61



1

1

0




This is just an instance of the Linear Combination Lemma: a linear
combination of linear combinations is a linear combination.



Spaces and their subspaces



Subspaces of R3

The next slide shows a sample of subspaces of the vector space R3: the
entire space, planes, lines, and the trivial subspace. Subsets are drawn
connected to supersets, on the levels directly above and below.

On the level one up from the bottom, the subspaces are lines (in the
second and third case, because the conjunction of the two conditions
means that each is the intersection of two planes). That is, they are
one-dimensional.

On the next level up, the subspaces are planes, two-dimensional. On the
top level, the space is 3-space.



R3

xy-plane {



x

y

z


 | x+ y+ z = 0 } {



x

y

z


 | x+ 2z = 0 } . . .

y-axis {



x

y

z


 | x− y+ z = 0 and x + 2z = 0 } {



x

y

z


 | y = 2x and z = 0 } . . .

trivial subspace {



0

0

0


 }



Express subspaces as spans

Example This is a subset of R3.

P = {



x

y

z


 | x+ y+ z = 0 }

Here are three members of this set, and an equation showing that the third
is a linear combination of the first two, illustrating that it is a vector space.

~v1 =




1

2

−3


 ,~v2 =



−2

−5

7


 ,~v3 =




1

1

−2


 , 3~v1 +~v2 = ~v3

To get a more useful description, take the condition x+ y+ z = 0 to be a
one-equation linear system and parametrize.

P = {



−y− z

y

z


 | y, z ∈ R } = {



−1

1

0


y+



−1

0

1


 z | y, z ∈ R }

Thus the plane is the span of those two vectors.



The subspace P ⊆ R3 is a plane passing through the origin.

P = [ {



−1

1

0


 ,



−1

0

1


 } ]

The two vectors from the spanning set


−1

1

0


 and



−1

0

1




are in red. For each, its entire body lies in the plane.



Example For the plane

P̂ = {



x

y

z


 | x+ 2z = 0 }

repeat the process

P̂ = {



−2z

y

z


 | y, z ∈ R } = {



0

1

0


y+



−2

0

1


 z | y, z ∈ R }

to express it as a span.

P̂ = [ {



0

1

0


 ,



−2

0

1


 } ]

Example The xy-plane is a span in a natural way.

xy plane = [ {



1

0

0


 ,



0

1

0


 } ]



Example For the plane

P̂ = {



x

y

z


 | x+ 2z = 0 }

repeat the process

P̂ = {



−2z

y

z


 | y, z ∈ R } = {



0

1

0


y+



−2

0

1


 z | y, z ∈ R }

to express it as a span.

P̂ = [ {



0

1

0


 ,



−2

0

1


 } ]

Example The xy-plane is a span in a natural way.

xy plane = [ {



1

0

0


 ,



0

1

0


 } ]



Example Next we parametrize the lines. The conditions in the set
description

L = {



x

y

z


 | x− y+ z = 0 and x+ 2z = 0 }

make a linear system.

x − y + z = 0

x + 2z = 0

−ρ1+ρ2−→ x − y + z = 0

y + z = 0

Parametrizing

L = {



x

y

z


 | y = −z and x = −2z }

gives this.

L = {



−2

−1

1


 z | z ∈ R } = [ {



−2

−1

1


 } ]



Here the line, the subspace, is in yellow. In red is the vector used in the
description.

In red is the vector used in the description.


−2

−1

1




Its endpoint lies behind the plane of the screen, in the octant where x

and y are negative and z is positive.



Example The line

L̂ = {



x

y

z


 | y = 2x and z = 0 }

is easy to describe in a parametrized way.

L̂ = {



1/2

1

0


y | y ∈ R }

= [ {



1/2

1

0


 } ]

Example The y-axis is also easy to describe as a span.

y-axis = [ {



0

1

0


 } ]



Example The line

L̂ = {



x

y

z


 | y = 2x and z = 0 }

is easy to describe in a parametrized way.

L̂ = {



1/2

1

0


y | y ∈ R }

= [ {



1/2

1

0


 } ]

Example The y-axis is also easy to describe as a span.

y-axis = [ {



0

1

0


 } ]



Example We can describe the entire space as a span.

R3 = [ {



1

0

0


 ,



0

1

0


 ,



0

0

1


 } ]

Example We can do the same for the trivial subspace.

{



0

0

0


 } = [ { } ]

(Remember that a sum of zero-many vectors is the zero vector.)



Example We can describe the entire space as a span.

R3 = [ {



1

0

0


 ,



0

1

0


 ,



0

0

1


 } ]

Example We can do the same for the trivial subspace.

{



0

0

0


 } = [ { } ]

(Remember that a sum of zero-many vectors is the zero vector.)



R3’s diagram reprised

The following slide repeats the diagram of R3’s subspaces, showing the
same subspaces. On this diagram the same subspaces they are described as
spans, where the spanning set uses a minimal number of vectors.

By ‘minimal’ we mean: while we could describe the xy-plane in either of
these ways,

xy-plane = [ {



1

0

0


 ,



0

1

0


 } ] = [ {



1

0

0


 ,



0

1

0


 ,




2

−1

0


 } ]

the second has an extra vector, so the next slide doesn’t use that
description. (We will soon make this precise.)



[ {



1

0

0


 ,



0

1

0


 ,



0

0

1


 } ]

[ {



1

0

0


 ,



0

1

0


 } ] [ {



−1

1

0


 ,



−1

0

1


 } ] [ {



0

1

0


 ,



−2

0

1


 } ] . . .

[ {



0

1

0


} ] [ {



−2

−1

1


 } ] [ {



1/2

1

0


 } ] . . .

[ { } ]



P2’s subspaces

The next slide has a picture of some of the subspaces of the space of
quadratic polynomials. As with the R3 diagram, subsets are shown
connected to supersets on the adjacent level.

With R3 the geometry gave us a good start for a natural classification of
subspaces into planes, lines, etc. In this space there is less of that sense.
But there are a couple of natural subspaces.

linear polynomials = {0x2 + bx+ c | b, c ∈ R }

constant polynomials = {0x2 + 0x+ c | c ∈ R }

These are on the next slide, along with a couple of more-generic spaces.



P2

linear: {bx+ c | b, c ∈ R } {ax2 + bx+ c | a+ b+ c = 0 } . . .

constant: {c | c ∈ R } {ax2 + bx + c | a− c = 0 and b− c = 0 } . . .

trivial subspace



Parametrizing

Example For the top level, this will do.

P2 = [ {x2, x, 1 } ] = [ {x2 + 0x+ 0, 0x2 + x+ 0, 0x2 + 0x+ 1 } ]

Example On the bottom level, the trivial subspace is the span of the
empty set.

{0 } = {0x2 + 0x+ 0 } = [ { } ]

Example The set of linear polynomials has a natural expression as a span.

{bx+ c | b, c ∈ R } = [ {x, 1 } ]

Example The set of constant polynomials is similar.

{0x2 + 0x+ c | c ∈ R } = [ {1 } ]



Parametrizing

Example For the top level, this will do.

P2 = [ {x2, x, 1 } ] = [ {x2 + 0x+ 0, 0x2 + x+ 0, 0x2 + 0x+ 1 } ]

Example On the bottom level, the trivial subspace is the span of the
empty set.

{0 } = {0x2 + 0x+ 0 } = [ { } ]

Example The set of linear polynomials has a natural expression as a span.

{bx+ c | b, c ∈ R } = [ {x, 1 } ]

Example The set of constant polynomials is similar.

{0x2 + 0x+ c | c ∈ R } = [ {1 } ]



Example Parametrize P = {ax2 + bx+ c | a+ b+ c = 0 } in much the
same way as for subspaces of real three-space: treat the restriction as a
one-equation linear system and parametrize.

P = {ax2 + bx+ c | a = −b− c }

= {(−b− c) · x2 + bx+ c | b, c ∈ R }

= {(−x2 + x) · b+ (−x2 + 1) · c | b, c ∈ R }

The spanning set is {−x2 + x,−x2 + 1 }.

Example Simliarly for P̂ = {ax2 + bx+ c | a− c = 0 and b− c = 0 }.

P̂ = {ax2 + bx+ c | a = c and b = c }

= {cx2 + cx+ c | c ∈ R }

= {(x2 + x+ 1) · c | c ∈ R }

The spanning set is {x2 + x+ 1 }.

The next slide reprises P2’s diagram, with the subspaces described as
spans.
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[ {x2, x, 1 } ]

[ {x, 1 } ] [ {−x2 + x,−x2 + 1 } ] . . .

[ {1 } ] [ {x2 + x+ 1 } ] . . .

[ { } ]



Summary

Subspaces are naturally described as spans. In both examples these
spans fall naturally into levels, according to the number of elements in a
minimal spanning set.

The book’s next section gives a precise definition of when a spanning set
is ‘minimal’. The section after that shows that for any space, two minimal
spanning sets have the same number of vectors.
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