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Definition and examples



Linear independence

1.4 Definition In any vector space, a set of vectors is linearly independent if
none of its elements is a linear combination of the others from the set.
Otherwise the set is linearly dependent .

Observe that, although this way of writing one vector as a combination
of the others

~s0 = c1~s1 + c2~s2 + · · ·+ cn~sn

visually sets off ~s0, algebraically there is nothing special about that vector
in that equation. For any ~si with a coefficient ci that is non-0 we can
rewrite to isolate ~si.

~si = (1/ci)~s0 + · · ·+ (−ci−1/ci)~si−1 + (−ci+1/ci)~si+1 + · · ·+ (−cn/ci)~sn

When we don’t want to single out any vector we will instead say that
~s0,~s1, . . . ,~sn are in a linear relationship and put all of the vectors on the
same side.
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1.5 Lemma A subset S of a vector space is linearly independent if and only
if among its elements the only linear relationship c1~s1 + · · · + cn~sn = ~0 is
the trivial one, c1 = 0, . . . , cn = 0 (where ~si 6= ~sj when i 6= j) .

Proof If S is linearly independent then no vector ~si is a linear
combination of other vectors from S so there is no linear relationship where
some of the ~s ’s have nonzero coefficients.

If S is not linearly independent then some ~si is a linear combination
~si = c1~s1 + · · · + ci−1~si−1 + ci+1~si+1 + · · · + cn~sn of other vectors from S.
Subtracting ~si from both sides gives a relationship involving a nonzero
coefficient, the −1 in front of ~si. QED

So to decide if a list of vectors ~s0, . . . ,~sn is linearly independent, set up
the equation ~0 = c0~s0 + · · · + cn~sn, and calculate whether it has any
solutions, other than the trivial one where all coefficents are zero.
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Example This set of vectors in the plane R2 is linearly independent.

{

(
1

0

)
,

(
0

1

)
}

The only solution to this equation

c1

(
1

0

)
+ c2

(
0

1

)
=

(
0

0

)
is trivial c1 = 0, c2 = 0.

Example In the vector space of cubic polynomials
P3 = {a0 + a1x+ a2x

2 + a3x
3 | ai ∈ R } the set {1− x, 1+ x } is linearly

independent. Setting up the equation c0(1 − x) + c1(1 + x) = 0 and
considering the constant term and linear term, leads to this system

c0 + c1 = 0

−c0 + c1 = 0

which has only the trivial solution.
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Example The nonzero rows of this matrix form a linearly independent set.
2 0 1 −1

0 1 −3 1/2

0 0 0 5

0 0 0 0


We showed in Lemma One.III.2.5 that in any echelon form matrix the
nonzero rows form a linearly independent set.

Example This subset of R3 is linearly dependent.

{

1

1

3

 ,

−1

1

0

 ,

1

3

6

 }

One way to see that is to spot that the third vector is twice the first plus
the second. Another way is to solve the linear system

c1 − c2 + c3 = 0

c1 + c2 + 3c3 = 0

3c1 + 6c3 = 0

and note that it has more than just the solution c1 = c2 = c3 = 0.
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1.2 Lemma Where V is a vector space, S is a subset of that space, and ~v is
an element of that space, [S ∪ {~v }] = [S] if and only if ~v ∈ [S].

Proof Half of the if and only if is immediate: if ~v /∈ [S] then the sets are
not equal because ~v ∈ [S ∪ {~v }].

For the other half assume that ~v ∈ [S] so that ~v = c1~s1 + · · · + cn~sn for
some scalars ci and vectors ~si ∈ S. We will use mutual containment to show
that the sets [S ∪ {~v }] and [S] are equal. The containment [S ∪ {~v }] ⊇ [S] is
clear.

To show containment in the other direction let ~w be an element
of [S ∪ {~v }]. Then ~w is a linear combination of elements of S ∪ {~v }, which we
can write as ~w = cn+1~sn+1 + · · ·+ cn+k~sn+k + cn+k+1~v. (Possibly some of
the ~si’s from ~w’s equation are the same as some of those from ~v’s equation
but that does not matter.) Expand ~v.

~w = cn+1~sn+1 + · · ·+ cn+k~sn+k + cn+k+1 · (c1~s1 + · · ·+ cn~sn)

Recognize the right hand side as a linear combination of linear
combinations of vectors from S. Thus ~w ∈ [S]. QED
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1.3 Corollary For ~v ∈ S, omitting that vector does not shrink the span
[S] = [S − {~v }] if and only if it is dependent on other vectors in the
set ~v ∈ [S].
Example These two subsets of R3 have the same span

{

1

2

3

 ,

4

5

6

 ,

7

8

9

 } {

1

2

3

 ,

4

5

6

 }

because in the first set ~v3 = 2~v2 −~v1.

1.14 Corollary A set S is linearly independent if and only if for any ~v ∈ S, its
removal shrinks the span [S− {v }] ( [S].
Proof This follows from Corollary 1.3 . If S is linearly independent then
none of its vectors is dependent on the other elements, so removal of any
vector will shrink the span. If S is not linearly independent then it contains
a vector that is dependent on other elements of the set, and removal of that
vector will not shrink the span. QED
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1.15 Lemma Suppose that S is linearly independent and that ~v /∈ S. Then the
set S ∪ {~v } is linearly independent if and only if ~v /∈ [S].

Proof We will show that S ∪ {~v } is not linearly independent if and only if
~v ∈ [S].

Suppose first that ~v ∈ [S]. Express ~v as a combination
~v = c1~s1 + · · ·+ cn~sn. Rewrite that ~0 = c1~s1 + · · ·+ cn~sn − 1 ·~v. Since ~v /∈ S,
it does not equal any of the ~si so this is a nontrivial linear dependence
among the elements of S ∪ {~v }. Thus that set is not linearly independent.

Now suppose that S ∪ {~v } is not linearly independent and consider a
nontrivial dependence among its members ~0 = c1~s1 + · · ·+ cn~sn + cn+1 ·~v.
If cn+1 = 0 then that is a dependence among the elements of S, but we are
assuming that S is independent, so cn+1 6= 0. Rewrite the equation as
~v = (c1/cn+1)~s1 + · · ·+ (cn/cn+1)~sn to get ~v ∈ [S] QED
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1.17 Corollary In a vector space, any finite set has a linearly independent
subset with the same span.

Proof If S = {~s1, . . . ,~sn } is linearly independent then S itself satisfies the
statement, so assume that it is linearly dependent.

By the definition of dependent, S contains a vector ~v1 that is a linear
combination of the others. Define the set S1 = S− {~v1 }. By Corollary 1.3
the span does not shrink [S1] = [S].

If S1 is linearly independent then we are done. Otherwise iterate: take a
vector ~v2 that is a linear combination of other members of S1 and discard it
to derive S2 = S1 − {~v2 } such that [S2] = [S1]. Repeat this until a linearly
independent set Sj appears; one must appear eventually because S is finite
and the empty set is linearly independent. QED
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Example Consider this subset of R2.

S = {~s1,~s2,~s3,~s4,~s5 } = {

(
2

2

)
,

(
3

3

)
,

(
1

4

)
,

(
0

−1

)
,

(
1

−1

)
}

The linear relationship

r1

(
2

2

)
+ r2

(
3

3

)
+ r3

(
1

4

)
+ r4

(
0

−1

)
+ r5

(
1

−1

)
=

(
0

0

)
gives a system of equations.

2r1 + 3r2 + r3 + r5 = 0

2r1 + 3r2 + 4r3 − r4 − r5 = 0

−ρ1+ρ2−→ 2r1 + 3r2 + r3 + r5 = 0

+ 3r3 − r4 − 2r5 = 0



Parametrize by expressing the leading variables r1 and r3 in terms of the
free variables.

{


r1
r2
r3
r4
r5

 =


−3/2

1

0

0

0

 r2 +


−1/6

0

1/3

1

0

 r4 +


−5/6

0

2/3

0

1

 r5 | r2, r4, r5 ∈ R }

Set r5 = 1 and r2 = r4 = 0 to get r1 = −5/6 and r3 = 2/3,

−
5

6
·
(
2

2

)
+ 0 ·

(
3

3

)
+

2

3
·
(
1

4

)
+ 0 ·

(
0

−1

)
+ 1 ·

(
1

−1

)
=

(
0

0

)
showing that ~s5 is in the span of the set {~s1,~s3 }.

Similarly, setting r4 = 1 and the other parameters to 0 shows ~s4 is in the
span of the set {~s1,~s3 }. Also, setting r2 = 1 and the other parameters to 0

shows ~s2 is in the span of the same set.
So without shrinking the span we can omit the vectors ~s2, ~s4, ~s5

associated with the free variables. The set of vectors associated with the
leading variables, {~s1,~s3 }, is linearly independent and so we cannot omit
any members without shrinking the span.
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1.19 Corollary A subset S = {~s1, . . . ,~sn } of a vector space is linearly
dependent if and only if some ~si is a linear combination of the vectors ~s1,
. . . , ~si−1 listed before it.

Proof Consider S0 = { }, S1 = { ~s1 }, S2 = {~s1,~s2 }, etc. Some index i > 1 is
the first one with Si−1 ∪ {~si } linearly dependent, and there ~si ∈ [Si−1].

QED
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Linear independence and subset

1.20 Lemma Any subset of a linearly independent set is also linearly
independent. Any superset of a linearly dependent set is also linearly
dependent.
Proof Both are clear. QED

This table summarizes the cases.

Ŝ ⊂ S Ŝ ⊃ S

S independent Ŝ must be independent Ŝ may be either
S dependent Ŝ may be either Ŝ must be dependent

An example of the lower left is that the set S of all vectors in the space
R2 is linearly dependent but the subset Ŝ consisting of only the unit vector
on the x-axis is independent. By interchanging Ŝ with S that’s also an
example of the upper right.
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