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Chapter Five. Similarity



Scalars will now be complex

This chapter requires that we factor polynomials. But many polynomials
do not factor over the real numbers; for instance, x2 + 1 does not factor into
a product of two linear polynomials with real coefficients; instead it
requires complex numbers x2 + 1 = (x− i)(x+ i).

Consequently in this chapter we shall use complex numbers for our
scalars, including entries in vectors and matrices. That is, we shift from
studying vector spaces over the real numbers to vector spaces over the
complex numbers. Any real number is a complex number and in this
chapter most of the examples use only real numbers but nonetheless, the
critical theorems require that the scalars be complex.



Review of Factoring and Complex Numbers



Division Theorem for Polynomials

Consider a polynomial p(x) = cnx
n + · · · + c1x + c0 with leading

coefficient cn 6= 0. The degree of the polynomial is n. If n = 0 then p is a
constant polynomial p(x) = c0. Constant polynomials that are not the zero
polynomial, c0 6= 0, have degree zero. We define the zero polynomial to
have degree −∞.

Just as integers have a division operation—e.g., ‘4 goes 5 times into 21
with remainder 1’— so do polynomials.
Example
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So, x2 + x goes 3x − 1 times into 3x3 + 2x2 − x + 4 with remainder 4. In
n = dq+ r form: 3x3 + 2x2 − x+ 4 = (x2 + x) · (3x− 1) + 4.



1.2 Theorem Let p(x) be a polynomial. If d(x) is a non-zero polynomial then
there are quotient and remainder polynomials q(x) and r(x) such that

p(x) = d(x) · q(x) + r(x)

where the degree of r(x) is strictly less than the degree of d(x).
1.4 Corollary The remainder when p(x) is divided by x− λ is the constant

polynomial r(x) = p(λ).
Proof The remainder must be a constant polynomial because it is of
degree less than the divisor x − λ. To determine the constant, take the
theorem’s divisor d(x) to be x− λ and substitute λ for x. QED

If a divisor d(x) goes into a dividend p(x) evenly, meaning that r(x) is
the zero polynomial, then d(x) is a called a factor of p(x). Any root of
the factor, any λ ∈ R such that d(λ) = 0, is a root of p(x) since
p(λ) = d(λ) · q(λ) = 0.

1.5 Corollary If λ is a root of the polynomial p(x) then x − λ divides p(x)
evenly, that is, x− λ is a factor of p(x).
Proof By the above corollary p(x) = (x − λ) · q(x) + p(λ). Since λ is a
root, p(λ) = 0 so x− λ is a factor. QED
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Factoring over the real numbers

1.6 Theorem Any constant or linear polynomial is irreducible over the
reals. A quadratic polynomial is irreducible over the reals if and only if
its discriminant is negative. No cubic or higher-degree polynomial is
irreducible over the reals.

1.7 Corollary Any polynomial with real coefficients factors into a product of
linear and irreducible quadratic polynomials with real coefficients. That
factorization is unique; any two factorizations have the same factors raised
to the same powers.
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Factoring over the complex numbers

While x2 + 1 has no real roots and so doesn’t factor over the real
numbers, if we imagine a root— traditionally denoted i, so that
i2 + 1 = 0—then x2 + 1 factors into a product of linears (x − i)(x + i).
When we adjoin this root i to the reals and close the new system with
respect to addition and multiplication then we have the complex numbers
C = {a+ bi | a, b ∈ R and i2 = −1 }. (These are often pictured on a plane
with a plotted on the horizontal axis and b on the vertical; note that the
distance of the point from the origin is |a+ bi| =

√
a2 + b2.)

In C all quadratics factor. That is, in contrast with the reals, C has no
irreducible quadratics.

1.11 Theorem [Fundamental Theorem of Algebra] Polynomials with complex
coefficients factor into linear polynomials with complex coefficients. The
factorization is unique.
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Complex Representations



Recall the definitions of the complex number addition

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

and multiplication.

(a+ bi)(c+ di) = ac+ adi+ bci+ bd(−1)

= (ac− bd) + (ad+ bc)i

With those rules for scalars, all of the operations that we’ve covered for
real vector spaces carry over unchanged.
Example (

2− i 1+ i

i 4

)(
0 3+ 3i

1− i 2

)
=

(
2 9+ 3i

4− 4i 5+ 3i

)



We shall carry over unchanged from the previous work everything else
that we can. For instance, this

〈


1+ 0i

0+ 0i
...

0+ 0i

 , . . . ,

0+ 0i

0+ 0i
...

1+ 0i

〉
is the standard basis for Cn as a vector space over C and we denote it En.
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