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Orthogonal Projection Into a Line



Project a vector into a line

This shows a figure walking out on the line to a point § such that the tip
of V is directly above them, where “above” does not mean parallel to the
y-axis but instead means orthogonal to the line.
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Project a vector into a line

This shows a figure walking out on the line to a point § such that the tip
of V is directly above them, where “above” does not mean parallel to the
y-axis but instead means orthogonal to the line.
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Since the line is the span of some vector { = {c-§|c € R}, we have a
coefficient ¢y with the property that v —c5§ is orthogonal to c;s.
To solve for this coefficient, observe that because vV — c;5§ is orthogonal

to a scalar multiple of §, it must be orthogonal to § itself. Then
(V—c55) +§=0 gives that cg =V-5/5-5.
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We have decomposed V into two parts ¥ = (c58) + (v — ¢55)

Intuitively, some of V lies with the line and that gives the first part c;s.
The part of V that lies with a line orthogonal to { is V — c35. What'’s
compelling about pairing these two parts is that they don’t interact, in that
the projection of one into the line spanned by the other is the zero vector.
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We have decomposed V into two parts ¥ = (c58) + (v — ¢55)

Intuitively, some of V lies with the line and that gives the first part c;s.
The part of V that lies with a line orthogonal to { is V — c35. What'’s
compelling about pairing these two parts is that they don’t interact, in that
the projection of one into the line spanned by the other is the zero vector.

Note: We have not given a definition of ‘angle’ in spaces other than R™’s,
so we will stick here to those spaces. Extending the definitions to other
spaces is perfectly possible but we don’t need them here.



The orthogonal projection of V into the line spanned by a

Definition
nonzero S is this vector.
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Ezample The projection of this R? vector into the line
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Because V is nearly orthogonal to the line L

v L

only a small part of V lies with the direction of that line, so the

—

projected-to red vector projs(V) is quite short: (|| = v/6 ~ 2.45 while
[proj s (V)| = /1/6 = 0.41).



Gram-Schmidt Orthogonalization



Mutually orthogonal vectors

The prior subsection suggests that projecting a vector V into the line
spanned by § decomposes V into two parts, a part with the line and a part
orthogonal to that.

—

Y V — proj [g](ﬁ)
/ V = projz (V) + (\7— Projsj (\7’))

Projs (P)

Because these are orthogonal they are in some sense non-interacting. Here
we will develop that.



Mutually orthogonal vectors

The prior subsection suggests that projecting a vector V into the line
spanned by § decomposes V into two parts, a part with the line and a part
orthogonal to that.

v V — proj [g](ﬁ)
/ V = projz (V) + (\7— Projsj (\7’))

Projs (P)

Because these are orthogonal they are in some sense non-interacting. Here
we will develop that.
Definition ~ Vectors Vi, ...,V € R™ are mutually orthogonal when any
two are orthogonal: if i # j then the dot product v - Vi is zero.
Ezample The vectors of the standard basis €3 C R3 are mutually
orthogonal.

1 0 0

of,11],1]0

0 0 1



Ezample These two vectors in R? are mutually orthogonal.



The next result makes ‘non-interacting’ precise.
Theorem  If the vectors in a set {V,...,Vi} C R™ are mutually
orthogonal and nonzero then that set is linearly independent.
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The next result makes ‘non-interacting’ precise.
Theorem  If the vectors in a set {V,...,Vi} C R™ are mutually
orthogonal and nonzero then that set is linearly independent.
Proof  Consider 0=ciVi+coVa+ -+ Wy, Forie {1,..,k},
taking the dot product of Vi; with both sides of the equation
Vie(c1Vh +caVo + -+ ceVi) = Vi e 5, which gives ¢; - (Vi +V;) = 0, shows that
ci = 0 since V; # 0. QED
Corollary  In a k dimensional vector space, if the vectors in a size k set
are mutually orthogonal and nonzero then that set is a basis for the space.
Proof Any linearly independent size k subset of a k dimensional space is
a basis. QED
Definition  An orthogonal basts for a vector space is a basis of mutually
orthogonal vectors.



Theorem  If (ﬁl B’k> is a basis for a subspace of R™ then the vectors

=
I

B
R = B2 —Proj[e”(fgz)
K3 = B3 — Projz,;(B3) — Proje, (Bs)
R = Ek —proj[zl](ﬁk) — —proj[;kil](gk)

form an orthogonal basis for the same subspace.
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K1 = Bs

R = B2 —Proj[e”(fgz)
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Proof We will use induction to check that each K; is nonzero, is in

the span of (B1,... B;), and is orthogonal to all preceding vectors

Ky +Ki = - =Ki_1+K; =0. Then Corollary 2.3 gives that (Ky,... Ky) is a
basis for the same space as is the starting basis.



Theorem  If (ﬁl 6k) is a basis for a subspace of R™ then the vectors

=
I

B
R = B2 —Proj[e”(fgz)
K3 = B3 — Projz,;(B3) — Proje, (Bs)
R = Ek —proj[zl](ﬁk) — —proj[;kil][gk)

form an orthogonal basis for the same subspace.
Proof We will use induction to check that each K; is nonzero, is in
the span of (B1,... B;), and is orthogonal to all preceding vectors
Ky +Ki = - =Ki_1+K; =0. Then Corollary 2.3 gives that (Ky,... Ky) is a
basis for the same space as is the starting basis.

We shall only cover the cases up to i = 3, to give the sense of the
argument. The full argument is Exercise 28 .



The 1 = 1 case is trivial; taking K; to be 51 makes it a nonzero vector
since B' 1 is a member of a basis, it is obviously in the span of (E 1), and the
‘orthogonal to all preceding vectors’ condition is satisfied vacuously.



The 1 = 1 case is trivial; taking K; to be 61 makes it a nonzero vector
since B' 1 is a member of a basis, it is obviously in the span of (E 1), and the
‘orthogonal to all preceding vectors’ condition is satisfied vacuously.

In the i = 2 case the expansion
B2« K 7

K1 Ky

7 7 P2eK

EZZBz—proj[zl](ﬁz):ﬁz —— K1 =2 —
Ky ¢ Kq

1

shows that K, # 0 or else this would be a non-trivial linear dependence
among the E’s (it is nontrivial because the coefficient of ﬁz is 1). It also
shows that ¥, is in the span of <E1 , Ez} And, &, is orthogonal to the only
preceding vector

KoKy =Ky (fgz —proj[.z”([gz)) =0

because this projection is orthogonal.



The i = 3 case is the same as the 1 = 2 case except for one detail. As in
the 1 = 2 case, expand the definition.

Lz K1 BicRa
K3:53—§3 J'K1—[i3 2.7,
K1 * Ky K2 ¢ K2
=~ BseRi o B3eR 2 BacRy o
BT eyt

By the first line K3 # 0, since 63 isn’t in the span [ﬁhﬁz] and therefore by
the inductive hypothesis it isn’t in the span [K;, K>]. By the second line K3
is in the span of the first three B' ’s. Finally, the calculation below shows
that K3 is orthogonal to K.



K «K3 =Ky ( 63 —Proj[z ](_‘3) —Proj[zz](gs) )

1 (53 —Proj[.z”(fgs)) — K 'Proj[zz](ﬁs)

(Here is the difference with the i = 2 case: as happened for i = 2 the first
term is O because this projection is orthogonal, but here the second term in
the second line is 0 because K; is orthogonal to K, and so is orthogonal to
any vector in the line spanned by K;.) A similar check shows that K3 is also
orthogonal to K. QED



Ezample This basis for R?

NOROE

does not have orthogonal vectors. To derive from it a basis K = (K, K3)
that is orthogonal, start by taking the first vector unchanged.

Ri =P = (;)

For K, take the part of 62 that does not lie with K.
1 1
3 2
1 1
2 2

Note that Ky and K, are indeed orthogonal.

()-(s)

R =B *Proj[m(f;z) = (;) -



Ezample This is a basis for R3.

=G0

Start the orthogonal basis with Bs.



Ezample This is a basis for R3.

=G0

Start the orthogonal basis with Bs.

1
R = |1
2

As in the prior slide, the next step is &> = B2 — projz,1(B2)-

2 M 1) - (52
B 05



The third step is &3 = B3 —proj[zl](ﬁg) —proj[zz](gg),
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The third step is &3 = B3 —proj[zl](ﬁg) —proj[zz](gg),

o BHE o BF0) o o
U e B

The members of B are at odd angles but the members of K are mutually
orthogonal.
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The third step is &3 = B3 —proj[zl](ﬁg) —proj[zz]([§3),

0 1 0 -3/2

3 )01 3 ][ 3/2
3| -——— |1 - -1 32 | =1 4/3
1«1 3/2 |+ | 3/2
2 2 0 0

The members of B are at odd angles but the members of K are mutually
orthogonal.

1 —3/2 4/3
HEE
2 0 —4/3

We could go on to make this basis even more like €3 by normalizing all of
its members to have length 1, making an orthonormal basis.
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