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The need to prove



In Mathematics we prove things

To a person with a mathematical turn of mind, ‘the base angles of an isoceles
triangle are equal’ seems obvious.

A B

ab if a ∼= b then ∠A ∼= ∠B

Another example that comes naturally to someone with aptitude is, ‘each positive
integer factors into a product of primes’.

But what about: ‘in a right triangle the square of the length of the hypoteneuse
is equal to the sum of the squares of the other two sides’? Is that obvious, or
does it require justi�cation?

A characteristic of our subject is that we are completely sure of new results
because we show that they follow logically from things we’ve already established.
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Convincing is not enough

These assertions seem convincing but turn out to be false.

I The polynomial n2 + n+ 41 appears to outputs only primes.

n 0 1 2 3 4 5 6 7
n2 + n+ 41 41 43 47 53 61 71 83 97

However, that pattern eventually fails: for n = 41 the output 412 + 41 + 41
is divisible by 41.

I When decomposed, 18 = 21 · 32 has an odd number of prime factors (1 + 2
of them), while 24 = 23 · 31 has an even number (3 + 1 of them). We say
that 18 is of odd type while 24 is of even type.

n 1 2 3 4 5 6 7 8 9
type even odd odd even odd even odd odd even

Pòlya conjectured that for any n > 1, the even types below it never
outnumber the odd types. The �rst counterexample is 906 150 257.
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Elements of logic



Propositions

A proposition is an assertion that has a truth value, either ‘true’ or ‘false’.

These are propositions: ‘2 + 2 = 4’ and ‘Two circles in the plane intersect in
either zero points, one point, two points, or all of their points.’

These are not propositions: ‘3 + 5’ and ‘x is not prime’.
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Negation

Pre�xing a proposition with not inverts its truth value.
The statement ‘it is not the case that 3 + 3 = 5’ is true, while ‘it is not the

case that 3 + 3 = 6’ is false.

So the truth value of ‘not P ’ depends only on the truth of P .
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Conjunction, disjunction

A proposition consisting of the word and between two sub-propositions is true
if the two halves are true.

‘3 + 1 = 4 and 3− 1 = 2’ is true
‘3 + 1 = 4 and 3− 1 = 1’ is false
‘3 + 1 = 5 and 3− 1 = 2’ is false

A compound proposition constructed with or between two sub-propositions is
true if at least one half is true.

‘2 · 2 = 4 or 2 · 2 6= 4’ is true
‘2 · 2 = 3 or 2 · 2 6= 4’ is false
‘2 · 2 = 4 or 3 + 1 = 4’ is true
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Truth Tables

Write ¬P for ‘not P ’, P ∧Q for ‘P and Q’, and P ∨Q for ‘P or Q’. We can
describe the action of these operators using truth tables.

P ¬P
F T
T F

P Q P ∧Q P ∨Q
F F F F
F T F T
T F F T
T T T T

One advantage of this notation is that it allows formulas more complex than
you could say in a natural language. For instance, (P ∨Q) ∧ ¬(P ∧Q) is hard to
express in English.

Another advantage is that a natural language such as English has ambiguities
but a formal language does not.
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Exclusive or

Disjunction models sentences meaning ‘and/or’ such as ‘sweep the �oor or do
the laundry’. We would say that someone who has done both has satis�ed the
admonition.

In contrast, ‘Eat your dinner or no dessert’, and ‘Give me the money or the
hostage gets it’, and ‘Live free or die’, all mean one or the other, but not both.

P Q P XOR Q
F F F
F T T
T F T
T T F



Implication

We model ‘if P then Q’ this way.

P Q P → Q

F F T
F T T
T F F
T T T

(We will speak to some subtle aspects of this de�nition below.) Here, P is the
antecedent while Q is the consequent.



Bi-implication

We take ‘P if and only if Q’ to mean the two have the same values, ‘a
number n is divisible by 5’ if and only if ‘the number n ends in 0 or 5’.

P Q P ↔ Q

F F T
F T F
T F F
T T T

Mathematicians often write ‘i�’.



All binary operators

We can list all of the binary logical functions.

P Q P α0 Q
F F F
F T F
T F F
T T F

P Q P α1 Q
F F F
F T F
T F F
T T T

. . .

P Q P α15 Q
F F T
F T T
T F T
T T T

These are the unary ones.

P β0P
F F
T F

P β1P
F F
T T

P β2P
F T
T F

P β3P
F T
T T

A zero-ary operator is constant so there are two: T and F .
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Evaluating complex statements

No matter how intricate the propositional logic sentence, with patience we can
calculate how the output truth values depend on the inputs. Here is the work for
(P → Q) ∧ (P → R).

P Q R P → Q P → R (P → Q) ∧ (P → R)

F F F T T T
F F T T T T
F T F T T T
F T T T T T

T F F F F F
T F T F T F
T T F T F F
T T T T T T

The calculation decomposes the statement into its components P → Q, etc., and
then builds the truth table up from the simpler components.



Tautology, Satisfiability, Equivalence

A formula is a tautology if it evaluates to T for every value of the variables. A
formula is satis�able if it evaluates to T for at least one value of the variables.

Two propositional expressions are logically equivalent if they have the same
�nal column in their truth tables. For instance, P ∧Q and Q ∧ P are equivalent.

An important example is that P → Q and ¬Q→ ¬P are equivalent.

P Q P → Q ¬Q ¬P ¬Q→ ¬P
F F T T T T
F T T F T T
T F F T F F
T T T F F T
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Discussion: our definition of ‘implies’
For P → Q everyone expects when P is true then Q will follow, so that if P

is T but Q is F then the statement as a whole is F . What about the other cases?

P Q P → Q

F F

T

F T

T

T F F
T T

T

Standard mathematical practice de�nes implication so that, for instance, this
statement is true for all real numbers:

if x is rational then x2 is rational

(because x = p/q gives x2 = p2/q2).

Taking x =
√
2 shows that we need F → T

to evaluate to T . Take x = π to see that we need F → F to yield T . For T → T
take x = 1/2.

The intuition is that P → Q is a promise that if P holds then Q must hold
also. If P doesn’t hold, that is not a counterexample to the promise. If Q does
hold, that is also not a counterexample.
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Points about implication

P Q P → Q

F F T
F T T
T F F
T T T

I If the antecedent P is false then the statement as a whole is true, said to be
vacuously true. If the consequent Q is true then the statement as a whole is
true.

I Thus, we take ‘if Babe Ruth was president then 1 + 2 = 4’ to be true,
vacuously true. Similarly, we take ‘if Mallory reached the summit of Everest
then 1 + 2 = 3’ to be true.

I In particular, our de�nition does not require that the antecedent P causes,
or is in any way connected to, the consequent Q.

I Truth tables show that P → Q is logically equivalent to ¬(P ∧ ¬Q), to
¬P ∨Q, and also to the contrapositive ¬Q→ ¬P .
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Predicates, Quantifiers; complete statements

Here is a typical mathematical statement (it happens to be false).

If n is odd then n is a perfect square. (∗)

It involves two clauses, ‘n is odd’ and ‘n is square’. For each, the truth value
depend on the variable n.

A predicate is a truth-valued function. An example is the function Odd that
takes an integer as input and yields either T or F , as in Odd(5) = T . Another
example is Square, as in Square(5) = F , that tells if the input is a perfect square.

A mathematician saying (∗) would mean that it holds for all n. We
denote ‘for all’ by the symbol ∀, so the statement is written formally
∀n ∈ N

[
Odd(n)→ Square(n)

]
.

A quanti�er delimits for how many values of the variable the clause must be
true, in order for the statement as a whole to be true.

Besides ‘for all’ we will also use ‘there exists’, denoted ∃. The statement
∃n ∈ N

[
Odd(n)→ Square(n)

]
is true.
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Examples of statements written formally, with explicit quanti�ers.

I Every number is divisible by 1.

∀n ∈ N
[
1|n

]

I There are �ve di�erent powers n where 2n − 7 is a perfect square.

∃n0, . . . , n4 ∈ N
[
(n0 6= n1) ∧ (n0 6= n2) ∧ · · · ∧ (n3 6= n4)

∧ ∃a0 ∈ N(2n0 − 7 = a20) ∧ · · · ∧ ∃a4 ∈ N(2n4 − 7 = a24)
]

I Any two integers have a common multiple.

∀n0, n1 ∈ N ∃m ∈ N
[
(n0|m) ∧ (n1|m)

]
I The function f : R→ R is continuous at a ∈ R.

∀ε > 0 ∃δ > 0 ∀x ∈ R
[
( |x− a| < δ)→ (|f(x)− f(a)| < ε)

]
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∀n0, n1 ∈ N ∃m ∈ N
[
(n0|m) ∧ (n1|m)

]

I The function f : R→ R is continuous at a ∈ R.

∀ε > 0 ∃δ > 0 ∀x ∈ R
[
( |x− a| < δ)→ (|f(x)− f(a)| < ε)

]



Examples of statements written formally, with explicit quanti�ers.

I Every number is divisible by 1.

∀n ∈ N
[
1|n

]
I There are �ve di�erent powers n where 2n − 7 is a perfect square.

∃n0, . . . , n4 ∈ N
[
(n0 6= n1) ∧ (n0 6= n2) ∧ · · · ∧ (n3 6= n4)

∧ ∃a0 ∈ N(2n0 − 7 = a20) ∧ · · · ∧ ∃a4 ∈ N(2n4 − 7 = a24)
]

I Any two integers have a common multiple.

∀n0, n1 ∈ N ∃m ∈ N
[
(n0|m) ∧ (n1|m)

]
I The function f : R→ R is continuous at a ∈ R.

∀ε > 0 ∃δ > 0 ∀x ∈ R
[
( |x− a| < δ)→ (|f(x)− f(a)| < ε)

]



Relation between ∀ and ∃
The negation of a ‘∀’ statement is a ‘∃¬’ statement. For instance, the negation

of ‘every raven is black’ is ‘there is a raven that is not black’.

A mathematical example is that the negation of ‘every odd number is a perfect
square’

¬∀n ∈ N
[
Odd(n)→ Square(n)

]
is

∃n ∈ N¬
[
Odd(n)→ Square(n)

]
which is equivalent to this.

∃n ∈ N
[
Odd(n) ∧ ¬Square(n)

]
Thus a person could show that ‘every odd number is a perfect square’ is false by
�nding a number that is both odd and not a square.

Similarly the negation of a ‘∃’ statement is a ‘∀¬’ statement.
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